
Mean-field theory for neural networks

main goal: mathematical rigorous modelling of neural microcircuits

Assumptions

I cell input should be ”Poissonian”
and ”close to” independent

I network should exhibit stable
”balanced state”, i.e. each cell
operates close to threshold

Math challenges

I how to formalize the above
assumptions?

I how to characterize ”balanced
states” in mathematical terms?

I how to derive mean-field limits
and fluctuation theory (for
finite-size corrections)?

I statistical analysis of sparse
networks, e.g. autocorrelation

I information theory (?)
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Part I: Building blocks for brain networks: neurons

neural activity in living organisms occurs on different scales/levels:

(a) individual ion channels (microcospic)

(b) single neurons (mezoscopic)

(c) population of neurons (macroscopic)

I neural activity is intrinsically noisy

I single neurons exhibit a large variability



Membrane potential v

first neural activity that could be measured by physiologists
special dynamical feature temporal spikes (action potential)

APs usually travel down the axon towards the axon terminals
where they may be passed over to other neurons or muscles



Regulating the membrane potential
v is driven by three types of electrical currents

C
dv

dt
= −F + Isyn + Iext (1)

(i) F denotes the sum of currents as a result of ions flowing into
or out of the cell membrane through ion channels, also called
the membrane current

(ii) Isyn denote the synaptic currents entering the cell

(iii) Iext denotes externally injected currents (e.g. exterior signals).

Isyn and Iext can be seen as exterior controls

F denotes intrinsic regulation of v via electrically charged particles (ion)
pouring through the membrane via ion channels

single ion channel currents have first been measured by Neher and Sakmann

(Nobel Prize in the year 1991), measurements showed that the dynamics of

single ion channels is intrinsically random



Ion channel dynamics in the squid giant axon

(see Vandenberg et. al., Biophys J., 1991)

widely accepted in computational neuroscience today that adequate modeling

of statistics of single ion channels requires (time-continuous) Markov chains on

finite number of states and that the switching between these states, the

transition rates, are voltage dependent



From microscopic to mezoscopic

simplest mathematical model for ion channels two-state
Markov chains
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well-known: p(t) = P(X (t) = O) solves the Kolmogorov forward eq (resp.
Fokker-Planck eq)

dp

dt
= α(v)(1− p)− β(v)p (2)



From microscopic to mezoscopic, ctd.

yields ”first-order” approximation of the proportion of ion channels being in the
open state in the sense of the law of large numbers:

given (independent) ion channels X1,X2, . . ., then P-a.s.

pN(t) :=
1

N

N∑
i=1

1O(Xi (t))→ p(t) = E (1O(Xi (t))) (3)

important question in computational neuroscience: numerically efficient

approximation of pN(t) and other statistics of large, but finite number of ion

channels



classical method: diffusion approximation

dpN = α(v)(1− pN)− β(v)pN dt +
1√
N

√
α(v)(1− pN) + β(v)pN dBt

∼ α(v)(1− pN)− β(v)pN dt +
1√
N

√
α(v)(1− p) + β(v)p dBt

(4)

where B denotes 1d-Brownian motion

Open problems

I (4) does not leave [0, 1] forward invariant, as probabilities should do....

I (general) at stationary points of p(t) variance becomes small, hence
diffusion approx. ill-posed

so there is a need for ”faithful”, yet computationally efficient, approximations



Mathematical models for v

statistical models: point neurons

I binary neurons n(t) = 0− 1, i.e. inactive-active

I (stochastic) integrate-and-fire (IF) neuron:

dv(t) = b(v(t)) dt + σ(v(t))dBt , v(0) = vr

until first-passage time

T := inf{t ≥ 0 | v(t) ≥ vth}

for some given threshold value vth, then v(T )→ vr

I conductance based neural models: e.g., Hodgkin-Huxley, Morris-Lecar, ...



Conductance-based neuronal models

coupling the membrane potential to the ion channel dynamics leads to
conductance-based neural models
first and most prominent example: Hodgkin-Huxley model introduced in 1952
consisting of three types of ion channels:

I IK - potassium channels (activating)

I INa - sodium channels (activating)

I IL - sodium channel (inactivating)

C
dv

dt
= ḡkn

4(vK − v) + ḡNam
3h (vNa − v) + ḡL (vL − v) + Iext

dn

dt
= αn(v)(1− n)− βn(v)n

dm

dt
= αm(v)(1−m)− βm(v)m

dh

dt
= αh(v)(1− h)− βh(v)h

(5)



Conductance-based neuronal models, ctd.

C
dv

dt
= ḡkn

4(vK − v) + ḡNam
3h (vNa − v) + ḡL (vL − v) + Iext

dn

dt
= αn(v)(1− n)− βn(v)n

dm

dt
= αm(v)(1−m)− βm(v)m

dh

dt
= αh(v)(1− h)− βh(v)h

(6)

I ḡK , ḡNa, ḡL maximal values of membrane conductances

I vK , vNa , vL corr. reversal potentials

I transition rates are given as

αn(v) =
10− v

100(e(10−v)/10 − 1)
βn(v) =

1

8
e−V/80

αm(v) =
25− v

10(e(25−v)/10 − 1)
βm(v) = 4e−v/18

αh(v) =
7

100
e−v/20 βh(v) =

1

e(30−v)/10 + 1



Conductance-based neuronal models, ctd.

the system of coupled differential equations exhibits a bifurcation w.r.t. the
exterior input current Iext . Depending on its value, one can observe a single or
a finite number of spikes or even periodic spikes. More precisely: in the above
parameter set:

- minimal current required for at least one spike: Iext = 2.5

- threshold value for periodic spiking: Iext = 6.25

- if Iext > 154 the amplitude of the spikes decreases rapidly.

Illustration with Octave/Matlab:



Mathematical explanation
Simplified model: FitzHugh-Nagumo system

v̇ = f (v)− w + I

ẇ = ε (v − γw)

for bistable f , e.g., f (v) = v(1− v)(v − a), a ∈ (0, 1)
basic feature - three different regimes: ∃I− < I+

I (suboscillatory, resp. excitable) I < I− at most one spike

I I− < I ≤ I+ periodic spiking

I (superoscillatory) I > I+ at most one spike



Spatially extended models

taking into account spatial extensions of the neuron leads to PDEs

τ∂tv = λ2∂2
xxv − gNam

3h(v − vNa)− gKn
4(v − vK )− gL(v − vL) + I

dp

dt
= αp(v)(1− p)− βp(v)p p ∈ {m, n, h}

where

I v membrane potential, v = v(t, x), t ≥ 0, x ∈ [0, L]

I m, n, h gating variables, 0 ≤ m, n, h ≤ 1

I τ resp. λ specific time resp. space constants

I gNa , gK , gL conductances

I vNa , vK , vL resting potentials

I αp(v) = a1
p

v+Ap

1−e
−a2

p (v+Ap )
, βp(v) = b1

pe
−b2

p (v+Bp )

typical shape of v



In reality more like this ...

Höpfner, Math. Biosciences, 2007

due to fluctuations between open and closed states of ion channels regulating v



Channel noise impact on APs

I spontaneous spiking (due to random opening of sufficient
numbers of Na-channels)

I time jitter - spike time distribution increases with time

I APs can split up or annihilate

I propagation failure

places limits on the axon diameter (around 0.1µm), hence also on
the wiring density

e.g., White, et al., Trends Neurosci. 2000, Faisal, et al.,

Current Biology 2005, Faisal, et al., PLOS 2007



PDE → SPDE: additive noise
yields a stochastic pde: Current noise

τ∂tv = λ2∂xxv − gNam
3h(v − ENa)− gKn

4(v − EK )− gL(v − EL) + I + σ∂tξ(t, x)

dp

dt
= αp(v)(1− p)− βp(v)p , p ∈ {m, n, h}

(7)
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features: subthreshold excitability (well-known already in the point neuron)

due to spatial extension: spontaneous spiking, backpropagation, annihilation,

propagation failure



Illustration - subthreshold excitability

(already known from the point neuron case)

I = 6.0, σ = 0.0 I = 6.0, σ = 0.025



Illustration - spontaneous activation, backpropagation

I = 6.0, σ = 0.25 I = 2.0, σ = 0.36



Part II: (Biological) neural networks

modeling of activity of neural circuits requires modeling the
interneural communication

[Izhikevich, Dynamical Systems in Neuroscience]



Self-organizing neural dynamics

already the generation of APs is an example of self-organization of ion-channels
similar mechanisms of self-organization are also observed in neural fields

Illustration: Local field potentials in cats during wake and sleep

[Destexhe, et al., Scholarpedia, 2013]



Self-organizing neural dynamics

major open questions for neural systems, and in systems biology in general:

establish theories for the collective behavior of neural networks in terms of
their local specifications, that is, the specification of the single neurons and
their connections.

clearly, this requires global rules, similar to the case of kinetic gas theory, where
the global statistical behavior of a gas can be deduced from its local
interactions using simple thermodynamical rules

the difficulty in biological systems in general and in biological neural networks

in particular is to determine simple but nevertheless relevant global rules that

are responsible for the rich observed phenomenology of these complex highly

nonlinear systems



Self-organizing neural dynamics - Illustration

linearly coupled two dimensional FitzHugh-Nagumo systems

r(i, j)

and on each grid point (i , j) the following two-dimensional FitzHugh-Nagumo
system linearly coupled to neighboring neurons:

dvij
dt

= vij(1− vij)(vij − a)− wij +
1

2h
(vi+1,j − vij + vi−1,j − vij)

+
1

2h
(vi,j+1 − vij + vi,j−1 − vi,j)

dwij

dt
= b(vij − a + wij)

(8)

where a ∈ (0, 1), b ∈ R and h ∼ 1
N



Self-organizing neural dynamics - Illustration, ctd.

for certain parameters and certain initial conditions the system exhibits
remarkable collective behavior



Classical model - Binary neural networks
I reduced math. description ni (t) = 0− 1, i = 1, . . . ,N

I Markovian dynamics{
ni : 0→ 1 with rate f

(
γ
∑

j J
(N)
ij nj + Iext

)
ni : 1→ 0 with rate 1− f (. . .)

for given 0 ≤ f ≤ 1, J
(N)
ij ∈ {0, 1}

I sparsity
∑

j J
(N)
ij = O(K), K � N

I operation close to threshold γ = O
(

1√
K

)
features

I admits ”asynchronous irregular” states

I MFT for the mean rate n̄(t) = 1
N

∑
i ni (t) combines Poissonian and

central limit theorem, widely unexplored mathematically

I some own preliminary work on

I series expansions of n̄
I algorithmic tractable approximations
I sdes for fluctuations
I extensions to heterogeneous J

(N)
ij

taking up current research on inhibitory neurons in cortical microcircuits



Part III - (Stochastic) MFT
class. simplifications for rigorous math analysis:

I symmetry Jij = Jji

I all-to-all couplings K =
∑

j Jij = O (N)

well understood with the help of (equilibrium) statistical mechanics
(since in this case it becomes a gradient type dynamics)
motivation for asymmetry

I symmetry lacks neurophysiological plausibility, because synapses operate
unidirectional

I the majority of neurons either act excitatorily (Jij > 0) or inhibitorily
(Jij < 0) which also contradicts symmetry

I symmetry creates additional attractors that do not correspond to
memorized states (e.g., metastable mixture states, spin-glass attractor)

additional motivation for asymmetric couplings can be found in the survey
article:

Kree, R. and Zippelius, A. (1991). Asymmetrically diluted neural

networks, in Models of Neural Networks, ed. van Hemmen, et al.,

Springer



Classical simplifications

For rigorous math analysis:

I symmetry Jij = Jji

I all-to-all couplings K =
∑

j Jij = O (N)

well understood with the help of (equilibrium) statistical mechanics
(since in this case it becomes a gradient type dynamics)

motivation for dilution

I neural connectivity is high, but far away from all-to-all

I allows for structural/hierarchical models



An exactly solvable asymmetric neural network model
Derrida, et al., Europhys. Lett., 4, pp. 167-173 (1987)

Jij =
1

K
cij

p∑
µ=1

ξµi ξ
µ
j

where

I ξµi = ±1 value of neuron i in pattern µ, supposed to be independent
random variables with P (ξµi = ±1) = 1

2

I cij ∈ {0, 1} - random, independent, P(cij = 1) = K
N

Dynamics
parallel - all neurons updated simultaneously

ni (t + δt) =

{
+1 with prob. (1 + exp (−2βui (t)))−1

−1 with prob. (1 + exp (+2βui (t)))−1 (9)

where

I β = 1
T

has the interpretation of inverse temperature

I ui (t) =
∑

j Jijnj(t)

typical order of ∆t = O(1)



An exactly solvable asymmetric neural network model
Derrida, et al., Europhys. Lett., 4, pp. 167-173 (1987)

Jij =
1

K
cij

p∑
µ=1

ξµi ξ
µ
j

where

I ξµi = ±1 value of neuron i in pattern µ, supposed to be independent
random variables with P (ξµi = ±1) = 1

2

I cij ∈ {0, 1} - random, independent, P(cij = 1) = K
N

Dynamics

random sequential - choose a neuron i randomly (according to uniform
distribution) and update its state according to (9)
typical order of ∆t = O

(
1
N

)
Problem How to compare both dynamics precisely?

I parallel update is deterministic

I sequential update is random



Main result: dynamical properties as N →∞

observable

m(t) = E

(
1

N

N∑
i=1

ξµi ni (t)

)
overlap with stored pattern (ξµ1 , . . . , ξ

µ
N)

I parallel dynamics
m(t + ∆t) = f (m(t))

I sequential update
d

dt
m(t) = −m(t) + f (m(t))

where

f (m) =
∞∑
k=0

K ke−k

k!

k∑
n=0

k(p−1)∑
s=0

(1 + m)k−n(1−m)n

2kp

(
k

n

)(
k(p − 1)

s

)
·

· tanh (β (kp − 2(n − s)))



Main result: dynamical properties as N →∞ - fixed row
sum

N∑
j=1

cij ≡ K

observable

m(t) = E

(
1

N

N∑
i=1

ξµi ni (t)

)
overlap with stored pattern (ξµ1 , . . . , ξ

µ
N)

I parallel dynamics
m(t + ∆t) = f (m(t))

I sequential update
d

dt
m(t) = −m(t) + f (m(t))

where

f (m) =
K∑

n=0

K(p−1)∑
s=0

(1 + m)K−n(1−m)n

2Kp

(
K

n

)(
K(p − 1)

s

)
·

· tanh (β (Kp − 2(n − s)))



General case - Heuristics
recall:

I reduced math. description ni (t) = 0− 1, i = 1, . . . ,N

I Markovian dynamics{
ni : 0→ 1 with rate f

(
γ
∑

j J
(N)
ij nj + Iext

)
ni : 1→ 0 with rate 1− f (. . .)

for given 0 ≤ f ≤ 1, J
(N)
ij ∈ {0, 1}

as N →∞, but K � N, one may conjecture that ni (t) become independent, if
initial conditions ni (0) are independent
this conjecture has been verified in the case of the parallel update
K = O (logN) in
Derrida, et al., J. Physique 47, 1297-1303, 1986

suppose also that ni (t) are identically distributed, then

u
(N)
i (t) = γ

N∑
j=1

J
(N)
ij nj(t)−m ∼ γU(t)−m

with

I U(t) ∼ Bin(K ,m(t))

I m(t) = E (ni (t)) = E
(

1
N

∑N
j=1 mj(t)

)



General case - Heuristics, ctd.

the weak law of large numbers therefore implies

1

N

N∑
i=1

f (u
(N)
i (t)) ∼ E (f (γU(t)−m))

therefore

m(N)(t) =
1

N

N∑
i=1

ni (t) ∼ m(t)

with
d

dt
m(t) = −m(t) + E (f (γU(t)−m))



CLT approximation - K large

for increasing K

CLT-approximation Bin(K ,m(t)) ∼ N(Km(t),Km(t)(1−m(t))) yields

γU(t)−m ∼ N(µ1(t), µ2(t))

with µ1(t) = γKm(t)−m, µ2(t) = γ2Km(t)(1−m(t)), and thus

d

dt
m(t) ∼ −m(t) +

1√
2πγ2Km(t)(1−m(t))

∫
f (u)e

− (u−γKm(t)−m))2

2γ2m(t)(1−m(t)) du

obtained in Van Vreeswijk, et al., 1998.



2nd lecture: Stochastic mean field theories for brain
networks



Elements of MFT: martingale structure of Markov chains

General setting

(X (t))t≥0 - (time-homogeneous) time-continuous Markov chain on finite
state space S , right-cont. trajectories

(P(t))t≥0 - family of transition probabilities

Q - generator (rate) matrix, i.e.,

Q =
d

dt
P(t)|t=0 P(t) = etQ , t ≥ 0

Ft := σ{X (s) | s ≤ t}, t ≥ 0, filtration generated by X



Martingale structure, ctd.
Theorem
Let f : S → R be any bounded function. Then

f (X (t)) = f (X (0)) + M f (t) +

∫ t

0

Qf (X (s)) ds t ≥ 0 , (10)

where

M f (t) := f (X (t))− f (X (0))−
∫ t

0

Qf (X (s)) ds , t ≥ 0 ,

is a right-continuous martingale w.r.t. (Ft)t≥0 with

E
(
M f (t)2

)
= E

(∫ t

0

(
Q
(
f 2
)
− 2fQf

)
(X (s)) ds

)

=

∫ t

0

E

∑
j∈S

qX (s) j (f (X (s))− f (j))2

 ds

(11)

Moreover,

M f (t)2 −
∫ t

0

∑
j∈S

qX (s) j (f (X (s))− f (j))2 ds , t ≥ 0 . (12)

is again a right-continuous martingale w.r.t. (Ft)t≥0.



Remarks on Theorem

Remark

I (10) is called the semimartingale decomposition of the process f (X (t)),
since it gives a decomposition into a martingale and a process of bounded
variation

∫ t

0
Qf (X (s)) ds.

I (10) is the analogue of the Ito-decomposition of f (X (t)) for f ∈ C 2 and
X (t) being the solution of a stochastic differential eqution

Corollary
Suppose that P (X (0) = i0) = 1 for some initial state i0 ∈ S . Then

E

((
M f
)2

(t)

)
=

∫ t

0

∑
i,j∈S

pi0j(s)qij (f (i)− f (j))2 ds .



Proof of Theorem

w.l.o.g. P (X (0) = i0) = 1 for some initial state i0 ∈ S
then Markov property implies for any bounded g : S → R

E (g(X (t + s)) | Fs) = P(t)g(X (s)) (13)

in the sense that
P(t)g(X (s)) =

∑
j∈S

pX (s) j(t)g(j)

is a version of E (g(X (t + s)) | Fs)



Proof of Theorem

Indeed, the Markov property implies that
E (g(X (t + s)) | Fs) = E (g(X (t + s)) | X (s)) and

E (g(X (t + s)) | X (s) = i) =
∑
j∈S

E
(
g(X (t + s))1{X (t+s)=j} | X (s) = i

)
=
∑
j∈S

g(j)P (X (t + s) = j | X (s) = i)

=
∑
j∈S

g(j)pij(t)

= P(t)g(i) .



Proof of Theorem
Using d

dt
P(t) = QP(t) = P(t)Q, the main theorem of calculus implies that

P(t)g(i)− g(i) =

∫ t

0

QP(s)g(i) ds = g(i) +

∫ t

0

P(s)Qg(i) ds

=

∫ t

0

E (Qg(X (s))|X (0) = i) ds

= E

(∫ t

0

Qg(X (s)) ds | X (0) = i

)
.

From this identity it then follows that

E (f (X (t + s))− f (X (s)) | Fs) = P(t)f (X (s))− f (X (s))

= E

(∫ t+s

s

Qf (X (r)) dr | X (s)

)
(14)

which implies the martingale property

E

(
f (X (t + s))−

∫ t+s

0

Qf (X (r)) dr | Fs

)
= f (X (s)) + E

(∫ t+s

s

Qf (X (r)) dr | X (s)

)
− E

(∫ t+s

0

Qf (X (r)) dr | Fs

)
= f (X (s))−

∫ s

0

Qf (X (r)) dr .



Proof of Theorem

To derive the representation of the L2-norm we conclude similarly that

E

((
Mf
)2

(t)

)
= E

(
(f (X (t))− f (X (0)))2 − 2 (f (X (t))− f (X (0)))

∫ t

0
Qf (X (s)) ds

+

(∫ t

0
Qf (X (s)) ds

)2 )
= E

(
(f (X (t))− f (X (0)))2 + 2f (X (0))

∫ t

0
Qf (X (s)) ds − 2

∫ t

0
f (X (s))Qf (X (s)) ds

)
= E

(∫ t

0
Q
(
f 2
)

(X (s))− 2f (X (s))Qf (X (s)) ds

)
(15)

using

E

((∫ t

0
Qf (X (s)) ds

)2
)

= 2

∫ t

0

∫ t

s
E
(
Qpu−s f (X (s))Qf (X (s))

)
du ds

= 2

∫ t

0
E
((

pt−s f (X (s))− f (X (s))
)
Qf (X (s))

)
ds

= 2E

(
f (X (t))

∫ t

0
Qf (X (s)) ds −

∫ t

0
f (X (s))Qf (X (s)) ds

)
.

This proves (15).



Proof of Theorem

For the proof of (11) note that for any state i ∈ S

Qf 2(i)− 2f (i)Qf (i) =
∑
j∈S

qij
(
f 2(j)− 2f (i)f (j)

)
=
∑
j∈S

qij
(
f 2(j)− 2f (i)f (j) + f 2(i)

)
=
∑
j∈S

qij (f (i)− f (j))2 .
(16)

The proof of (12) now follows from the Markov property and the previous two
equalities (15) and (16), since

E
(
Mf (t)2 | Fs

)
− Mf (s)2 = E

(
(Mf (t)− Mf (s))2 | Fs

)
= E

(
(Mf (t)− Mf (s))2 | X (s)

)
= E

∫ t

s

∑
j∈S

qX (r)j (f (X (r))− f (j))2 dr | X (s)


= E

∫ t

0

∑
j∈S

qX (r)j (f (X (r))− f (j))2 dr | Fs

− ∫ s

0

∑
j∈S

qX (r)j (f (X (r))− f (j))2 dr .



Binary neural networks: math. model
I network of N binary neurons n(t) = (n1(t), . . . , nN(t)) with ni (t) ∈ {0, 1}
I input ui (t) to the i th neuron given as

ui (t) = γ
N∑
j=1

Jijnj(t)−mi , i = 1, . . . ,N ,

with connectivity matrix Jij ∈ {0, 1} (e.g. Jij i.i.d. Bernoulli
(
K
N

)
, or fixed

row sum
∑

j=1 Jij ≡ K Ji· ⊂ {1, . . . ,N} uniformly distr. independent)

I mi denotes some mean input that will be specified later

the response of neuron i to given input ui is determined in terms of a nonlinear
increasing function f : R→ [0, 1] as follows: given ni (t) = 0, f (ui (t)) specifies
the rate at which the neuron becomes active and conversely, given ni (t) = 1,
1− f (ui (t)) specifies the rate at which the neuron becomes inactive.
The resulting dynamics of the network is then a time-continuous Markov chain
on the state space IN = {0, 1}N with generator matrix Q(n,m) = 0 if
|n −m| ≥ 2 and

Q(n,m) =

{
f (ui ) if m − n = ei

1− f (ui ) if m − n = −ei .

Here ei denotes the i th unit vector.



Binary neural networks: math. model
I network of N binary neurons n(t) = (n1(t), . . . , nN(t)) with ni (t) ∈ {0, 1}
I input ui (t) to the i th neuron given as

ui (t) = γ
N∑
j=1

Jijnj(t)−mi , i = 1, . . . ,N ,

with connectivity matrix Jij ∈ {0, 1} (e.g. Jij i.i.d. Bernoulli
(
K
N

)
, or fixed

row sum
∑

j=1 Jij ≡ K Ji· ⊂ {1, . . . ,N} uniformly distr. independent)

I mi denotes some mean input that will be specified later

The resulting dynamics of the network is then a time-continuous Markov chain
on the state space IN = {0, 1}N with generator matrix Q(n,m) = 0 if
|n −m| ≥ 2 and

Q(n,m) =

{
f (ui ) if m − n = ei

1− f (ui ) if m − n = −ei .

Here ei denotes the i th unit vector.

Ex for f

Heaviside- function f (u) = 1{u≥θ} for some given threshold θ

sigmoid-function f (u) = 1

1+e−γ(u−θ)



Martingales
given G : IN : 0{0, 1}N → R the process

Mt = MG
t = G (n(t))− G (n(0))−

∫ t

0

QG (n(s)) ds , t ≥ 0

is a martingale w.r.t. the natural filtration generated by n(t) with

E
(
M2

t

)
=

∫ t

0

E
( N∑

i :ni=0

f (ui ) (G (n(s) + ei )− G (n(s)))2

+
N∑

i :ni=1

(1− f (ui )) (G (n(s)− ei )− G (n(s)))2
)
ds

Ex

I G(n) = πi (n) = ni , we obtain that

M i
t = ni (t)−

∫ t

0

f (ui (s))− ni (s) ds

I G(n) = πij(n) = ninj , i 6= j , we obtain that

M ij
t = ni (t)nj(t)−

∫ t

0

(−2ni (s)nj(s) + f (ui (s))nj(s) + f (uj(s))ni (s)) ds



Elements of a mean-field theory

Laws of large numbers of the mean activity

n̄(t) :=
1

N

N∑
i=1

ni (t)

Scenario 1: Fixed row sum: Jij = J
(N)
ij such that

∑N
j=1 J

(N)
ij ≡ KN with

KN ↑ ∞, m
(N)
i ≡ m, f (N)(u) = f (u), with γN ≥ 0 and f Lipschitz

In this case we will prove that the dynamics of any ensemble average

nJ(N)

:=
1

|J(N)|
∑

j∈J(N)

n
(N)
j

with |J(N)| sufficiently large, is asymptotically equivalent to the solution
m(N)(t) of the ordinary differential equation

ṁ(N)(t) = −m(N)(t) + f (γNKNm(t)−m) ,m(0) = m0 (17)

for suitable initial conditions ni (0), e.g. ni (0) i.i.d. with E(ni (0)) = m0.



Scenario 1: LLN

dN(t) := sup
J⊂{1,...,N}
|J|≥KN

E
(
|nJ(t)−m(N)(t)|2

) 1
2

Theorem

dN(t) ≤ dN(0) +

√
t

KN
+ (γNKN‖f ‖Lip + 1)

∫ t

0

dN(s) ds

Gronwall’s inequality implies in particular,

dN(t) ≤
(
dN(0) +

√
t

KN

)
e(γNKN‖f ‖Lip+1)t , t ≥ 0 .

Suppose now that KN →∞, supN≥1 γNKN <∞ and initial conditions n(0) are
chosen such that limN→∞ dN(0)→ 0, e.g. ni (0) i.i.d. with E(ni (0)) = n0, then

for every ensemble average nJ(N)

with |J(N)| ≥ KN it follows that

lim
N→∞

E
(
|nJ(N)

(t)−m(N)(t)|2
)

= 0 .



Scenario 1: LLN, ctd.

Corollary

If γNKN → γ∗, then

lim
N→∞

E
(
|nJ(N)

(t)−m(t)|2
)

= 0

where m is a solution to the ordinary differential equation

ṁ(t) = −m(t) + f (γ∗m(t)−m) ,m(0) = m0 .



Proof of Theorem

We first consider N fixed. To simplify notations we can drop the dependence
on N. Fix a subset J ⊂ {1, . . . ,N} with |J| ≥ KN . nJ(t) admits the following
semimartingale decomposition

nJ(t) = nJ(0) +

∫ t

0

QnJ(s) ds + Mt

with

E
(
M2

t

)
=

∫ t

0

∑
i∈J:ni=0

E

(
f (ui (s))

(
1

|J|

)2
)

ds

+

∫ t

0

∑
i∈J:ni=1

E

(
(1− f (ui (s)))

(
1

|J|

)2
)

ds

=
1

|J|2

∫ t

0

E

(∑
i∈J

(1− ni (s))f (ui (s)) + ni (s)(1− f (ui (s)))

)
ds ≤ t

|J| .



Proof of Theorem, ctd.

It follows that(
E
(
nJ(t)−m(t)

)2
) 1

2

≤
(
E (n(0)−m(0))2

) 1
2

+

(
E

(∫ t

0

QnJ(s)− (f (γNKNm(s)−m)−m(s)) ds

)2
) 1

2

+
(
E
(
M2

t

)) 1
2

= I + II + III .

Let us estimate the three terms separately. From the definition E(I ) ≤ dN(0),

from the above computations E(III ) ≤
√

t
|J| ≤

√
t

KN
. It remains to estimate

the second term:

II ≤
∫ t

0

(
E
(
QnJ(s)− f (γNKNm(s)−m)

)2
) 1

2

ds .



Proof of Theorem, ctd.

Clearly,

QnJ(s)− (f (γNKNm(s)−m)−m(s)) =
∑

i∈J:ni=0

f (ui (s))
1

|J|

−
∑

i∈J:ni=1

(1− f (ui (s)))
1

|J| )− (f (KN(m(s)−m))−m(s))

=
1

|J|
∑
i∈J

f (ui (s))− nJ(s)− (f (γNKNm(s)−m))−m(s))

=
1

|J|
∑
i∈J

(f (γNKNn
Ji ·(s)−m)− f (γNKNm(s)−m)− (nJ(s)−m(s))

= IIa(s) + IIb(s) ,



Proof of Theorem, ctd.

so that

II ≤
∫ t

0

(
E(II 2

a (s)
) 1

2
+
(
E(II 2

b (s)
) 1

2
ds

≤ (γNKN‖f ‖Lip + 1)

∫ t

0

dN(s) ds .

Here Ji := {j ∈ {1, . . . ,N} | Jij = 1} denotes the set of presynaptic neurons to
neuron i .

Combining all three estimates we arrive at

dN(t) ≤ dN(0) +

√
t

KN
+ (γNKN‖f ‖Lip + 1)

∫ t

0

dN(s) ds



Remarks

I Th remains true for any sequence of connectivity matrices with row sum

≥ KN , converge is w.r.t. to the conditional probabilities P
(
· |
(
J

(N)
ij

))
for any sequence (J

(N)
ij )

I remarkable implication: ni become asymptotically uncorrelated: indeed,
f (u

(N)
i (t))→ f (γ∗m(t)−m) implies:

d

dt
E(ni (t))E(nj(t)) � (f (γ∗m(t)−m)− E(ni (t))) (f (γ∗m(t)−m)− E(nj(t)))

d

dt
E(ni (t))E(nj(t)) � −2E(ni (t)nj(t)) + f (γ∗m(t)−m)E(ni (t))

+ f (γ∗m(t)−m)E(nj(t)))

implies

d

dt
(E(ni (t)nj(t))− E(ni (t))E(nj(t))) � −2 (E(ni (t)nj(t))− E(ni (t))E(nj(t)))

so that Cov(ni (t), nj(t)) � 0 for t > 0 provided the same holds for the
initial condition t = 0



Elements of a mean-field theory

The central limit theory for the mean activity

Scenario 1 (in addition γNKN ≡ γ∗, and f ∈ C 2
b )

hence

n̄(t) =
1

N

N∑
i=1

� m(t)

where

ṁ(t) = −m(t) + f (γ∗m(t)−m) . (18)

next define standardized ensemble averages

nj,∗(t) :=
√
|J|
(
nJ(t)−m(t)

)
=
√
|J|

(
1

|J|
∑
i∈J

ni (t)−m(t)

)
.



Scenario 1: CLT - small ensemble size

Theorem
Let J(N) ⊂ {1, . . . ,N}, KN and dN(0) be such that |J(N)|∞, but

limN→∞
√
|J(N)|

(
dN(0) + 1√

KN

)
→ 0. Suppose that

P ◦
(
n|J

(N)|,∗(0)
)−1

→ N(m0, σ
2
0) weakly (e.g. ni (0) iid Bernoulli (m0), hence

σ2
0 = m0(1−m0)).

Then nJ(N),∗(t)→ n∞(t) weakly on the Skorokhod space D([0,∞)), which is a
sol. of the sde

dn∞(t) = −n∞(t) dt + σ(t) dW (t)

where W (t) is 1d-Brownian motion and

σ(t) :=
√

(1−m(t))f (γ∗m(t)−m) + m(t)(1− f (γ∗m(t)−m))



Scenario 1: CLT, ctd.

Rem

I f no longer enters the drift term, since the argument of f is ”faster

averaging” than nJ(N)

I the clt yields the following ”finite size” correction

nJ(N)

(t) = m(t) +
1√
|J(N)|

n∞(t)

in the LLN



Proof of Theorem

start again with the semimartingale decomposition

nJ(N),∗(t) = nJ(N),∗(0) +

∫ t

0

√
|J(N)|

(
Q(N)nJ(N)

(s)− ṁ(s)
)
ds + M

(N)
t

where

M
(N)
t :=

√
|J(N)|

(
nJ(N)

(t)− nJ(N)

(0)−
∫ t

0

Q(N)nJ(N)

(s) ds

)
and apply the following martingale CLT



Martingale CLT
Theorem
For n = 1, 2, , . . ., let (Fn

t )t≥0 be a filtration and (Mn(t))t≥0 be an
(Fn

t )t≥0-martingale with right-continuous sample paths, having left limits at
t > 0 and starting at 0, i.e. Mn(0) = 0, such that

lim
n→∞

E

(
sup

0≤s≤t
|Mn(s)−Mn(s−)|

)
= 0 .

Assume that there exist nonnegative, nondecreasing, (Fn
t )t≥0-adapted

processes such that
M2

n (t)− An(t) , t ≥ 0 ,

is an (Fn
t )t≥0-martingale and that

lim
n→∞

An(t) =

∫ t

0

σ2(s) ds in probability

for some deterministic function σ : [0,∞)→ R. Then

lim
n→∞

Mn(t) =

∫ t

0

σ(s) dW (s) , t ≥ 0 ,

weakly on the Skorokhod-space D[0,∞). Here, (W (t))t≥0 is a 1d-Brownian
motion.



Martingale CLT

For a proof see e.g. S. Ethier, T. Kurtz, Markov processes,

Characterization and Convergence, 1984



Proof of Theorem, ctd.

note that M
(N)
t −M

(N)
t− 6= 0 if and only if there is a switch in one of the neurons

at time t from active to inactive or conversely, so that

sup
t≤T

∣∣∣M(N)
t −M

(N)
t−

∣∣∣ ≤ 1√
J(N)

→ 0 ,N →∞ .



Proof of Theorem, ctd.

limiting behaviour of the variance process -based on the previous LLN (!):

E
(
M

(N),2
t

)
=

1

|J(N)|

∫ t

0

E

∑
i∈J(N)

(
(1− ni (s))f (u

(N)
i (s)) + ni (s)(1− f (u

(N)
i (s)))

)
ds

 .

|J(N)| ≥ KN implies that

u
(N)
i (s) = γN

∑
j :J

(N)
ij =1

nj(s)−m→ γ∗m(s)−m ,N →∞ ,

in L1(P), hence

E
(
M

(N),2
t

)
→
∫ t

0

σ(s)2 ds

as N →∞ in L1(P)



Proof of Theorem, ctd.

moreover, M
(N),2
t − A

(N)
t , t ≥ 0, is a martingale, where

A
(N)
t =

∫ t

0

∑
i∈J(N)

(1− ni (s))f (u(N)(s)) + ni (s)(1− f (u
(N)
i (s))) ds

so that the martingale CLT now implies

lim
N→∞

M
(N)
t =

∫ t

0

√
(1−m(s))f (γ∗m(s)−m) + m(s)(1− f (γ∗m(s)−m) dW (s)

weakly on D([0,∞))



Proof of Theorem, ctd.
it remains to verify weak convergence of the drift term

√
|J(N)|

(
Q(N)nJ(N)

(t)− ṁ(t)
)

=
√
|J(N)|

 1

|J(N)|
∑

i∈J(N)

(
f

(
γ∗n

J
(N)
i· (t)−m

)
− f (γ∗m(t)−m)

)
− nJ(N),∗(t)

= I + II

where

|I | ≤
√
|J(N)|γ∗‖f ‖Lip|nJ

(N)
i· (t)−m(t)|

thus

E (|I |) ≤ C(t, ‖f ‖Lip)
√
|J(N)|

(
dN(0) +

√
t

KN

)
→ 0,N →∞ .

so that √
|J(N)|

(
Q(N)nJ(N)

(t)− ṁ(t)
)
� −n|J

(N),∗(t)

in L1(P)



Proof of Theorem, ctd.
summarizing

nJ(N),∗(t) � nJ(N),∗(0)−
∫ t

0

nJ(N),∗(s) ds + M
(N)
t

consider

n̄J(N),∗(t) := e−tnJ(N),∗(0) +

∫ t

0

e−(t−s)dM(N)
s

:= e−tnJ(N),∗(0) + M
(N)
t −

∫ t

0

e−(t−s)M(N)
s ds

then n̄J(N),∗(t) = Φ(M(N))(t), where Φ : D([0,∞))→ D([0,∞)) is the
mapping

Φ(ω)(t) = e−tnJ(N),∗(0) + ω(t)−
∫ t

0

e−(t−s)ω(s) ds

since Φ is continuous w.r.t. the Skorokhod metric we conclude that

lim
N→∞

n̄J(N),∗(t) = e−tnJ(N),∗(0) +

∫ t

0

e−(t−s)σ(s) dW (s)

weakly, hence

lim
N→∞

nJ(N),∗(t) = e−tnJ(N),∗(0) +

∫ t

0

e−(t−s)σ(s) dW (s)

weakly too on D([0,∞))



Scenario 1: CLT - population average activity

Additional assumption: f ∈ C 2
b

Theorem
Suppose that P ◦

(
n̄(N),∗(0)

)−1

→ N(m0, σ
2
0) weakly (e.g. ni (0) iid Bernoulli

(m0), hence σ2
0 = m0(1−m0)).

Then

n̄(N),∗(t) :=
√
N

(
1

N

N∑
i=1

ni (t)−m(t)

)
→ n∞(t)

weakly on the Skorokhod space D([0,∞)), which is a sol. of the sde

dn∞(t) =
(
γ∗f
′(γ∗m(t)−m)n∞(t)− n∞(t)

)
dt + σ(t) dW (t)

where W (t) is 1d-Brownian motion and

σ(t) :=
√

(1−m(t))f (γ∗m(t)−m) + m(t)(1− f (γ∗m(t)−m))



Proof of Theorem

start again with the semimartingale decomposition

n̄(N),∗(t) = n̄(N),∗(0) +

∫ t

0

√
N
(
Q(N)n̄(N)(s)− ṁ(s)

)
ds + M

(N)
t

where

M
(N)
t :=

√
N

(
n̄(N)(t)− n̄(N)(0)−

∫ t

0

Q(N)n̄(N)(s) ds

)
limiting behaviour of the variance process similar to the previous case



Proof of Theorem, ctd.

asymptotic of the drift term different:

√
N
(
Q(N)n̄(N)(t)− ṁ(t)

)
=
√
N

1

N

N∑
i=1

(
f

(
γ∗n

J
(N)
i· (t)−m

)
− f (γ∗m(t)−m)

)
− n(N),∗(t)

= I + II



Proof of Theorem, ctd.

Taylor expansion yields for the first term I

√
N

1

N

N∑
i=1

(
f

(
γ∗n

J
(N)
i· (t)−m

)
− f (γ∗m(t)−m)

)

=
√
N

1

N

N∑
i=1

(
γ∗f
′(γ∗m(t)−m)

1

KN

N∑
j=1

J
(N)
ij nj(t)−m(t)

)

+
√
N

1

N

N∑
i=1

γ2
∗

2
f ′′(ξ

(N)
i (t))

1

KN

(
N∑
j=1

J
(N)
ij nj(t)−m(t)

)2


= Ia + Ib

for certain values ξ
(N)
i (t) between u

(N)
i (t)−m and γ∗m(t)−m.



Proof of Theorem, ctd.

Asymptotic of Ia: rearranging terms

Ia = γ∗f
′(γ∗m(t)−m)

√
N

(
1

N

N∑
j=1

(
1

KN

N∑
i=1

J
(N)
ij

)
nj(t)−m(t)

)

= γ∗f
′(γ∗m(t)−m)

√
N

(
1

N

N∑
j=1

1

KN

N∑
i=1

(
J

(N)
ij −

KN

N

)
nj(t)

)
︸ ︷︷ ︸

→0,N→∞,L2(P)

+ γ∗f
′(γ∗m(t)−m)

√
N

(
1

N

N∑
j=1

nj(t)−m(t)

)



Proof of Theorem, ctd.

because of the asymptotic uncorrelatedness of ni

E

( 1√
N

N∑
j=1

1

KN

N∑
i=1

(
J

(N)
ij −

KN

N

)
nj(t)

)2


=
1

N

N∑
j=1

E

 1

K 2
N

(
N∑
i=1

(
J

(N)
ij −

KN

N

))2

E
(
nj(t)2 | (Jij)

)
≤ 1

N

N∑
j=1

E

(
1

K 2
N

N∑
i=1

(
J

(N)
ij −

KN

N

)2
)

=
N

K 2
N

KN

N

(
1− KN

N

)
=

1

KN

(
1− KN

N

)
→ 0,N →∞



Proof of Theorem, ctd.

Asymptotic of

Ib =
γ2
∗

2

1

N

N∑
i=1

f ′′
(
ξ

(N)
i (t)

)( 1

KN

N∑
j=1

Jijnj(t)−m(t)

)2

E

( 1

KN

N∑
j=1

Jijnj(t)−m(t)

)2
 ≤ 2E

( 1

KN

N∑
j=1

(
J

(N)
ij −

KN

N

)
nj(t)

)2


+ 2E

( 1

N

N∑
j=1

nj(t)−m(t)

)2


≤ 2
1

K 2
N

E

(
N∑
j=1

(
J

(N)
ij −

KN

N

)2
)

+ 2dN(t)2 → 0,N →∞



Proof of Theorem, ctd.

summarizing

√
N
(
Q(N)n̄(N)(t)− ṁ(t)

)
=
√
N

1

N

N∑
i=1

(
f

(
γ∗n

J
(N)
i· (t)−m

)
− f (γ∗m(t)−m)

)
− n̄(N),∗(t)

� γ∗f ′(γ∗m(t)−m)n̄(N),∗(t)− n̄(N),∗(t)

remaining parts of the proof similar to the previous case


