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Consider the SIR model on a network:
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Epidemics on Networks

Consider the SIR model on a network:

Start with one initial infected individual.
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Epidemics on Networks

Consider the SIR model on a network:

The infection may be passed along the edges of the network with a
probability Sdt of infection in a small tilmestep dt.
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Epidemics on Networks

Consider the SIR model on a network:

Infected nodes can recover; suppose the time to recovery is
randomly distributed with pdf ~(¢).
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Epidemics on Networks

Consider the SIR model on a network:

Another infection takes place...
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Epidemics on Networks

Consider the SIR model on a network:

...and another recovery, now the disease cannot progress further...
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Epidemics on Networks

Consider the SIR model on a network:

...and must die out. This is the final state.
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Transmissibility

What is the probability | catch the disease from my neighbour?
Define the transmissibility

T = / Y(t) (1 —e P at.
0
This is probability that the infection is passed from a node to its

neighbour before it recovers.

If T is small, the disease is sure to die out quickly. If T"is large, a
major outbreak is possible.
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Transmissibility

What is the probability | catch the disease from my neighbour?
Define the transmissibility

o0
T = / Y(t) (1 —e P at.
0
This is probability that the infection is passed from a node to its
neighbour before it recovers.

If T is small, the disease is sure to die out quickly. If T"is large, a
major outbreak is possible.

Q: Which nodes are most likely to get infected?
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Transmission probability: 90%

http://people.bath.ac.uk/ma3tcr arXiv: 1502.00901, 1703.06740



Transmission probability: 90%

http://people.bath.ac.uk/ma3tcr arXiv: 1502.00901, 1703.06740



Transmission probability: 90%

http://people.bath.ac.uk/ma3tcr arXiv: 1502.00901, 1703.06740



Transmission probability: 90%

http://people.bath.ac.uk/ma3tcr arXiv: 1502.00901, 1703.06740



Transmission probability: 90%

http://people.bath.ac.uk/ma3tcr arXiv: 1502.00901, 1703.06740



Example

Transmission probability: 90%

/people.bath.ac.uk/ma3tcr arXiv: 1502.00901, 1703.06740



Example

Transmission probability: 90%
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A Guessing Game

Transmission probability: 90%

Which node is more vulnerable to the infection, A or B?
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A Guessing Game

Transmission probability: 90%

B is more vulnerable — it is closer (in the network) to the source.
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A Guessing Game

Transmission probability: 90%

Which node is more vulnerable to the infection, A or B?
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A Guessing Game

Transmission probability: 90%

B is more vulnerable — it has more neighbours,
who are likely to get sick themselves.
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A Guessing Game

Transmission probability: 30%

http://people.bath.ac.uk/ma3tcr arXiv: 1502.00901, 1703.06740



A Guessing Game

Transmission probability: 30%
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Transmission probability: 30%
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A Guessing Game

Transmission probability: 30%
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A Guessing Game

Transmission probability: 30%

Which node is more vulnerable to the infection, A or B?
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A Guessing Game

Transmission probability: 30%

A is more vulnerable — it has more paths between it
and the source for the infection to travel down.
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Cavity Method
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Cavity Method

Write v; for the probability node i is infected eventually, then
jedi

where, Uﬁ-i) is the probability that node j is infected by the disease

in the network with node 7 removed.
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Cavity Method

Write v; for the probability node i is infected eventually, then

vi=1— H(lfTv](-i)),

jEDi

where, Uﬁ-i) is the probability that node j is infected by the disease

in the network with node ¢ removed. Assuming a locally tree-like
structure (e.g. configuration model) we do the same trick one
more time to find:
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Cavity Method

Write v; for the probability node i is infected eventually, then

vi=1— H(lfTv](-i)),

jEDi

where, Uﬁ-i) is the probability that node j is infected by the disease
in the network with node ¢ removed. Assuming a locally tree-like
structure (e.g. configuration model) we do the same trick one

more time to find:

=1 I[ a-19).
1€dj\i

These are the cavity equations.
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Cavity Method

Procedure for vulnerability analysis:
1) Compute the transmissibility 7 = [~ ~(¢)(1 — e=P") dt

2) Solve the cavity equations UJ@ =1—Tlieop:(1 - Tvl(j))

3) Deduce node vulnerability via v; = 1 — [],;(1 — T0\")

The cavity equations are a system of 2| E| non-linear simultaneous
equations. Numerical solution is usually the only option.
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Non-Backtracking (Hashimoto) Graph

It will be useful to draw a graph of relationships between cavity variables.

If G = (V, E) is the original graph, define a new directed graph H with
Nodes: ordered pairs (i,j) for j € V, i € dj
Edges: (i,7) — (k,0)ifk=jand | #i
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Non-Backtracking (Hashimoto) Graph

It will be useful to draw a graph of relationships between cavity variables.

If G = (V, E) is the original graph, define a new directed graph H with
Nodes: ordered pairs (i,j) for j € V, i € dj
Edges: (i,7) — (k,0)ifk=jand | #i
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Cavity Equations — Numerical Solution

Define the map D : R2El — R2IE
De(w)=1- J] (1 -Tve).
e’€de

Then solving the cavity equations means finding a fixed point
v = D(v).
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Cavity Equations — Numerical Solution

Define the map D : R2El — R2IE

De(w)=1- J] (1 -Tve).
e’€de

Then solving the cavity equations means finding a fixed point
v = D(v).
Simple iteration works. Df; j)(l) describes the probability of j
eventually being infected in a network with ¢ removed and at nodes
of distance n or greater initially infected. As n — oo we obtain a
solution to the cavity equations.
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Vulnerability Ranking

0.25 0.5 0.‘75 1 1.é5 1.5 1.75
g
Node vulnerability in a configuration model network with degrees
three and five (in 50/50 mix).
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Epidemic Threshold

For what value of T" is a major outbreak possible?
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Epidemic Threshold

For what value of T" is a major outbreak possible?
That is, when is v = 0 a stable solution of v = D(v)?
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Epidemic Threshold

For what value of T" is a major outbreak possible?
That is, when is v = 0 a stable solution of v = D(v)?

De=1- ][] (01 = Twe)

e’€de

dD,
o = Tlicoc) | | L)
€ e’’ede\e’
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Epidemic Threshold

For what value of T" is a major outbreak possible?
That is, when is v = 0 a stable solution of v = D(v)?

De=1- ][] (01 = Twe)

e’€de
oD
= v f = T]I{e’eﬁe} H (1 - TU@”)
€ e’’ede\e’
So
oD,
=TB,

ave/ e,el s

v=0
where B is the adjacency matrix of the Hashimoto graph. Thus a
major outbreak is possible only if T' > T, = 1/Anax(B).

http://people.bath.ac.uk/ma3tcr arXiv: 1502.00901, 1703.06740



Vulnerability Ranking — Extremes

How does the solution v of the cavity equations vary with 77
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Vulnerability Ranking — Extremes

How does the solution v of the cavity equations vary with 77

Ve =1— H(I—Tvel)

e/ €0e

= o = Ove = Z (ver + TOver) H (1 =Tven)

e'€de e’ €de\e’
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Vulnerability Ranking — Extremes

How does the solution v of the cavity equations vary with 77

Ve =1— H(I—Tvel)

e/ €0e

0v,
= o = Ove = Z (ver + TOver) H (1 =Tven)

e'€de e’ €de\e’

Around T ~ T, we have v ~ 0 so
0V, =~ Z T.0v, ,
e/ €de

that is, v is the eigenvector of B corresponding to the dominant
eigenvalue \pax(B) = 1/T..
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Vulnerability Ranking — Extremes

How does the solution v of the cavity equations vary with 77

Ve =1— H(I—Tvel)

e/ €0e

= o = Ove = Z (ver + TOver) H (1 =Tven)

e'€de e’ €de\e’
Around T ~ T, we have v ~ 0 so

0V, =~ Z T.0v, ,

e’'€de

that is, v is the eigenvector of B corresponding to the dominant
eigenvalue \pax(B) = 1/T..

Thus, near T¢, the vulnerability is v; ~ (T — T¢) 1. Y ;e p; V) @,
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Vulnerability Ranking — Extremes

Going further, the curvature near T, can be found by weakly

non-linear analysis:

Uy
0.6
/Ad - -7y
4 ~
04 | - 7
7 /// ///,
/ S e
/ 7 ///
02 s .
/// /// — e
/s - //',,
v - -
0 . e ——
0.075 0.08 0.085 0.09 0.095 0.1
T
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Vulnerability Ranking — Extremes

Near T'~ 1 we have v =~ 1
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Vulnerability Ranking — Extremes

Near T'~ 1 we have v = 1 so
Ove = Z (Ver + TOVer) H (1 = Tven)
e’€de e'’€de\e’

Nd\@\lz +8’U€

e/ €0e
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Vulnerability Ranking — Extremes

Near T'~ 1 we have v = 1 so
Ove = Z (Ver + TOVer) H (1 = Tven)
e’€de e'’€de\e’

Nd\@\lz +8’U€

e/ €0e

Generally, the first non-zero derivative 9"v, at T'=1 is at

n = |Oe|.

So node vulnerability ranking for strongly infections diseases
depends entirely on degree.
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Vulnerability Ranking

v;

Summarising:

e The epidemic threshold is determined by T, = 1/Apax(B).

e The rank order near T' = T, depends on the corresponding
eigenvector of B.

e The rank order near T' = 1 depends only on degree.
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Risk




Joint Exposure

Suppose we want to compute the probability that a major outbreak
happens if a given node is “patient zero”.
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Joint Exposure

Suppose we want to compute the probability that a major outbreak
happens if a given node is “patient zero”.

Complication: The fates of the two susceptible nodes here are not
independent — they are both exposed to the random lifetime
distribution of their infectious neighbour.
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Cavity Method

First we need to know the probability that ¢ infects some subset J
of it's neighbours (and no-one else):

]P’(i—>J):/OOO’y()H (1= I et

jeJ jeaz\]

_ /OO Y (#)(1 = Yl Be(10i1-1ID) gy
0
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Cavity Method

First we need to know the probability that ¢ infects some subset J
of it's neighbours (and no-one else):

]P’(i—>J):/OOO’y()H (1= I et

jeJ jeaz\]
_ /OO Y (#)(1 = Yl Be(10i1-1ID) gy
0

Then we can compute the risk posed by ¢ as:

ri=1-Y Pl )1 -1,

JCoi

where r.(]i) is the probability of a major outbreak in a network with
i removed and all of J initially infected.
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Cavity Method

Clearly,
1-— ry) < H(l — rj(-i)).

jeJ
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Cavity Method

Clearly,

1-— ry) < H(l — rj(-i))

jeJ
In tree-like networks this bound is very good, so we assume

equality and can write

ri=1- Y P~ )1 —r)

JCoi

=...=1- Z<—1>‘J‘T|J\Hr§-”,

JCoi jeJ

where T,, = [ ~y(t)(1 — e P*)" dt.
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Cavity Method

Repeating the calculation for j with ¢ removed we obtain the
cavity equations

A=t ¥ ot I
Lcoj\i leL

Unlike the node vulnerability, risk depends on the full details of the
disease lifetime distribution ~y(¢)
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Another Guessing Game

Which disease lifetime distribution is most deadly?
recovery probability

2.0

1.5

1.0

0.5 \

time

A) Memoryless (blue)
B) Heavy tail (green)
C) Peaked (yellow)
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Another Guessing Game
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1.5

1.0

0.5 \

time

A) Memoryless (blue)
B) Heavy tail (green)
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Risk Bounds

Recalling T;, =[5 v(¢)(1 — e~ P")™ dt, we have

thus
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Risk Bounds

Risk (purple) and vulnerability (green) in a 4-regular graph with
Weibull distributed lifetimes

y(t) = ket D

Interpolating between heavy tailed (k < 1), memoryless (k = 1)
and delta-function (k> 1).
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Risk Ranking
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Risk Ranking

0.9 0.9 ~

N
—~——

0.87

Risk
Relavtive Risk

0.86

10 107" 10 10
K K

1

Left: Node risk as a function of %, lines shaded according to
degree. The dashed green line is the average risk 7 = >, r;.
Right: Close up of relative risk r; /7 for several nodes.
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Summary

e Epidemics on networks are confusing

e The cavity method can used to compute node risk and
vulnerability to good approximation

Upstream:
Risk of causing
an oubreak

LR TN A
S RGNS '
S e RN P

Ne_twor)k1 Bulk

Downstream:
Vulnerability to
ongoing outbreaks

e Lots more to do...
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