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Epidemics on Networks

Consider the SIR model on a network:

The infection may be passed along the edges of the network with a

probability βdt of infection in a small tilmestep dt.
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Epidemics on Networks

Consider the SIR model on a network:

Infected nodes can recover; suppose the time to recovery is

randomly distributed with pdf γ(t).
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Epidemics on Networks

Consider the SIR model on a network:

Another infection takes place...
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Epidemics on Networks

Consider the SIR model on a network:

...and another recovery, now the disease cannot progress further...
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Epidemics on Networks

Consider the SIR model on a network:

...and must die out. This is the final state.
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Transmissibility

What is the probability I catch the disease from my neighbour?

Define the transmissibility

T =

∫ ∞
0

γ(t)
(
1− e−βt

)
dt .

This is probability that the infection is passed from a node to its

neighbour before it recovers.

If T is small, the disease is sure to die out quickly. If T is large, a

major outbreak is possible.

Q: Which nodes are most likely to get infected?
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Example

Transmission probability: 90%
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A Guessing Game

Transmission probability: 90%

A

B

Which node is more vulnerable to the infection, A or B?
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A Guessing Game

Transmission probability: 90%

A

B

B is more vulnerable — it is closer (in the network) to the source.
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A Guessing Game

Transmission probability: 90%

A

B

B is more vulnerable — it has more neighbours,

who are likely to get sick themselves.
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A Guessing Game

Transmission probability: 30%
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A Guessing Game

Transmission probability: 30%

A

B

Which node is more vulnerable to the infection, A or B?
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A Guessing Game

Transmission probability: 30%

A

B

A is more vulnerable — it has more paths between it

and the source for the infection to travel down.
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Cavity Method

Write vi for the probability node i is infected eventually, then

vi = 1−
∏
j∈∂i

(1− Tv(i)j ) ,

where, v
(i)
j is the probability that node j is infected by the disease

in the network with node i removed. Assuming a locally tree-like

structure (e.g. configuration model) we do the same trick one

more time to find:

v
(i)
j = 1−

∏
l∈∂j\i

(1− Tv(j)l ) .

These are the cavity equations.
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Cavity Method

Procedure for vulnerability analysis:

1) Compute the transmissibility T =
∫∞
0 γ(t)

(
1− e−βt

)
dt

2) Solve the cavity equations v
(i)
j = 1−

∏
l∈∂j\i(1− Tv

(j)
l )

3) Deduce node vulnerability via vi = 1−
∏
j∈∂i(1− Tv

(i)
j )

The cavity equations are a system of 2|E| non-linear simultaneous

equations. Numerical solution is usually the only option.
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Non-Backtracking (Hashimoto) Graph

It will be useful to draw a graph of relationships between cavity variables.

If G = (V,E) is the original graph, define a new directed graph H with

Nodes: ordered pairs (i, j) for j ∈ V , i ∈ ∂j

Edges: (i, j)→ (k, l) if k = j and l 6= i
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Cavity Equations — Numerical Solution

Define the map D : R2|E| → R2|E|

De(v) = 1−
∏
e′∈∂e

(1− Tve′) .

Then solving the cavity equations means finding a fixed point

v = D(v).

Simple iteration works. Dn
(i,j)(1) describes the probability of j

eventually being infected in a network with i removed and at nodes

of distance n or greater initially infected. As n→∞ we obtain a

solution to the cavity equations.
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Vulnerability Ranking

0.25 0.5 0.75 1 1.25 1.5 1.75
0
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0.8

1

β

vi

Node vulnerability in a configuration model network with degrees

three and five (in 50/50 mix).
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Epidemic Threshold

For what value of T is a major outbreak possible?

That is, when is v = 0 a stable solution of v = D(v)?

De = 1−
∏
e′∈∂e

(1− Tve′)

⇒ ∂De

∂ve′
= T I{e′∈∂e}

∏
e′′∈∂e\e′

(1− Tve′′)

So
∂De

∂ve′

∣∣∣∣∣
v=0

= TBe,e′ ,

where B is the adjacency matrix of the Hashimoto graph. Thus a

major outbreak is possible only if T > Tc = 1/λmax(B).
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Vulnerability Ranking — Extremes

How does the solution v of the cavity equations vary with T?

ve = 1−
∏
e′∈∂e

(1− Tve′)

⇒ ∂ve
∂T

=: ∂ve =
∑
e′∈∂e

(ve′ + T∂ve′)
∏

e′′∈∂e\e′
(1− Tve′′)

Around T ≈ Tc we have v ≈ 0 so

∂ve ≈
∑
e′∈∂e

Tc∂ve′ ,

that is, ∂v is the eigenvector of B corresponding to the dominant

eigenvalue λmax(B) = 1/Tc.

Thus, near Tc, the vulnerability is vi ≈ (T − Tc)Tc
∑

j∈∂i v
(i)
j .

http://people.bath.ac.uk/ma3tcr arXiv: 1502.00901, 1703.06740



Vulnerability Ranking — Extremes

How does the solution v of the cavity equations vary with T?

ve = 1−
∏
e′∈∂e

(1− Tve′)

⇒ ∂ve
∂T

=: ∂ve =
∑
e′∈∂e

(ve′ + T∂ve′)
∏

e′′∈∂e\e′
(1− Tve′′)

Around T ≈ Tc we have v ≈ 0 so

∂ve ≈
∑
e′∈∂e

Tc∂ve′ ,

that is, ∂v is the eigenvector of B corresponding to the dominant

eigenvalue λmax(B) = 1/Tc.

Thus, near Tc, the vulnerability is vi ≈ (T − Tc)Tc
∑

j∈∂i v
(i)
j .

http://people.bath.ac.uk/ma3tcr arXiv: 1502.00901, 1703.06740



Vulnerability Ranking — Extremes

How does the solution v of the cavity equations vary with T?

ve = 1−
∏
e′∈∂e

(1− Tve′)

⇒ ∂ve
∂T

=: ∂ve =
∑
e′∈∂e

(ve′ + T∂ve′)
∏

e′′∈∂e\e′
(1− Tve′′)

Around T ≈ Tc we have v ≈ 0 so

∂ve ≈
∑
e′∈∂e

Tc∂ve′ ,

that is, ∂v is the eigenvector of B corresponding to the dominant

eigenvalue λmax(B) = 1/Tc.

Thus, near Tc, the vulnerability is vi ≈ (T − Tc)Tc
∑

j∈∂i v
(i)
j .

http://people.bath.ac.uk/ma3tcr arXiv: 1502.00901, 1703.06740



Vulnerability Ranking — Extremes

How does the solution v of the cavity equations vary with T?

ve = 1−
∏
e′∈∂e

(1− Tve′)

⇒ ∂ve
∂T

=: ∂ve =
∑
e′∈∂e

(ve′ + T∂ve′)
∏

e′′∈∂e\e′
(1− Tve′′)

Around T ≈ Tc we have v ≈ 0 so

∂ve ≈
∑
e′∈∂e

Tc∂ve′ ,

that is, ∂v is the eigenvector of B corresponding to the dominant

eigenvalue λmax(B) = 1/Tc.

Thus, near Tc, the vulnerability is vi ≈ (T − Tc)Tc
∑

j∈∂i v
(i)
j .

http://people.bath.ac.uk/ma3tcr arXiv: 1502.00901, 1703.06740



Vulnerability Ranking — Extremes

Going further, the curvature near Tc can be found by weakly

non-linear analysis:

vi

0.075 0.08 0.085 0.09 0.095 0.1

ρ

0

0.2

0.4

0.6

〈σi〉

T
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Vulnerability Ranking — Extremes

Near T ≈ 1 we have v ≈ 1

so

∂ve =
∑
e′∈∂e

(ve′ + T∂ve′)
∏

e′′∈∂e\e′
(1− Tve′′)

≈ δ|∂e|,1
∑
e′∈∂e

(1 + ∂ve′)

Generally, the first non-zero derivative ∂nve at T = 1 is at

n = |∂e|.

So node vulnerability ranking for strongly infections diseases

depends entirely on degree.
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Vulnerability Ranking
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Summarising:

• The epidemic threshold is determined by Tc = 1/λmax(B).

• The rank order near T = Tc depends on the corresponding

eigenvector of B.

• The rank order near T = 1 depends only on degree.
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Risk



Joint Exposure

Suppose we want to compute the probability that a major outbreak

happens if a given node is “patient zero”.
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Joint Exposure

Suppose we want to compute the probability that a major outbreak

happens if a given node is “patient zero”.

Complication: The fates of the two susceptible nodes here are not

independent — they are both exposed to the random lifetime

distribution of their infectious neighbour.
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Cavity Method

First we need to know the probability that i infects some subset J

of it’s neighbours (and no-one else):

P(i→ J) =

∫ ∞
0

γ(t)
∏
j∈J

(1− eβt)
∏

j∈∂i\J

e−βt dt

=

∫ ∞
0

γ(t)(1− eβt)|J |e−βt(|∂i|−|J |) dt .

Then we can compute the risk posed by i as:

ri = 1−
∑
J⊂∂i

P(i→ J)(1− r(i)J ) ,

where r
(i)
J is the probability of a major outbreak in a network with

i removed and all of J initially infected.
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Cavity Method

Clearly,

1− r(i)J ≤
∏
j∈J

(1− r(i)j ) .

In tree-like networks this bound is very good, so we assume

equality and can write

ri = 1−
∑
J⊂∂i

P(i→ J)(1− r(i)J )

= . . . = 1−
∑
J⊂∂i

(−1)|J |T|J |
∏
j∈J

r
(i)
j ,

where Tn =
∫∞
0 γ(t)(1− e−βt)n dt.
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Cavity Method

Repeating the calculation for j with i removed we obtain the

cavity equations

r
(i)
j = 1−

∑
L⊂∂j\i

(−1)|L|T|L|
∏
l∈L

r
(j)
l .

Unlike the node vulnerability, risk depends on the full details of the

disease lifetime distribution γ(t)
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Another Guessing Game

Which disease lifetime distribution is most deadly?

A) Memoryless (blue)

B) Heavy tail (green)

C) Peaked (yellow)
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Risk Bounds

Recalling Tn =
∫∞
0 γ(t)(1− e−βt)n dt, we have

Tn ≤ Tn ≤ T

thus

1−
∏
e′∈∂e

(1− Tre′) ≥ re ≥ T

(
1−

∏
e′∈∂e

(1− re′)

)
.
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Risk Bounds
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Risk (purple) and vulnerability (green) in a 4-regular graph with

Weibull distributed lifetimes

γ(t) = κe−t
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Interpolating between heavy tailed (κ� 1), memoryless (κ = 1)

and delta-function (κ� 1).
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Risk Ranking
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Left: Node risk as a function of κ, lines shaded according to

degree. The dashed green line is the average risk r̄ =
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i ri.

Right: Close up of relative risk ri/r̄ for several nodes.
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Summary

• Epidemics on networks are confusing

• The cavity method can used to compute node risk and

vulnerability to good approximation

Upstream:

Risk of causing 

an oubreak

Downstream:

Vulnerability to 

ongoing outbreaks

Network Bulk

• Lots more to do...
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