Connectivity networks in neuroscience -
construction and analysis

Jörg Polzehl
Content

1 Brain imaging

2 Functional Connectivity
Brain organisation:

- Gray matter / Cortex
- White matter
- CSF (Cerebrospinal fluid)

Figure: John A Beal, PhD Dep't. of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center Shreveport

(Wikimedia)
Brain function / cortical areas

Cortex divided in

Lobes, Gyri (ridge on the cerebral cortex), Sulci (depression or groove in the cerebral cortex)

White Matter: Fiber bundles connecting cortical areas

Functional areas

Brodman Areas:

- ≈ 50 cortex regions defined based on cytoarchitectural organization of neurons
- regions have been correlated to cortical functions

Brodmann K (1909). ”Vergleichende Lokalisationlehre der Grosshirnrinde”. Leipzig: Johann Ambrosius Barth

Figure: Mark Dow. Research Assistant Brain Development Lab, University of Oregon.

http://lcni.uoregon.edu/ dow/Space_software/renderings.html
Brain template

Talaraich atlas: single subject

Problem: Subject variability
Brain template

Talaraich atlas: single subject

Problem: Subject variability

MNI (Montreal Neurological Institute) template (ICBM152):

Average of 152 MRI scans matched by affine transform (9 parameters)

Maintained by the International Consortium for Brain Mapping

 Orthographic view of MNI template
Probabilistic brain atlases

Havard-Oxford atlas (FSL) : 48 cortical + 21 subcortical regions, 37 subjects

Partially addresses subject variability
Neuroimaging

- Term covers a number of minimally invasive techniques to study the brain
- used to characterize structure, function and diagnostic of diseases
- contribute to understanding interactions between mind (decisions, emotions), brain and body

Two categories

Structural neuroimaging

Functional neuroimaging
Neuroimaging

- Term covers a number of **minimally invasive techniques** to study the brain
- used to characterize **structure, function and diagnostic of diseases**
- contribute to understanding **interactions between mind (decisions, emotions), brain and body**

Two categories with modalities

Structural neuroimaging

- Computed tomography (CT)
- Positron emission tomography (PET)
- Magnetic resonance imaging (MRI)
- Diffusion weighted magnetic resonance imaging (dMRI/DWI)

Functional neuroimaging

- Electroencephalography (EEG)
- Magnetoencephalography (MEG)
- Positron emission tomography (PET)
- functional magnetic resonance imaging (fMRI)
Brain connectivity

Describes the interaction of cortical brain regions

- **Functional connectivity**: characterises the simultaneous function of different brain regions
- **Structural (anatomic) connectivity**: describe the anatomical connection of functional brain regions (nodes) by white matter fiber tracks
- **Effective connectivity**: describe the causal interaction of functional brain regions by directed graphs

All require **definition of nodes** (functional regions) by some methods:

- use of anatomic information (cortical thickness, myelination)
- functional regions identified by fMRI experiments
- default networks identified by resting state fMRI experiments

Source: WikiMedia
Magnetic resonance imaging (MRI)

Fig. 2.7 Free Induction Decay (FID) following a single 90° r.f. pulse. The real and imaginary parts of the signal correspond to the in-phase and quadrature receiver outputs. The signal is depicted with receiver phase $\phi = 0$ and, on complex Fourier transformation, gives real absorption and imaginary dispersion spectra at the offset frequency, $\Delta \omega = \omega_0 - \omega$.

Magnetic resonance imaging (MRI)

Figure: Kasuga Huang (Wikimedia)

Fig. 2.7 Free Induction Decay (FID) following a single 90° r.f. pulse. The real and imaginary parts of the signal correspond to the in-phase and quadrature receiver outputs. The signal is depicted with receiver phase $\phi = 0$ and, on complex Fourier transformation, gives real absorption and imaginary dispersion spectra at the offset frequency, $\Delta \omega = \omega_0 - \omega$.

Figure: Franz Wilhelmstötter (Wikimedia)
MR contrasts

T1-weighted image (orthographic view), longitudinal relaxation

T2-weighted image (orthographic view), transverse relaxation

Data provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.
From K-space to image

\[F_c(k_x, k_y) \]

Complex Gaussian

multiple receiver coils \(c \)

\[f_c(x, y) \]

Complex Gaussian

Rician magnitude image

\[Mod(f_c(x, y)) \]

\[\frac{S}{\sigma} \sim \chi^{2L^*, \zeta/\sigma} \]

Non-central \(\chi \) distribution

- 24-32 receiver coils
- Acquisition protocol and reconstruction method cause (non-local) spatial correlation
- Signal distribution depends on the reconstruction method (SENSE, GRAPPA, SoS, ...)

Connectivity networks in neuroscience - construction and analysis · Summer School 2017: Probabilistic and statistical methods for networks · Page 12
MRI and fMRI

Structural MR images:

- high spatial resolution
- offer contrast between tissue types (cortex <-> white matter)
- no temporal information
MRI and fMRI

Structural MR images:
- high spatial resolution
- offer contrast between tissue types (cortex <-> white matter)
- no temporal information

Functional MR images
- lower spatial resolution
- lower image contrast
- temporal resolution
- signal changing with experimental tasks
Uses the **Blood Oxygenation Level Dependent (BOLD) contrast**

- Active neurons need oxygen!
- Change of magnetic properties due to oxygenation.
- Measure the ratio of oxygenated to deoxygenated hemoglobin
- Local signal changes over time due to brain function

Experiment:

- Measurement of fast time series of the brain under stimulus

Indirect measurement:

- Measures oxygen consumption of active neurons
- Signal changes are delayed in time
- Convolution with hemodynamic response function
- Limited spatial resolution by vascular architecture
About fMRI data

- **Time series of 3D data**
- **Spatial resolution:** 1-4 mm
- **Temporal resolution:** 1-3 sec
- **Search for locations, were a BOLD signal can be found!**
- **Problem: noise**
- **Problem: multiple test problem**
fMRI data analysis

- **Realignment/Registration:**
 - Corrections for head movement
 - Rigid or affine transformation

- **Slice time correction:**
 - Adjust for slice recording at different times

- **Normalization:**
 - Mapping to a standard space (Talaraich, MNI)
 - Comparability between subjects in group studies

- Cortex segmentation based on corresponding anatomic images

- Spatial smoothing
fMRI Empirical hemodynamic response

Hemodynamic response function:

![Empirical hemodynamic responses to brief events](image)

Parametric model:

\[
h(t) = \left(\frac{t}{d_1} \right)^{a_1} \exp \left(-\frac{t - d_1}{b_1} \right) - c \left(\frac{t}{d_2} \right)^{a_2} \exp \left(-\frac{t - d_2}{b_2} \right)
\]

Time delay modeled by including the derivative of \(h \)

Spatially varying form and latency

Expected BOLD response: Convolution between stimulus and hemodynamic response

Figure: M. Lindquist, J. Hopkins Univ., Talk at SAMSI 2015
Study: Lindquist et al., Journal of Magnetic Resonance 2008
fMRI data analysis

Linear model:

\[Y_i = X \beta_i + \varepsilon_i \]

- Data \(Y_i = (Y_{it}) \)
- Design \(X_i = (x_{itk}), \) \(i - \) voxel, \(t - \) time, \(k = 1, K - \) components
- Error \(\varepsilon_i = (\varepsilon_{it}), \) \(E \varepsilon_{it} = 0, E \varepsilon_{it}^2 = \sigma_t^2, Cov(\varepsilon_{it}, \varepsilon_{i(t-j)}) = \delta_{ij}, \) usually \(AR(1) \) or \(AR(2) \)

Components include:

- Expected bold responses to stimuli
- Drift components for magnetic field inhomogeneity (polynomial)
- Confounding (physiological) effects (respiration, cardiac cycle, ...)
- Parameters from motion correction

Prewhitening: Transform model such that errors are approx. uncorrelated

\[\tilde{Y}_i = \tilde{X}_i \beta_i + \tilde{\varepsilon}_i, \quad \tilde{Y}_i = A_i Y_i, \quad \tilde{X}_i = A_i X, \quad \tilde{\varepsilon}_i = A_i \varepsilon_i, \]
fMRI learning experiment

Learning paradigm:

(A) CS+ trial

FM tone | Expect reward | Number | Number > 5 | Feedback

4.5 – 12.0 s | 100 ms | 1400 ms | 1500 ms

(Figure: Puschmann (2013))

(B) CS- trial

FM tone | Expect reward | Number | Number > 5 | Feedback

4.5 – 12.0 s | 100 ms | 1400 ms | 1500 ms

(Figure: Puschmann (2013))
Stimulus components in design matrix:

Haemodynamic responses to stimuli

Connectivity networks in neuroscience - construction and analysis · Summer School 2017: Probabilistic and statistical methods for networks · Page 20
Interest in contrast
\[\gamma = c^T \beta \]
and testing
\[H : \gamma_i = 0 \quad \text{against} \quad A : \gamma_i <> 0 \]
to determine active brain regions associated with the contrast
- Estimate $AR(k)$ parameters from residuals in linear model $Y_i = X \beta_i + \epsilon_i$
- Spatially smooth $AR(k)$ parameters
- Prewhitening using \hat{A}_i obtained from smoothed $AR(k)$ parameters
- Estimation of $\hat{\beta}_i$:
 \[\hat{\beta}_i = \left(\tilde{X}_i^T \tilde{X}_i \right)^{-1} \tilde{X}_i \tilde{Y}_i \]
- Estimate covariance $\hat{\Sigma}_i$ of $\hat{\beta}_i$ from prewhitened model
- Define test statistics (t-distributed)
 \[S_i = \frac{c^T \hat{\beta}_i}{(c^T \hat{\Sigma}_i c)^{1/2}} \]
Multiple test problem

- Simultaneous tests in \(N = 10000 \) (Cortex) - 100000 (Brain) voxel
- using \(t \)-thresholds at significance level \(\alpha \) gives \(\approx \alpha N \) false positives.
- Adjustment for multiple testing by Bonferroni leads to high thresholds
- Multiplicity adjustment leads to low sensitivity
- Alternative: \textit{False Discovery Rate} (Benjamini & Hochberg 1995)
 Control of proportion of false positives within detected signals
- ignores spatial extend of regions of interest

voxelwise decision using thresholds adjusted for multiple testing
Regions of activation have a spatial extent.

Smoothing the observed images with a (Gaussian) kernel with bandwidth \(h \)

\[
\tilde{Y}_{it} = \sum_{j} K\left(\frac{||i - j||}{h}\right)Y_{jt}
\]

decreases variance and increases Signal-to-Noise ratio (SNR)

reduce the number of independent decisions.

thresholds can be obtained by Random Field Theory (Adler 1987, 2000, Worsley 1994ff)

\[
P(\max_{i} \tilde{S}_{i} > \tau) \approx \sum_{d=0}^{3} R_{d}(V, h) \rho_{d}(\tau)
\]

\(R_{d}(V, h) \) - d-dimensional resel count
\(\rho_{d} \) - d-dimensional Euler characteristic density.

decision using nonadaptive smoothing and thresholds given by Random Field Theory
Interpretation of fMRI results

Results of a voxelwise analysis, Motor (finger tapping task)

- **Interpretation** of test results?
 - Poor signal to noise
 - Activation or other sources of variation (motion artifact, physiological noise, other processes?)
 - Color coded p-values
 - Low sensitivity \leftrightarrow reduced spatial resolution
 - Search for activated regions instead of activated voxel

- **Reproducibility** of results??
 - Large **variability** over repeated experiments (same subject)
 - **Representativeness** for populations?
 - Between subject variability
 - Group studies needed
Resting state experiments

fMRI experiments without external stimulus (resting state)

- looks for intrinsic brain activity
- first experiments by Biswal et al. (1995) observe patterns of spatial coherence between sensorimotor regions
- e.g. Zang & Raichle (2010) identify 7 major networks of regions that show spatially coherent activity
- larger studies identify up to 17 networks

Figure: Raichle, Brain Connectivity, 2011, Fig. 1D
Independent component analysis (ICA)

- Observed signals $x_1(t), x_2(t), \ldots, x_p(t)$

- Assume these signals to be a linear combination of unknown sources $s_1(t), s_2(t), \ldots, s_q(t)$

- Model:

 $$ x_i(t) = \sum_{k=1}^{K} a_{ik} s_k(t) + \varepsilon_i(t) \quad i = 1, \ldots, p $$ \hspace{1cm} (1)

 $$ X = AS + E \hspace{1cm} (2) $$

- **Goal**: Estimate the mixing matrix $A = (a_{ij})$ and the unknown source signals $s_j(t)$

- Source separation or cocktail party problem
ICA in fMRI

- Data: $n_1 \times n_2 \times n_3 \times T$ values. Reorder as data matrix $n \times T$
- Reduction of data matrix by Prewhitening and PCA, specification of number of sources K
- Search for spatial pattern in S (Spatial ICA)

$$X_{i \times v} = A_{i \times k} \times S_{k \times v}$$

Ylipaavalniemi and Vigário, Neuroimage 2008

- Decompose in temporal (A) and spatial S signals
- Solved by e.g. fastICA (Hyvärinen & Oja (2000))
- Some components k may model artifacts (interpretability !)
C.F. Beckmann and S.M. Smith, Neuroimage 2005

Generalization of ICA for group studies

K subjects

Model:

\[
X_{IK \times J} = (C \otimes |A|)S + E_{IK \times J}
\]

\[
(C \otimes |A|) = ((A \text{diag}(c_1))^\top, \ldots, (A \text{diag}(c_K))^\top)^\top
\]

Structure of mixing matrix \((C \otimes |A|)\) reflects the individual effects

Common spatial structure in \(S\)
1200 Subjects

- **anatomical scans** 0.7mm isotropic (T1/T2)
- **task based fMRI**, 7 tasks 2mm isotropic
 (Working memory, Gambling, Motor, Language, Social cognition, Relational processing, Emotion Processing)
- **resting state fMRI** 4 × 15min 2mm isotropic
- **diffusion weighted imaging** 1.25mm isotropic, 3 × 90 gradients

Information from these experiments is combined to obtain **individual brain parcellations** (node definitions) for all subjects

Literature:

- Special issue Neuroimage 2013
- Shen et al. Neuroimage 2013
- Finn et al., Nature neuroscience 2015
Brain parcellation, 268 functional regions, Shen 2013

- Finn 2015 defines general procedure for corresponding subject specific region definition
- regions should be used for node definition in group studies
functional connectivity networks from fMRI

- Selection of characteristic time series within regions
- leads to matrix $Y = (y_{kt})_{t=1,T}^{k=1,K}$
- define network by empirical covariance matrix

$$\hat{\Sigma} = \left(\sum_t (y_{it} - \bar{y}_i)(y_{jt} - \bar{y}_j) \right)_{i,j=1,K}$$

- or regularized / thresholded estimate

Task based fMRI depending on the goal:

- Modeling and removal of expected hemodynamic response
- Selection of characteristic (residual) time series within regions

or

- Selection of nodes using functional regions associated with the tasks
Electroencephalography (EEG)

- High temporal resolution
- Low spatial resolution
- Indirect measurement
- Source reconstruction problem
- Networks: coherence between spectra of recorded or reconstructed signals

From correlation to networks

Assumptions:

\[Y_t \sim N_p(0, \Sigma), \quad \Sigma = (\sigma_{ij})_{i,j=1}^p \]

Correlation between signals in nodes (regions) describes joint activity

\[R = (\rho_{ij})_{i,j=1}^p, \quad \rho_{ij} = \frac{\sigma_{ij}}{(\sigma_{ii}\sigma_{jj})^{1/2}} \]
Assumptions:

\[Y_t \sim N_p(0, \Sigma), \quad \Sigma = (\sigma_{ij})_{i,j=1}^p \]

Correlation between signals in nodes (regions) describes joint activity

\[R = (\rho_{ij})_{i,j=1}^p, \quad \rho_{ij} = \frac{\sigma_{ij}}{(\sigma_{ii}\sigma_{jj})^{1/2}} \]

Partial correlations refer to joint activity not explained by intermediate effects

\[P = (\rho_{i.j.})_{i,j=1}^p, \quad \rho_{i.j.} = -\frac{\sigma_{ij} - \sigma_{ik}\Sigma_k^{-1}\sigma_{jk}}{(\sigma_{ii} - \sigma_{ik}\Sigma_k^{-1}\sigma_{ik})(\sigma_{jj} - \sigma_{jk}\Sigma_k^{-1}\sigma_{jk})}^{1/2} \]

with \(k = (1 \ldots n)/(ij) \)

Precision matrices: \(\Omega = \Sigma^{-1} = (\omega_{ij})_{i,j=1}^p \)

Connection to partial correlations: \(\rho_{i.j.} = -\frac{\omega_{ij}}{(\omega_{ii}\omega_{jj})^{1/2}} \)

Estimation of precision matrices \((p << n)\)

Negative normal log-likelihood: \(Y_t \sim N_p(0, \Sigma), S = \frac{1}{T} \sum_{i=1}^{T} (Y_t - \bar{Y})(Y_t - \bar{Y})^T\)

\[
\hat{\Omega} = \arg\max_{\Omega} \log|\Omega| - tr(S\Omega), \quad \hat{\Omega} = S^{-1}
\]

- functional connectivity networks are hypothesized to be sparse
- \(p = 22, n = 178 \rightarrow\) high variability of estimated correlations
Graphical LASSO

Regularization:

$$\hat{\Omega} = \arg \max_{\Omega} \log |\Omega| - tr(S\Omega) + P_\lambda(\Omega)$$

Graphical LASSO:

$$P_\lambda(\Omega) = \lambda \sum_{i,j} |\omega_{i,j}|$$

Literature:

- Friedman, J.; Hastie, T. & Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso, Biostatistics, 2008
- Mazumder, R. & Hastie, T.: Exact covariance thresholding into connected components for large-scale Graphical Lasso, JMLR, 2012
Graphical LASSO

Regularization:

\[\hat{\Omega} = \arg \max_{\Omega} \log |\Omega| - \text{tr}(S\Omega) + \mathcal{P}_\lambda(\Omega) \]

Graphical LASSO:

\[\mathcal{P}_\lambda(\Omega) = \lambda \sum_{ij} |\omega_{ij}| \]

Solution for \(\lambda = .1 \) function dpglasso from R-package dpglasso.

Problem: Produces a biased estimate!
Adaptive penalties (adaptive LASSO, SCAD)

Regularization:

\[
\hat{\Omega} = \arg\max_{\Omega} \log |\Omega| - tr(S\Omega) + \sum_{ij} p_{\lambda}(\omega_{ij})
\]

adaptive LASSO (Hui Zou):

\[
p_{\lambda}(\omega_{ij}) = \lambda \frac{1}{\tilde{\omega}_{ij}^\gamma} |\omega_{ij}|
\]

SCAD (Smoothly Clipped Absolute Deviation) (Fan & Li (2001)):

\[
p_{\lambda}(\omega_{ij}) = (\lambda I_{|\tilde{\omega}_{ij}| \leq \lambda} + \frac{(a\lambda - |\tilde{\omega}_{ij}|)}{(a - 1)} I_{|\tilde{\omega}_{ij}| > \lambda}) |\omega_{ij}|
\]

Suggested parameters: \(\gamma = .5, a = 3.7 \). \(\tilde{\omega} \) are assumed to be consistent estimates.

Computations:

- Non-convex optimization problems
- can be approximated by iteration of graphical LASSO (with matrix penalty parameter)

Adaptive penalties (adaptive LASSO)

Regularization:

\[\hat{\Omega} = \arg\max_{\Omega} \log |\Omega| - tr(S\Omega) + \sum_{ij} p_\lambda (\omega_{ij}) \]

Adaptive LASSO (Hui Zou):

\[p_\lambda (\omega_{ij}) = \lambda \frac{1}{\hat{\omega}_{ij}^\gamma} |\omega_{ij}| \]

Parameters: \(\lambda = .1, \gamma = .5. \)
Adaptive penalties (SCAD)

Regularization:

\[
\hat{\Omega} = \arg\max_{\Omega} \log |\Omega| - tr(S\Omega) + \sum_{ij} p_{\lambda}(\omega_{ij})
\]

SCAD (Fan & Li (2001)):

\[
p_{\lambda}(\omega_{ij}) = (\lambda I |\tilde{\omega}_{ij}| \leq \lambda + \frac{(a\lambda - |\tilde{\omega}_{ij}|)(I |\tilde{\omega}_{ij}| > \lambda)}{(a - 1)} |\omega_{ij}|
\]

Parameters: \(\lambda = .1, a = 3.7\).
Proposal of regularization parameters

Based on model selection criteria, we have $\Lambda = (\lambda_{ij})$

- **K-fold Cross-validation**

$$KCV(\Lambda) = \sum_{k=1}^{K} n_k (\log |\hat{\Omega}^{(-k)}(\Lambda)| - tr(S^{(k)}\hat{\Omega}^{(-k)}(\Lambda)))$$

- **Generalized Cross validation** (Dong & Wahba 1996, Lian 2011)

$$GACV(\Lambda) = n (\log |\hat{\Omega}(\Lambda)| - tr(S\hat{\Omega}(\Lambda))) +$$
$$+ \sum_{i=1}^{n} vec(\hat{\Omega}(\Lambda)^{-1} - y_iy_i^T)^T vec(\hat{\Omega}(\Lambda)(S^{(-i)} - S)\hat{\Omega}(\Lambda))$$

- **Bayes Information Criterion (BIC)** (consistent !)

$$BIC(\Lambda) = -\log |\hat{\Omega}(\Lambda)| + tr(S\hat{\Omega}(\Lambda)) + k \frac{\log(n)}{n}$$

Suggestion: select maximum λ such that BIC slightly exceeds its minimal value.

SCAD with λ chosen by BIC

SCAD (Fan & Li (2001)):

$$p_\lambda(\omega_{ij}) = (\lambda I_{|\tilde{\omega}_{ij}| \leq \lambda} + \frac{(a\lambda - |\tilde{\omega}_{ij}|)}{(a - 1)} I_{|\tilde{\omega}_{ij}| > \lambda}) |\omega_{ij}|$$

Bayes Information Criterion (BIC)

$$BIC(\Lambda) = -\log |\hat{\Omega}(\Lambda)| + tr(S\hat{\Omega}(\Lambda)) + k \frac{\log(n)}{n}$$
Multiple precision Matrices: \(\Omega = (\Omega^{(1)}, \ldots, \Omega^{(K)}) \)

\[
\hat{\Omega} = \arg\max_{\Omega} \sum_{k=1}^{K} \log |\Omega^{(k)}| - tr(S^{(k)} \Omega^{(k)}) + \mathcal{P}_\lambda (\Omega)
\]

Fused graphical LASSO:

\[
\mathcal{P}_\lambda (\Omega) = \lambda_1 \sum_{k=1}^{K} \sum_{i \neq j} |\omega_{ij}^{(k)}| + \lambda_2 \sum_{k' > k} \sum_{i,j} |\omega_{ij}^{(k)} - \omega_{ij}^{(k')}|
\]

Group graphical LASSO:

\[
\mathcal{P}_\lambda (\Omega) = \lambda_1 \sum_{k=1}^{K} \sum_{i \neq j} |\omega_{ij}^{(k)}| + \lambda_2 \sum_{i \neq j} \sqrt{\sum_{k=1}^{K} \omega_{ij}^{(k)^2}}
\]

Implementation: R-package(JGL)
- Tibshirani, R.; Saunders, M.; Rosset, S.; Zhu, J. & Knight, K.: Sparsity and smoothness via the fused lasso, JRSS B, 2005
Fused Graphical LASSO with SCAD penalty

Multiple precision Matrices: $\Omega = (\Omega^{(1)}, \ldots, \Omega^{(K)})$

$$\hat{\Omega} = \arg\max_\Omega \sum_{k=1}^K \log |\Omega^{(k)}| - tr(S^{(k)}\Omega^{(k)}) + \mathcal{P}_\lambda(\Omega)$$

Fused graphical LASSO / SCAD:

$$\mathcal{P}_\lambda(\Omega) = \sum_{k=1}^K \sum_{i \neq j} \lambda_{1ij} |\omega^{(k)}_{ij}| + \sum_{k' > k} \sum_{i,j} \lambda_{2ij} |\omega^{(k)}_{ij} - \omega^{(k')}_{ij}|$$
Example: functional connectivity matrix from resting state

Source: Allen et al., Cerebral Cortex 2012.
Learning paradigm:

(A) CS+ trial

- FM tone
- Expect reward
- Number
- Feedback

- 4.5 – 12.0 s
- 100 ms
- 1400 ms
- 1500 ms

(Figure: Puschmann (2013))

(B) CS- trial

- FM tone
- Expect reward
- Number
- Feedback

- 4.5 – 12.0 s
- 100 ms
- 1400 ms
- 1500 ms

Interest in changes of brain functionality due to learning
Changes of functional connectivity

Changes:

- Functional regions becoming active / inactive due to learning
- Changes in sets of regions that act coherently

Classical methods to detect these changes:

- Moving windows or comparison of first third and last third of time series
- Test if parameters / contrasts change over time
- Test if mean value of residuals changes over time
- Test if correlation / partial correlation matrices change over time
Investigating network dynamics

Test of stationarity without penalization:

\[H : \Sigma_t \equiv \Sigma \quad \forall t \in (h + 1, n - h) : \]

Use (log) Likelihood Ratio Test for

\[H_t : \Sigma_{t-} = \Sigma_{t+} \]

- Can be expressed in terms of eigenvalues \(l_1, \ldots, l_p \) of \(\hat{\Sigma}_{t-} \hat{\Sigma}_t^{-1} \)
- \(\Sigma_{t-} \) and \(\Sigma_{t+} \) estimated from left/right window of size \(h \)
- Test-Statistic:
 \[T(l_1, \ldots, l_p) = -C_{h,p} \sum_{i=1}^{p} \left(\log(l_i) - \log(1 + l_i) \right) \]
- \(\Rightarrow \) Curves \(T(t, h), \quad t \in (h + 1, n - h) \)
- Distribution under Hypotheses \(H \) and \(H_t \) does not depend on \(\Sigma \) (as. \(\chi \)-square)
- Distribution under Hypothesis can be approximated by simulation \(\Rightarrow \) density \(d_h \)

Problem: Test statistics undefined for \(h < p \), highly variable if \(h \geq p \)

Alternative proposal: Cai and Zhang, Inference for high-dimensional differential correlation matrices. JMVA 2016
Investigating network dynamics

Test of stationarity with penalization (GLASSO):

\[H : \Sigma_t \equiv \Sigma \quad \forall t \in (h + 1, n - h) : \]

Use (log) Likelihood Ratio Test for

\[H_t : \Sigma_t^- = \Sigma_t^+ \]

- Can be expressed in terms of eigenvalues \(l_1, \ldots, l_p \) of \(\hat{\Sigma}_t^- \hat{\Sigma}_t^+^{-1} \)
- \(\Sigma_t^- \) and \(\Sigma_t^+ \) estimated from left/right window of size \(h \)
- Test-Statistic: \(T(l_1, \ldots, l_p) = -C_{h,p} \sum_{i=1}^p (\log(l_i) - \log(1 + l_i)) \)
- \(\Rightarrow \) Curves \(T(t, h), \quad t \in (h + 1, n - h) \)
- Distribution under Hypotheses \(H \) and \(H_t \) does depend on \(\Sigma \)

Distribution of test statistic depends on unknown \(\Sigma \) and \(\lambda \), may be approximated using permutation tests.