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The human brain

Figure: John A Beal, PhD Dep’t. of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center Shreveport

(Wikimedia)

Brain organisation:

� Gray matter /

Cortex

� White matter

� CSF (Cere-

brospinal

fluid)

Connectivity networks in neuroscience - construction and analysis · Summer School 2017: Proba-
bilistic and statistical methods for networks · Page 3



Brain function / cortical areas

Cortex divided in

Figure: Blausen.com staff (2014). "Medical gallery of Blausen Medical 2014". WikiJournal of Medicine 1 (2). DOI:10.15347/wjm/2014.010. ISSN 2002-4436.

Lobes, Gyri (ridge on the cerebral cortex), Sulci (depression or groove in the cerebral cortex)

White Matter: Fiber bundles connecting cortical areas
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Functional areas

Brodman Areas:

� ≈ 50 cortex regions defined based on

cytoarchitectural organization of neurons

� regions have been correlated to cortical

functions

Brodmann K (1909). ”Vergleichende

Lokalisationslehre der Grosshirnrinde”. Leipzig:

Johann Ambrosius Barth

Figure: Mark Dow. Research Assistant Brain Development Lab, University of Oregon.

http://lcni.uoregon.edu/ dow/Space_software/renderings.html
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Brain template

Talaraich atlas: single subject

Talairach et al. Co-planar stereotaxic

atlas of the human brain. Thieme,

New York. (1988)

Problem: Subject variability

MNI (Montreal Neurological

Institute) template (ICBM152):

Average of 152 MRI scans

matched by affine transform (9

parameters)

Maintained by the International

Consortium for Brain Mapping
Orthographic view of MNI template
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Probabilistic brain atlases

Havard-Oxford atlas (FSL) : 48 cortical + 21 subcortical regions, 37 subjects

Probabilistic atlas used in FSL (Desikan et al., (2006). NeuroImage, 31(3):968-80.)

Partially addresses subject variability
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Neuroimaging

� Term covers a number of minimally invasive techniques to study the brain

� used to characterize structure, function and diagnostic of diseases

� contribute to understanding interactions between mind (decisions, emotions), brain and

body

Two categories

Structural neuroimaging Functional neuroimaging

Connectivity networks in neuroscience - construction and analysis · Summer School 2017: Proba-
bilistic and statistical methods for networks · Page 8



Neuroimaging

� Term covers a number of minimally invasive techniques to study the brain

� used to characterize structure, function and diagnostic of diseases

� contribute to understanding interactions between mind (decisions, emotions), brain and

body

Two categories with modalities

Structural neuroimaging

� Computed tomography (CT)

� Positron emission tomography (PET)

� Magnetic resonance imaging (MRI)

� Diffusion weighted magnetic resonance

imaging (dMRI/DWI)

Functional neuroimaging

� Electroencephalography (EEG)

� Magnetoencephalography (MEG)

� Positron emission tomography (PET)

� functional magnetic resonance imaging

(fMRI)
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Brain connectivity

Describes the interaction of cortical brain regions

� Functional connectivity: characterises the simultaneous

function of different brain regions

� Structural (anatomic) connectivity: describe the

anatomical connection of functional brain regions (nodes)

by white matter fiber tracks

� Effective connectivity: describe the causal interaction of

functional brain regions by directed graphs

All require definition of nodes (functional regions) by some

methods:

� use of anatomic information ( cortical thickness,

myelination )

� functional regions identified by fMRI experiments

� default networks identified by resting state fMRI

experiments
Source: Wikimwdia
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Magnetic resonance imaging (MRI)

Figure: Kasuga Huang (Wikimedia)

Figure: Franz Wilhelmstötter (Wikimedia)
From O. Friman “Adaptive Analysis of Functional MRI Data”, PhD Thesis, 2003
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MR contrasts

T1-weighted image (orthographic view),

longitudinal relaxation

T2-weighted image (orthographic view),

transverse relaxation

0Data provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen
and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for
Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.
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From K-space to image

k-space

FFT

image-space

GRAPPA

SENSE

SMASH

. . .

combined magnitude

Complex Gaussian

Fc(kx,ky)

multiple receiver coils c

Complex Gaussian fc(x,y)
Rician magnitude image

Mod( fc(x,y))

S
σ
∼ χ2L∗,ζ/σ

Non-central χ

distribution

� 24-32 receiver coils

� Acquisition protocol and reconstruction method cause (non-local) spatial correlation

� Signal distribution depends on the reconstruction method (SENSE, GRAPPA, SoS, ...)

Connectivity networks in neuroscience - construction and analysis · Summer School 2017: Proba-
bilistic and statistical methods for networks · Page 12



MRI and fMRI

Structural MR images:

� high spatial resolution

� offer contrast between tissue types

(cortex <–> white matter)

� no temporal information

Functional MR images

� lower spatial resolution

� lower image contrast

� temporal resolution

� signal changing with experimental tasks
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Functional Magnetic Resonance Imaging - Bold fMRI

Uses the Blood Oxygenation Level Dependent (BOLD) contrast

� Active neurons need oxygen!

� Change of magnetic properties due to oxygenation.

� Measure the ratio of oxygenated to deoxygenated hemoglobin

� Local signal changes over time due to brain function

Experiment:

� Measurement of fast time series of the brain under stimulus

Indirect measurement:

� Measures oxygen consumption of active neurons

� Signal changes are delayed in time

� Convolution with hemodynamic response function

� Limited spatial resolution by vascular architecture
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FMRI Data

fMRI data = 3D + T About fMRI data

� Time series of 3D data

� Spatial resolution:

1-4 mm

� Temporal resolution:

1-3 sec

� Search for locations,

were a BOLD signal can

be found!

� Problem: noise

� Problem: multiple test

problem

Connectivity networks in neuroscience - construction and analysis · Summer School 2017: Proba-
bilistic and statistical methods for networks · Page 15



fMRI data analysis

� Realignment/Registration:

- Corrections for head movement

- Rigid or affine transformation

� Slice time correction:

- Adjust for slice recording at different times

� Normalization:

- Mapping to a standard space (Talaraich, MNI)

- Comparability between subjects in group studies

� Cortex segmentation based on corresponding anatomic images

� Spatial smoothing
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fMRI Empirical hemodynamic response

Hemodynamic response function:

Figure: M. Lindquist, J. Hopkins Univ., Talk at SAMSI 2015
Study: Lindquist et al., Journal of Magnetic Resonance 2008

Spatially varying form and latency

Parametric model:

h(t) =
(

t
d1

)a1

exp
(
− t−d1

b1

)
− c
(

t
d2

)a2

exp
(
− t−d2

b2

)
Time delay modeled by including the

derivative of h

Expected BOLD response: Convolution between stimulus and hemodynamic response
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fMRI data analysis

Linear model:

Yi = Xβi + εi

� Data Yi = (Yit)

� Design Xi = (xitk), i - voxel, t-time, k = 1,K - components

� Error εi = (εit), Eεit = 0, Eε2
it = σ2

t , Cov(εit ,εi(t− j)) = δi j ,

usually AR(1) or AR(2)

Components include:

� Expected bold responses to stimuli

� drift components for magnetic field inhomogeneity (polynomial)

� confounding (physiological) effects (respiration, cardiac cycle, ...)

� parameters from motion correction

Prewhitening: Transform model such that errors are approx. uncorrelated

Ỹi = X̃iβi + ε̃i, Ỹi = AiYi, X̃i = AiX , ε̃i = Aiεi,
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fMRI learning experiment

Learning paradigm:

(Figure: Puschmann (2013))
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Design of a learning experiment (Puschmann (2013))

Stimulus components in design matrix:

0 500 1000 1500
scan

Haemodynamic responses to stimuli
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fMRI data analysis

Interest in contrast

γ = cT
β

and testing

H : γi = 0 against A : γi <> 0

to determine active brain regions associated with the contrast

� Estimate AR(k) parameters from residuals in linear model Yi = Xβi + εi

� Spatially smooth AR(k) parameters

� Prewhitening using Âi obtained from smoothed AR(k) parameters

� Estimation of βi:

β̂i =
(

X̃T
i X̃i

)−1
X̃iỸi

� Estimate covariance Σ̂i of β̂i from prewhitened model

� Define test statistics (t-distributed)

Si =
cT β̂i

(cT Σic)1/2
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Multiple test problem

� Simultaneous tests in N = 10000 (Cortex) -

100000 (Brain) voxel

� using t-thresholds at significance level α gives

≈ αN false positives.

� Adjustment for multiple testing by Bonferroni

leads to high thresholds

� Multiplicity adjustment leads to low sensitivity

� Alternative: False Discovery Rate (Benjamini &

Hochberg 1995)

Control of proportion of false positives within

detected signals

� ignores spatial extend of regions of interest voxelwise decision using thresholds adjusted
for multiple testing
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Smoothing and Random Field Theory

� Regions of activation have a spatial extend

� Smoothing the observed images with a (Gaussian)

kernel with bandwidth h

Ȳit = ∑
j

K(
||i− j||

h
)Y jt

decreases variance and increases Signal-to-Noise

ratio (SNR)

� reduce the number of independent decisions.

� thresholds can be obtained by Random Field

Theory (Adler 1987, 2000, Worsley 1994ff)

P(max
i

S̄i > τ)≈
3

∑
d=0

Rd(V,h)ρd(τ)

Rd(V,h) - d-dimensional resel count

ρd - d-dimensional Euler characteristic density.

decision using nonadaptive smoothing and
thresholds given by Random Field Theory
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Interpretation of fMRI results

Results of a voxelwise analysis,

Motor (finger tapping task)

� Interpretation of test results ?

� Poor signal to noise

� Activation or other sources of variation

(motion artifact, physiological noise, other

processes ?

� Color coded p-values

� low sensitivity <–> reduced spatial resolution

� Search for activated regions instead of

activated voxel

� Reproducibility of results ??

� large variability over repeated experiments

(same subject)

� Representativity for populations ?

� Between subject variability

� Group studies needed
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Resting state experiments

fMRI experiments without external stimulus (resting

state)

� looks for intrinsic brain activity

� first experiments by Biswal et al. (1995)

observe patterns of spatial coherence between

sensorimotor regions

� e.g. Zang & Raichle (2010) identify 7 mayor

networks of regions that show spatially

coherent activity

� larger studies identify up to 17 networks

Figure: Raichle, Brain Connectivity, 2011, Fig. 1D
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ICA-Modell

Independent component analysis (ICA)

� Observed signals x1(t),x2(t), . . . ,xp(t)

� Assume these signals to be a linear combination of unknown souces

s1(t),s2(t), . . . ,sq(t)

� Model:

xi(t) =
K

∑
k=1

aiksk(t)+ εi(t) i = 1, . . . , p (1)

X =AS+E (2)

� Goal: Estimate the mixing matrix A = (ai j) and the unknown source signals s j(t)

� Source separation or cocktail party problem
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ICA in fMRI

� Data: n1×n2×n3×T values. Reorder as data matrix n×T

� Reduction of data matrix by Prewhitening and PCA, specification of number of sources K

� Search for spatial pattern in S (Spatial ICA)

Ylipaavalniemi and Vigário, Neuroimage 2008

� Decompose in temporal (A) and spatial S signals

� Solved by e.g. fastICA (Hyvärinen & Oja (2000))

� Some components k may model artifacts (interpretability !)
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TP-ICA

� C.F. Beckmann and S.M. Smith, Neuroimage 2005

� Generalization of ICA for group studies

� K subjects

� Model:

XIK×J =(C|⊗ |A)S+EIK×J (3)

(C|⊗ |A) =((Adiag(c1))
>, . . . ,(Adiag(cK))

>)> (4)

� Structure of mixing matrix (C|⊗ |A) reflects the individual effects

� Common spatial structure in S
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Human Connectome Project (UMN/WU)

� 1200 Subjects

� anatomical scans 0.7mm isotropic (T1/T2)

� task based fMRI, 7 tasks 2mm isotropic

(Working memomory, Gambling, Motor, Language, Social cognition, Relational

processing, Emotion Processing)

� resting state fMRI 4×15min 2mm isotropic

� diffusion weighted imaging 1.25mm isotropic, 3×90 gradients

Information from these experiments is combined to obtain individual brain parcellations (node

definitions) for all subjects

Literature:

� Special issue Neuroimage 2013

� Shen et al. Neuroimage 2013

� Finn et al., Nature neuroscience 2015
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Individual brain atlas (Shen 268)

Brain parcellation, 268 functional regions, Shen 2013

- Finn 2015 defines general procedure for corresponding subject specific region definition

- regions should be used for node definition in group studies
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functional connectivity networks from fMRI

� Selection of characteristic time series within regions

� leads to matrix Y = (ykt)
t=1,T
k=1,K

� define network by empirical covariance matrix

Σ̂ =

(
∑
t
(yit − yi.)(y jt − y j.)

)
i, j=1,K

� or regularized / thresholded estimate

Task based fMRI depending on the goal:

� Modeling and removal of expected hemodynamic response

� Selection of characteristic (residual) time series within regions

or

� Selection of nodes using functional regions associated with the tasks
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Electroencephalography (EEG)

Source: M. Lindquist, J. Hopkins Univ., Talk at SAMSI 2015

� high temporal resolution

� low spatial resolution

� Indirect measurement

� Source reconstruction problem

� Networks: coherence between spectra of recorded or reconstructed signals

Lit: Ombao and Van Bellegem (2008). Coherence Analysis: A Linear Filtering Point Of View. IEEE Transactions on Signal

Processing, 56(6), 2259-2266.
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From correlation to networks

Assumptions:

Yt ∼ Np(0,Σ), Σ = (σi j)
p
i, j=1

Correlation between signals in nodes (regions) describes joint activity

R = (ρi j)
p
i, j=1, ρi j =

σi j

(σiiσ j j)1/2

Partial correlations refer to joint activity not explained by intermediate effects

P = (ρi j.k)
p
i, j=1, ρi j.k =

σi j−σT
ik Σ
−1
k σ jk

((σii−σT
ik Σ
−1
k σik)(σ j j−σT

jkΣ
−1
k σ jk))1/2

with k = (1 . . .n)/(i j)

Precision matrices: Ω = Σ−1 = (ωi j)
p
i, j=1,

Connection to partial correlations: ρi j.k =−
ωi j

(ωiiω j j)1/2

- Pourahmadi, M.: Modeling covariance matrices: The GLM and regularization perspectives. Statist. Sci., 2011, 26„ 369-87.
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Estimation of precision matrices (p << n)

Negative normal log-likelihood: Yt ∼ Np(0,Σ), S = 1
T ∑

T
t=1(Yt − Ȳ )(Yt − Ȳ )T

Ω̂ = argmax
Ω

log |Ω|− tr(SΩ), Ω̂ = S−1
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� functional connectivity networks are hypothesized to be sparse

� p = 22, n = 178 –> high variability of estimated correlations
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Graphical LASSO

Regularization:

Ω̂ = argmax
Ω

log |Ω|− tr(SΩ)+Pλ (Ω)

Graphical LASSO:

Pλ (Ω) = λ

p

∑
i j
|ωi j|

Literature:

- Meinshausen, N. & Bühlmann, P.: High-dimensional graphs and variable selection with the Lasso, Ann. Stat., 2006

- Friedman, J.; Hastie, T. & Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso, Biostatistics, 2008

- Levina, E.; Rothman, A. J. & Zhu, J.: Sparse estimation of large covariance matrices via a nested lasso penalty, Ann.
Appl. Stat., 2008

- Rothman, A. J.; Levina, E. & Zhu, J.: Generalized Thresholding of Large Covariance Matrices, JASA, 2009

- Rothman, A. J., L. E. & Zhu, J.: Sparse multivariate regression with covariance estimation, JCGS, 2010

- Bien, J. & Tibshirani, R.: Sparse Estimation of a Covariance Matrix, Biometrika, 2011

- Rothman, A. J.: Positive definite estimators of large covariance matrices Biometrika, 2012

- Mazumder, R. & Hastie, T.: The Graphical Lasso: New Insights and Alternatives, Electr. J. Stat., 2012

- Mazumder, R. & Hastie, T.: Exact covariance thresholding into connected components for large-scale Graphical Lasso,
JMLR, 2012
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Solution for λ = .1 function dpglasso from R-package dpglasso.

Problem: Produces a biased estimate !
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Adaptive penalties (adaptive LASSO, SCAD)

Regularization:

Ω̂ = argmax
Ω

log |Ω|− tr(SΩ)+
p

∑
i j

pλ (ωi j)

adaptive LASSO (Hui Zou):

pλ (ωi j) = λ
1

ω̃
γ

i j
|ωi j|

SCAD (Smoothly Clipped Absolute Deviation) ( Fan & Li (2001)):

pλ (ωi j) = (λ I|ω̃i j |≤λ +
(aλ −|ω̃i j|)+

(a−1)
I|ω̃i j |>λ )|ωi j|

Suggested parameters: γ = .5, a = 3.7. ω̃ are assumed to be consistent estimates.

Computations:

� Non-convex optimization problems

� can be approximated by iteration of graphical LASSO (with matrix penalty parameter)
- Zou, H.: The Adaptive Lasso And Its Oracle Properties, JASA, 2006, 101, 1418-1429
- Lam, C. & Fan, J.: Sparsistency and Rates of Convergence in Large Covariance Matrices Estimation, Ann. Stat, 2009
- Fan, J.; Feng, Y. & Wu, Y.: Network exploration via the adaptive LASSO and SCAD penalties, Ann. Appl. Stat, 2009
- Cai, T. T.; Liu, W. & Zhou, H.: Estimating sparse precision matrix: Optimal rates of convergence and adaptive estimation,

Ann. Stat., 2014.
- Cai, T.; Liu, W. & Luo, X.: A Constrained l1 Minimization Approach to Sparse Precision Matrix Estimation, JASA, 2011
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Adaptive penalties (adaptive LASSO)

Regularization:

Ω̂ = argmax
Ω

log |Ω|− tr(SΩ)+
p

∑
i j

pλ (ωi j)

adaptive LASSO (Hui Zou):

pλ (ωi j) = λ
1

ω̃
γ

i j
|ωi j|
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Parameters: λ = .1, γ = .5.
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Adaptive penalties (SCAD)

Regularization:

Ω̂ = argmax
Ω

log |Ω|− tr(SΩ)+
p

∑
i j

pλ (ωi j)

SCAD ( Fan & Li (2001)):

pλ (ωi j) = (λ I|ω̃i j |≤λ +
(aλ −|ω̃i j|)+

(a−1)
I|ω̃i j |>λ )|ωi j|
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Parameters: λ = .1, a = 3.7.
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Selection of regularization parameters

Proposals (based on model selection criteria) with Λ = (λi j)

� K-fold - Cross-validation

KCV (Λ) =
K

∑
k=1

nk(log |Ω̂(−k)(Λ)|− tr(S(k)Ω̂(−k)(Λ))

� Generalized Cross validation (Dong & Wahba 1996, Lian 2011)

GACV (Λ) =n(log |Ω̂(Λ)|− tr(SΩ̂(Λ))+

+
n

∑
i=1

vec(Ω̂(Λ)−1− yiyT
i )

T vec(Ω̂(Λ)(S(−i)−S)Ω̂(Λ))

� Bayes Information Criterion (BIC) (consistent !)

BIC(Λ) =− log |Ω̂(Λ)|+ tr(SΩ̂(Λ))+ k
log(n)

n

Suggestion: select maximum λ such that BIC slightly exceeds its minimal value.

- Lian, H.: Shrinkage tuning parameter selection in precision matrices estimation, J. Stat. Plan. Inf., 2011

- Chatterjee, A. & Lahiri, S. N.: Bootstrapping Lasso Estimators, JASA, 2011
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SCAD with λ chosen by BIC

SCAD ( Fan & Li (2001)):

pλ (ωi j) = (λ I|ω̃i j |≤λ +
(aλ −|ω̃i j|)+

(a−1)
I|ω̃i j |>λ )|ωi j|

Bayes Information Criterion (BIC)

BIC(Λ) =− log |Ω̂(Λ)|+ tr(SΩ̂(Λ))+ k
log(n)

n
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Multiple precision Matrices

Multiple precision Matrices: Ω = (Ω(1), . . . ,Ω(K))

Ω̂ = argmax
Ω

K

∑
k=1

log |Ω(k)|− tr(S(k)Ω(k))+Pλ (Ω)

Fused graphical LASSO:

Pλ (Ω) = λ1

K

∑
k=1

∑
i 6= j
|ω(k)

i j |+λ2 ∑
k′>k

∑
i, j
|ω(k)

i j −ω
(k′)
i j |

Group graphical LASSO:

Pλ (Ω) = λ1

K

∑
k=1

∑
i 6= j
|ω(k)

i j |+λ2 ∑
i6= j

√√√√ K

∑
k=1

ω
(k)2

i j

Implementation: R-package(JGL)

- Tibshirani, R.; Saunders, M.; Rosset, S.; Zhu, J. & Knight, K.: Sparsity and smoothness via the fused lasso, JRSS B, 2005

- Yang, S.; Lu, Z.; Shen, X.; Wonka, P. & Ye, J.: Fused Multiple Graphical Lasso, see: http://people.math.sfu.ca/ zhaosong

- Danaher, P.; Wang, P. & Witten, D.: The joint graphical lasso for inverse covariance estimation across multiple classes,
JRSS B, 2014
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Fused Graphical LASSO with SCAD penalty

Multiple precision Matrices: Ω = (Ω(1), . . . ,Ω(K)

Ω̂ = argmax
Ω

K

∑
k=1

log |Ω(k)|− tr(S(k)Ω(k))+Pλ (Ω)

Fused graphical LASSO / SCAD:

Pλ (Ω) =
K

∑
k=1

∑
i 6= j

λ1i j|ω
(k)
i j |+ ∑

k′>k
∑
i, j

λ2i j|ω
(k)
i j −ω

(k′)
i j |

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

−
0.

5
0.

0
0.

5

Audio

Subcallosal.Gyrus

Transverse.Temporal.Gyrus

Rectal.Gyrus

Fusiform.Gyrus

Inferior.Occipital.Gyrus

Inferior.Temporal.Gyrus

Parahippocampal.Gyrus

Lingual.GyrusMiddle.Occipital.Gyrus

Orbital.Gyrus

Middle.Temporal.Gyrus

Superior.Temporal.Gyrus

Superior.Occipital.Gyrus
Precentral.Gyrus

Inferior.Frontal.Gyrus
Angular.Gyrus

Supramarginal.Gyrus

Cingulate.Gyrus

Middle.Frontal.Gyrus

Postcentral.Gyrus

Superior.Frontal.Gyrus

Medial.Frontal.Gyrus

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

−
0.

5
0.

0
0.

5

Vision

D
2

Subcallosal.Gyrus

Transverse.Temporal.Gyrus

Rectal.Gyrus

Fusiform.Gyrus

Inferior.Occipital.Gyrus

Inferior.Temporal.Gyrus

Parahippocampal.Gyrus

Lingual.GyrusMiddle.Occipital.Gyrus

Orbital.Gyrus

Middle.Temporal.Gyrus

Superior.Temporal.Gyrus

Superior.Occipital.Gyrus
Precentral.Gyrus

Inferior.Frontal.Gyrus
Angular.Gyrus

Supramarginal.Gyrus

Cingulate.Gyrus

Middle.Frontal.Gyrus

Postcentral.Gyrus

Superior.Frontal.Gyrus

Medial.Frontal.Gyrus

Connectivity networks in neuroscience - construction and analysis · Summer School 2017: Proba-
bilistic and statistical methods for networks · Page 43



Example: functional connectivity matrix from resting state

Source: Allen et al., Cerebral Cortex 2012.

Connectivity networks in neuroscience - construction and analysis · Summer School 2017: Proba-
bilistic and statistical methods for networks · Page 44



Dynamics of functional connectivity networks in learning experiments

Learning paradigm:

(Figure: Puschmann (2013))

Interest in changes of brain functionality due to learning
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Changes of functional connectivity

Changes:

� Functional regions becoming active / inactive due to learning

� Changes in sets of regions that act coherently

Classical methods to detect these changes:

� Moving windows or comparison of first third and last third of time series

� Test if parameters / contrasts change over time

� Test if mean value of residuals changes over time

� Test if correlation / partial correlation matrices change over time
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Investigating network dynamics

Test of stationarity without penalization:

H : Σt ≡ Σ ∀t ∈ (h+1,n−h) :

Use (log) Likelihood Ratio Test for

Ht : Σt− = Σt+

� Can be expressed in terms of eigenvalues l1, . . . , lp of Σ̂t−Σ̂
−1
t+

� Σt−and Σt+ estimated from left/right window of size h

� Test-Statistic: T (l1, . . . , lp) =−Ch,p ∑
p
i=1(log(li)− log(1+ li))

� ⇒ Curves T (t,h), t ∈ (h+1,n−h)

� Distribution under Hypotheses H and Ht does not depend on Σ (as. χ-square)

� Distribution under Hypothesis can be approximated by simulation⇒ density dh

Problem: Test statistics undefined for h < p, highly variable if h≥ p
Alternative proposal: Cai and Zhang, Inference for high-dimensional differential correlation

matrices. JMVA 2016
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Investigating network dynamics

Test of stationarity with penalization (GLASSO):

H : Σt ≡ Σ ∀t ∈ (h+1,n−h) :

Use (log) Likelihood Ratio Test for

Ht : Σt− = Σt+

� Can be expressed in terms of eigenvalues l1, . . . , lp of Σ̂t−Σ̂
−1
t+

� Σt−and Σt+ estimated from left/right window of size h

� Test-Statistic: T (l1, . . . , lp) =−Ch,p ∑
p
i=1(log(li)− log(1+ li))

� ⇒ Curves T (t,h), t ∈ (h+1,n−h)

� Distribution under Hypotheses H and Ht does depend on Σ

Distribution of test statistic depends on unknown Σ and λ , may be approximated using

permutation tests.

Connectivity networks in neuroscience - construction and analysis · Summer School 2017: Proba-
bilistic and statistical methods for networks · Page 47


	Brain imaging
	The brain

	Functional Connectivity
	Resting state experiments
	individual brain atlases and node definition
	Estimation of functional connectivity networks
	Electroencephalography (EEG)
	Network dynamics


