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The human brain

Brain organisation:

m Gray matter /
Cortex

B White matter

B CSF (Cere-
brospinal
fluid)

Figure: John A Beal, PhD Dep't. of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center Shreveport
(Wikimedia)
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Brain function / cortical areas

Cortex divided in
Central sulcus

Parieto-occipital
sulcus

Occipital
pole
Preoccipital

notch
pole

Figure: Blausen.com staff (2014). "Medical gallery of Blausen Medical 2014". WikiJournal of Medicine 1 (2). DOI:10.15347/wjm/2014.010. ISSN 2002-4436.

Lobes, Gyri (ridge on the cerebral cortex), Sulci (depression or groove in the cerebral cortex)

White Matter: Fiber bundles connecting cortical areas
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Functional areas

Brodman Areas:

B = 50 cortex regions defined based on
cytoarchitectural organization of neurons

B regions have been correlated to cortical
functions

Brodmann K (1909). "Vergleichende
Lokalisationslehre der Grosshirnrinde”. Leipzig:
Johann Ambrosius Barth

Figure: Mark Dow. Research Assistant Brain Development Lab, University of Oregon.

http:/lcni.uoregon.edu/ dow/Space_software/renderings.html
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Brain template

Talaraich atlas: single subject
Talairach et al. Co-planar stereotaxic
atlas of the human brain. Thieme,
New York. (1988)

Problem: Subject variability
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Brain template \Zx‘ "6‘ J

Talaraich atlas: single subject
Talairach et al. Co-planar stereotaxic
atlas of the human brain. Thieme,
New York. (1988)

Problem: Subject variability

MNI (Montreal Neurological
Institute) template (ICBM152):
Average of 152 MRI scans
matched by affine transform (9
parameters)

Maintained by the International
Consortium for Brain Mapping

Orthographic view of MNI template

Connectivity networks in neuroscience - construction and analysis - Summer School 2017: Proba- W
bilistic and statistical methods for networks - Page 6 AS



Probabilistic brain atlases

Havard-Oxford atlas (FSL) : 48 cortical + 21 subcortical regions, 37 subjects

Partially addresses subject variability
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Neuroimaging

B Term covers a number of minimally invasive techniques to study the brain
B used to characterize structure, function and diagnostic of diseases

B contribute to understanding interactions between mind (decisions, emotions), brain and
body

Two categories

Structural neuroimaging Functional neuroimaging
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Neuroimaging

B Term covers a number of minimally invasive techniques to study the brain
B used to characterize structure, function and diagnostic of diseases

B contribute to understanding interactions between mind (decisions, emotions), brain and
body

Two categories with modalities

Structural neuroimaging Functional neuroimaging
B Computed tomography (CT) B Electroencephalography (EEG)
W Positron emission tomography (PET) B Magnetoencephalography (MEG)
B Magnetic resonance imaging (MRI) B Positron emission tomography (PET)
B Diffusion weighted magnetic resonance B functional magnetic resonance imaging
imaging (dMRI/DWI) (fMRI)
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Brain connectivity

Describes the interaction of cortical brain regions

B Functional connectivity: characterises the simultaneous

function of different brain regions

B Structural (anatomic) connectivity: describe the

anatomical connection of functional brain regions (nodes)

by white matter fiber tracks

B Effective connectivity: describe the causal interaction of

functional brain regions by directed graphs
All require definition of nodes (functional regions) by some
methods:
B use of anatomic information ( cortical thickness,
myelination )
B functional regions identified by fMRI experiments
B default networks identified by resting state fMRI
experiments

Source: Wikimwdia
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Magnetic resonance imaging (MRI)

time.

real
signal

imaginary
signal

Figure: Kasuga Huang (Wikimedia)

real
spectrum

imaginary
spectrum

Fig. 2.7 Free Induction Decay (F1D) following a single 90° r.. pulse. The real and imaginary
parts of the signal correspond to the in-phase and quadrature receiver outputs. The signal is
depicted with recciver phase ¢=0 and, on complex Fourier transformation, gives real absorp-
tion and imaginary dispersion spectra at the offset frequency, Aw=wo— .

Figure: Franz Wilhelmstotter (Wikimedia)
From O. Friman “Adaptive Analysis of Functional MRI Data”, PhD Thesis, 2003
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Magnetic resonance imaging (MRI)

time.

real
signal

imaginary
signal

Figure: Kasuga Huang (Wikimedia)

real
spectrum

imaginary
spectrum

Fig. 2.7 Free Induction Decay (F1D) following a single 90° r.. pulse. The real and imaginary
parts of the signal correspond to the in-phase and quadrature receiver outputs. The signal is
depicted with recciver phase ¢=0 and, on complex Fourier transformation, gives real absorp-
tion and imaginary dispersion spectra at the offset frequency, Aw=wo— .

Figure: Franz Wilhelmstotter (Wikimedia)
From O. Friman “Adaptive Analysis of Functional MRI Data”, PhD Thesis, 2003
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MR contrasts

T1-weighted image (orthographic view), T2-weighted image (orthographic view),
longitudinal relaxation transverse relaxation

OData provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen
and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for
Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.

Connectivity networks in neuroscience - construction Prob
istic and statistical methods for networks - Page 11




From K-space to image

combined magnitude

k-space image-space

EN
FFT SENSE
SMASH
Complex Gaussian Complex Gaussian f(x,y) % ~ Yot ¢ /o
Fi(ky, ky) Rician magnitude image Non-central
multiple receiver coils ¢ Mod(f.(x,y)) distribution

B 24-32 receiver coils
B Acquisition protocol and reconstruction method cause (non-local) spatial correlation

B Signal distribution depends on the reconstruction method (SENSE, GRAPPA, SosS, ...)

Connectivity networks in neuroscience - construction and analysis - Summer School 2017: Proba- I\
bilistic and statistical methods for networks - Page 12 AS)



MRI and fMRI

Structural MR images:
B high spatial resolution

B offer contrast between tissue types
(cortex <—> white matter)

B no temporal information
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MRI and fMRI

Structural MR images:
B high spatial resolution

B offer contrast between tissue types
(cortex <—> white matter)

B no temporal information

Osek 10sek 20sek 30sek 40sek 50sek 60sek 70sek 80 sek

Functional MR images -------
T o ‘B

B lower spatial resolution

B lower image contrast

B temporal resolution

B signal changing with experimental tasks i i i i

Zeit
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Functional Magnetic Resonance Imaging - Bold fMRI

Uses the Blood Oxygenation Level Dependent (BOLD) contrast

B Active neurons need oxygen!

B Change of magnetic properties due to oxygenation.

B Measure the ratio of oxygenated to deoxygenated hemoglobin

B Local signal changes over time due to brain function
Experiment:

B Measurement of fast time series of the brain under stimulus
Indirect measurement:

B Measures oxygen consumption of active neurons

B Signal changes are delayed in time

B Convolution with hemodynamic response function

B Limited spatial resolution by vascular architecture
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FMRI Data 4{@

fMRI data 3D+T About fMRI data

B Time series of 3D data

B Spatial resolution:
1-4 mm

B Temporal resolution:
1-3 sec

B Search for locations,
were a BOLD signal can

be found!

Experimental Sfimulus and Expected BOLD Response

B Problem: noise

B Problem: multiple test

problem

Connectivity networks in neuroscience - construction and analysis - Summer School 2017: Proba- W
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fMRI data analysis

B Realignment/Registration:
- Corrections for head movement
- Rigid or affine transformation
B Slice time correction:
- Adjust for slice recording at different times
B Normalization:
- Mapping to a standard space (Talaraich, MNI)
- Comparability between subjects in group studies

B Cortex segmentation based on corresponding anatomic images

B Spatial smoothing

Connectivity networks in neuroscience - construction and analysis - Summer School 2017: Proba- W\
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fMRI Empirical hemodynamic response

Hemodynamic response function:

Empirical hemodynamic responses to bricf events

x10°
Likely — Visual .
26 === Motor - Parametric model:
% .
w4 " t—d
£ ht)=(—] exp|—
P () (dl) p( by )
= a —d
< —c - ex =4
g d2 P b2
& -2
Time delay modeled by including the
§) 5 10 15 20 derivative of

Time (seconds)

Figure: M. Lindquist, J. Hopkins Univ., Talk at SAMSI 2015
Study: Lindquist et al., Journal of Magnetic Resonance 2008

Spatially varying form and latency

Expected BOLD response: Convolution between stimulus and hemodynamic response
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fMRI data analysis

Linear model:
YVi=XBi+¢

m DataY; = (Yy)
B Design X; = (xj), i - voxel, t-time, k = 1, K - components
m Error g = (€;), Eg; =0, Ee? = o7, Cov(&ir, &(—j)) = &ij,
usually AR(1) or AR(2)
Components include:
B Expected bold responses to stimuli
B drift components for magnetic field inhomogeneity (polynomial)
B confounding (physiological) effects (respiration, cardiac cycle, ...)
B parameters from motion correction

Prewhitening: Transform model such that errors are approx. uncorrelated

Vi=XBi+& V=AY, Xi=AX, &=As,

Connectivity networks in neuroscience - construction and analysis - Summer School 2017: Proba- I\
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fMRI learning experiment

Learning paradigm:

(A) CS+ trial
FM tone Expect Number Feedback
reward Number > 5
? ?
45-120s 100 ms 1400 ms 1500 ms
(B) CS- trial
FM tone Expect Number Feedback
reward Number = 5
? ?
45-120s 100 ms 1400 ms 1500 ms
(Figure: Puschmann (2013))
Connectivity networks in neuroscience - construction and analysis - Summer School 2017: Proba- W
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Design of a learning experiment (Puschmann (2013))

Stimulus components in design matrix:

Haemodynamic responses to stimuli

A LA e AA A AL

scan

Connectivity networks in neuroscience - construction and analysis - Summer School 2017: Proba-
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fMRI data analysis

Interest in contrast

y=c'B

and testing

H:y=0 against A:7,<>0

to determine active brain regions associated with the contrast

Estimate AR(k) parameters from residuals in linear model ¥; = X f3; + &;
Spatially smooth AR(k) parameters
Prewhitening using A; obtained from smoothed AR (k) parameters
Estimation of f3;:

b= (57%) %%,

Estimate covariance ii of ﬁi from prewhitened model

B Define test statistics (z-distributed)

B
(cTxZic)l/2

i
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Multiple test problem

B Simultaneous tests in N = 10000 (Cortex) -
100000 (Brain) voxel

B using 7-thresholds at significance level & gives
~ oN false positives.

B Adjustment for multiple testing by Bonferroni
leads to high thresholds

B Multiplicity adjustment leads to low sensitivity

B Alternative: False Discovery Rate (Benjamini &
Hochberg 1995)
Control of proportion of false positives within
detected signals

B ignores spatial extend of regions of interest voxelwise decision using thresholds adjusted
for multiple testing
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Smoothing and Random Field Theory

B Regions of activation have a spatial extend

B Smoothing the observed images with a (Gaussian)
kernel with bandwidth /

i =

7=y,
J

decreases variance and increases Signal-to-Noise
ratio (SNR)

B reduce the number of independent decisions.

B thresholds can be obtained by Random Field
Theory (Adler 1987, 2000, Worsley 1994ff)

3
P(miaxSi > T) ~ Z Rd(V,h)pd(T)
d=0 decision using nonadaptive smoothing and

. . thresholds given by Random Field Th
R4(V,h) - d-dimensional resel count given by Random Field Theory

p4- d-dimensional Euler characteristic density.
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Interpretation of fMRI results

B Interpretation of test results ?

Results of a voxelwise analysis,
[ |

Motor (finger tapping task)

Poor signal to noise

Activation or other sources of variation
(motion artifact, physiological noise, other
processes ?

Color coded p-values

low sensitivity <—> reduced spatial resolution
Search for activated regions instead of
activated voxel

B Reproducibility of results ??

large variability over repeated experiments
(same subject)

Representativity for populations ?
Between subject variability

Group studies needed

Connectivity networks in neuroscience - construction and analysis - Summer School 2017: Proba-
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Resting state experiments

D

Default \Executive
Mode ) Control
fMRI experiments without external stimulus (resting

state)

B looks for intrinsic brain activity \

B first experiments by Biswal et al. (1995)

Visual
observe patterns of spatial coherence between
sensorimotor regions
B e.g. Zang & Raichle (2010) identify 7 mayor Sersori- Dorsal
. X motor Attention
networks of regions that show spatially
coherent activity
B larger studies identify up to 17 networks
Auditory
Figure: Raichle, Brain Connectivity, 2011, Fig. 1D
Connectivity networks in neuroscience - construction and analysis - Summer School 2017: Proba- W
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ICA-Modell

Independent component analysis (ICA)
m Observed signals x; (t),x2(2), . ..,xp(t)

B Assume these signals to be a linear combination of unknown souces
51(2),52(1),...,54(1)
B Model:
K
xi(t):kzlaiksk(t)+8i(t) i=1,....p (1)
X =AS+E (2)

B Goal: Estimate the mixing matrix A = (g;;) and the unknown source signals s (t)

B Source separation or cocktail party problem

Connectivity networks in neuroscience - construction and analysis - Summer School 2017: Proba- W\
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ICA in fMRI

B Data: nj X np X n3 x T values. Reorder as data matrix n x T
B Reduction of data matrix by Prewhitening and PCA, specification of number of sources K

B Search for spatial pattern in S (Spatial ICA)

ixv txk kxv
space sources space
[ I —— 5 & & [ wwmrm s s
3
3

000 0 00 ©

Ylipaavalniemi and Vigario, Neuroimage 2008

B Decompose in temporal (A) and spatial S signals
B Solved by e.g. fastICA (Hyvérinen & Oja (2000))

B Some components k may model artifacts (interpretability !)
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TP-ICA

B C.F. Beckmann and S.M. Smith, Neuroimage 2005
B Generalization of ICA for group studies
B K subjects
B Model:
Xikxs =(C|®|A)S+ Ejg <y @)
(Cl®]A) =((Adiag(cr)) ..., (Adiag(ex)) ") " (4)

B Structure of mixing matrix (C| ® |A) reflects the individual effects

B Common spatial structure in §
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Human Connectome Project (UMN/WU)

B 1200 Subjects
B anatomical scans 0.7mm isotropic (T1/T2)

B task based fMRI, 7 tasks 2mm isotropic
(Working memomory, Gambling, Motor, Language, Social cognition, Relational
processing, Emotion Processing)

B resting state fMRI 4 x 15min 2mm isotropic
m diffusion weighted imaging 1.25mm isotropic, 3 x 90 gradients
Information from these experiments is combined to obtain individual brain parcellations (node

definitions) for all subjects
Literature:

B Special issue Neuroimage 2013
B Shen et al. Neuroimage 2013

B Finn et al., Nature neuroscience 2015
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Individual brain atlas (Shen 268)

Brain parcellation, 268 functional regions, Shen 2013

- Finn 2015 defines general procedure for corresponding subject specific region definition
- regions should be used for node definition in group studies
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functional connectivity networks from fMRI

B Selection of characteristic time series within regions

B leads to matrix ¥ = (yk,);;lli

B define network by empirical covariance matrix
= <Z(Yit —yi)je —yj.))
t

B or regularized / thresholded estimate

i,j=1,K

Task based fMRI depending on the goal:

B Modeling and removal of expected hemodynamic response

B Selection of characteristic (residual) time series within regions
or

B Selection of nodes using functional regions associated with the tasks
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Electroencephalography (EEG)

EEG channel locations EEG signals at each location

peagfBgdgrar 228995 00n

Source: M. Lindquist, J. Hopkins Univ., Talk at SAMSI 2015
B high temporal resolution
B low spatial resolution
B Indirect measurement
B Source reconstruction problem
B Networks: coherence between spectra of recorded or reconstructed signals

Lit: Ombao and Van Bellegem (2008). Coherence Analysis: A Linear Filtering Point Of View. IEEE Transactions on Signal
Processing, 56(6), 2259-2266.
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From correlation to networks

Assumptions:
Y, ~Ny(0.%),  E=(0y)],-

Correlation between signals in nodes (regions) describes joint activity

Ojj
R=(pij)!:_y,  Pij=—"75
171, j=1 J (o-iio-jj)l/z
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From correlation to networks

Assumptions:
_ 14
Y, ~N,(0,%), L= (o-ij)i,jzl
Correlation between signals in nodes (regions) describes joint activity
O','j

R=(pij)l ey, Pij=——775

i,J (O'iiO'jj)l/2
Partial correlations refer to joint activity not explained by intermediate effects

Tyl 5.
Gij = Oy Xy Ojk

P=(p;ii) _,, -
(sz.k)z,]_l Pij.k (o — G,-i):;:lcik)(cjj _ chkE;Iij))l/z

with k = (1...n)/(if)

Precision matrices: Q = X! = (w,-j)fj:l,
. . . ) ;j
Connection to partial correlations: p;; x = @)
=gy

- Pourahmadi, M.: Modeling covariance matrices: The GLM and regularization perspectives. Statist. Sci., 2011, 26, 369-87.
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Estimation of precision matrices (p << n)

Negative normal log-likelihood: ¥; ~ Np(0,X), S = %):ITZI Y, -1y -nT
Q = argmaxlog |Q| —tr(5Q), Q=51
Q

Audio Vision

pferior.Occipital.Gyrus

rontal.Gyru
Parahippo

B functional connectivity networks are hypothesized to be sparse

B p =22, n= 178 — high variability of estimated correlations
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Graphical LASSO

Regularization:
Q = argmaxlog |Q| — 1r(SQ) + 22, (Q)
Q

Graphical LASSO:
14
2,(Q) =21} ||
ij

Literature:

- Meinshausen, N. & Bihlmann, P.: High-dimensional graphs and variable selection with the Lasso, Ann. Stat., 2006
- Friedman, J.; Hastie, T. & Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso, Biostatistics, 2008

- Levina, E.; Rothman, A. J. & Zhu, J.: Sparse estimation of large covariance matrices via a nested lasso penalty, Ann.
Appl. Stat., 2008

- Rothman, A. J.; Levina, E. & Zhu, J.: Generalized Thresholding of Large Covariance Matrices, JASA, 2009

- Rothman, A. J., L. E. & Zhu, J.: Sparse multivariate regression with covariance estimation, JCGS, 2010

Bien, J. & Tibshirani, R.: Sparse Estimation of a Covariance Matrix, Biometrika, 2011

Rothman, A. J.: Positive definite estimators of large covariance matrices Biometrika, 2012

Mazumder, R. & Hastie, T.: The Graphical Lasso: New Insights and Alternatives, Electr. J. Stat., 2012

- Mazumder, R. & Hastie, T.: Exact covariance thresholding into connected components for large-scale Graphical Lasso,
JMLR, 2012
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Graphical LASSO

Regularization:
Q = argmaxlog|Q| — 17(SQ) + 25 (Q)
Q

Graphical LASSO:
P
2,(Q) =LY |yl
ij

Audio Vision

&
=
&

0.

A W[Jg.Gyrus
z ‘,&i&
=

Bv Inferior. Tem|
‘{‘,, ronbaLGyru
i

)

/
#“%ﬁ\\\‘f O/} paratippg
AR =

deriGriéapbital Gys
v

Solution for A = .1 function dpglasso from R-package dpglasso.
Problem: Produces a biased estimate !

Connectivity networks in neuroscience - construction and analysis - Summer School 2017: Proba- W\
bilistic and statistical methods for networks - Page 36 AS)



Adaptive penalties (adaptive LASSO, SCAD)

Regularization:

P
Q = argmaxlog|Q| —1r(SQ) + ) px (wij)
Q ij
adaptive LASSO (Hui Zou):
1
pa(@ij) = A — |
@]
SCAD (Smoothly Clipped Absolute Deviation) ( Fan & Li (2001)):
(aA — |@ij])+
pa(@ij) = Mg j<p+ ——F—— Lo, 1>2) 0]
j ((l _ 1) J
Suggested parameters: ¥ = .5, a = 3.7. @ are assumed to be consistent estimates.
Computations:

B Non-convex optimization problems

B can be approximated by iteration of graphical LASSO (with matrix penalty parameter)
- Zou, H.: The Adaptive Lasso And Its Oracle Properties, JASA, 2006, 101, 1418-1429
- Lam, C. & Fan, J.: Sparsistency and Rates of Convergence in Large Covariance Matrices Estimation, Ann. Stat, 2009
- Fan, J.; Feng, Y. & Wu, Y.: Network exploration via the adaptive LASSO and SCAD penalties, Ann. Appl. Stat, 2009

- Cai, T. T; Liu, W. & Zhou, H.: Estimating sparse precision matrix: Optimal rates of convergence and adaptive estimation,
Ann. Stat., 2014.

- Cai, T.; Liu, W. & Luo, X.: A Constrained I1 Minimization Approach to Sparse Precision Matrix Estimation, JASA, 2011
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Adaptive penalties (adaptive LASSO)

Regularization:

p
Q = argmaxlog|Q| —1r(SQ) + ) px (wij)
Q ij
adaptive LASSO (Hui Zou):
1
palwij) = A —|wij]
o/

Audio Vision

nferior.Occipital. Gyrus
dle.. 8
gyr"‘ﬁh_"- GYIUS | ingual. Gyrus

rontal.Gyrt
Parahippg

Parameters: A = .1, y=.5.
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Adaptive penalties (SCAD)

Regularization:

p
Q = argmaxlog|Q| —1r(SQ) + ) px (wij)
Q ij
SCAD ( Fan & Li (2001)):
(ah —|@;j])+
palwij) = (Mg, <2 + Wl\@”m)\@ﬂ

Audio Vision

\Wal
ronlaI.Gyr
ANgUlar. GyTis—
< v.} Parahippg

\ Midd\e,TemporaLGyrus
S

Parameters: A = .1, a = 3.7.
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Selection of regularization parameters

Proposals (based on model selection criteria) with A = (4;;)

B K-fold - Cross-validation

KCV(A) = f i (log| Q9 (A)| — tr(SP QK (A))
k=1

B Generalized Cross validation (Dong & Wahba 1996, Lian 2011)
GACV (A) =n(log |Q(A)| — tr(SQ(A))+

Y vec(@(A) "~y )T rec(@(A) (S - S)O(A))
i=1

B Bayes Information Criterion (BIC) (consistent !)

BIC(A) = —log|[Q(A)| +1r(SQ(A)) + k@

Suggestion: select maximum A such that BIC slightly exceeds its minimal value.

- Lian, H.: Shrinkage tuning parameter selection in precision matrices estimation, J. Stat. Plan. Inf., 2011

- Chatterjee, A. & Lahiri, S. N.: Bootstrapping Lasso Estimators, JASA, 2011
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SCAD with A chosen by BIC

SCAD ( Fan & Li (2001)):

palwij) = (Mg <2 + =

Bayes Information Criterion (BIC)

BIC(A)

Audio

(ad — |@;j])+

L, >a) | @]

1)

log(n)

—log |Q(A)| +tr(SQ(A)) +kT

Vision

\

__ Lingual.Gyrus
V ~ WA\ IE{RR-Gyrus

' 0

nferior.Occipital.Gyrus
ital.Gyr

oceif
Precentral.Gyrus

A
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Multiple precision Matrices

Multiple precision Matrices: Q = (Q(1 ..., QX))

K
Q = argmax Z log |Q®)| —tr(sW k) + 2, (Q)
Q k=1

Fused graphical LASSO:

Py ( AIZZV»U |+;LZZZ|(D —wu>|

k=1i# K'>ki,j

Group graphical LASSO:

2, MZZW +2Y

k=1iZj oy

Implementation: R-package(JGL)
Tibshirani, R.; Saunders, M.; Rosset, S.; Zhu, J. & Knight, K.: Sparsity and smoothness via the fused lasso, JRSS B, 2005
Yang, S.; Lu, Z.; Shen, X.; Wonka, P. & Ye, J.: Fused Multiple Graphical Lasso, see: http://people.math.sfu.ca/ zhaosong

Danaher, P;; Wang, P. & Witten, D.: The joint graphical lasso for inverse covariance estimation across multiple classes,
JRSS B, 2014
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Fused Graphical LASSO with SCAD penalty

Multiple precision Matrices: Q = (Q(1>7 .., Q&)

K

Q = argmax Y log QK| —tr(sWaW) + 2, (@)

Q k=1
Fused graphical LASSO / SCAD:
K

k k K
7@ = Y. Y aylol|+ ¥ Y haylof - o]
k=1i#] K>k
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Example: functional connectivity matrix from resting state

s ettt

aEEs

-l
3

gﬁi§§§§§§§§!ﬁ§§§i§§é

MFG+EFG
LMTGHFG
cB
cB

-3

Source: Allen et al., Cerebral Cortex 2012.

Connectivity networks in neuroscience - construction and analysis - Summer School 2017: Proba- W
bilistic and statistical methods for networks - Page 44 AS)



Dynamics of functional connectivity networks in learning experiments

Learning paradigm:

(A) CS+ trial
FM tone Expect Number Feedback
reward Number > 5
? ?
45-120s 100 ms 1400 ms 1500 ms
(B) CS- trial
FM tone Expect Number Feedback
reward Number > 5
? ?
45-120s 100 ms 1400 ms 1500 ms

(Figure: Puschmann (2013))
Interest in changes of brain functionality due to learning
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Changes of functional connectivity

Changes:
B Functional regions becoming active / inactive due to learning
B Changes in sets of regions that act coherently
Classical methods to detect these changes:
B Moving windows or comparison of first third and last third of time series
B Test if parameters / contrasts change over time
B Test if mean value of residuals changes over time

B Test if correlation / partial correlation matrices change over time
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Investigating network dynamics

Test of stationarity without penalization:
H:%L, =X Vie(h+1,n—h):

Use (log) Likelihood Ratio Test for
H[ : El— = El+

B Can be expressed in terms of eigenvalues /1, ..., [, of ﬁ,,ﬁt]_l

m X;_and X, estimated from left/right window of size &

® Test-Statistic: T (/1,...,1,) = —C; , X1 (log(l;) —log(1 +1;))

®m = Curves T(1,h), t€(h+1,n—h)

B Distribution under Hypotheses H and H; does not depend on X (as. x-square)

m Distribution under Hypothesis can be approximated by simulation = density dj,
Problem: Test statistics undefined for & < p, highly variable if 2 > p

Alternative proposal: Cai and Zhang, Inference for high-dimensional differential correlation
matrices. JMVA 2016
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Investigating network dynamics

Test of stationarity with penalization (GLASSO):
H:%L, =X Vie(h+1,n—h):

Use (log) Likelihood Ratio Test for
H[ : El— = El+

B Can be expressed in terms of eigenvalues /1, ..., [, of ﬁ,,ﬁt]_l
m X;_and X, estimated from left/right window of size &

® Test-Statistic: T (/1,...,1,) = —C; , X1 (log(l;) —log(1 +1;))
®m = Curves T(1,h), t€(h+1,n—h)

B Distribution under Hypotheses H and H; does depend on X

Distribution of test statistic depends on unknown X and A, may be approximated using
permutation tests.
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