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WEIGHTED GRAPHS

C. AICHER ET AL. JOURNAL oF CoMPLEX NETWORKS 3(2), 221-248 (2015); T.P.P
ARXIvV: 1708.01432

Adjacency: A;; € {0,1} or N
Weights: z;; € N or R
SBMs with edge covariates:

P(A,z|0,7,b) = P(z|A,~,b)P(A|6,b)

Adjacency:

— b, bjRik Ay
P(A]|0 = {X\,k},b) = H € i ,El)\b| kiR ) ’
ij+

i<j
Edge covariates:

m‘A777 HP mT?|7T9

r<s

P(x|vy) — Exponential, Normal, Geometric, Binomial, Poisson, ...



WEIGHTED GRAPHS

T.P.P arXi1v: 1708.01432
Nonparametric Bayesian approach

P(A,z|b)P(b)

P4, ) = =R,

Marginal likelihood:
P(A, 2|b) = /P(A,m|0,'y, b)P(0)P(~) dOd~y
= P(AJb)P(z|A,b),
Adjacency part (unweighted):
P(AJb) = /P(A\B,b)P(G) 0
Weights part:
P(|Ab) = [ PlalA 6P dy

=11 [ P@rstve POy s

r<s



UN MIGRATIONS



UN MIGRATIONS

SBM fit with geometric weights
= = == Geometric distribution fit
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VOTES IN CONGRESS

0.8
06
S
> =
B 042
(=9 =1
a S
>
023

0.0

Deputy

4l SBM fit on original data

= === SBM fit on shuffled data
2
'z
=
3
=
2
:.E
=
k<
2
~

-0.2 0.0 0.2 0.4 0.6 0.8 1.0
Vote correlation



HUMAN CONNECTOME

Right hemisphere

SBM fit
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OVERLAPPING GROUPS

(Palla et al 2005)
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OVERLAPPING GROUPS
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» Number of nonoverlapping partitions: B

» Number of overlapping partitions: 2Z%



OVERLAPPING GROUPS

(Palla et al 2005)

» Number of nonoverlapping partitions: B

» Number of overlapping partitions: 2Z%



GROUP OVERLAP
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GROUP OVERLAP
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i<j i

Labelled half-edges: Aij =» Gi;, P(A|k,A) = > P(G|k,\)
G

TS

/P G, A P(K)P(AR) didA,

_ Hr<s Ers: H errl! H (
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Microcanonical equivalence:

P(G) = P(G|k,e)P(kle)P(e),

H'r<s 67'5'1_[ 67”7‘”1_[ k:'
H’V‘S Hi<] G”b' H G’,é” H’V‘ 67‘!’

oo =T ()

P(Glk,e) =

Hk



OVERLAP VS. NON-OVERLAP

Social “ego” network (from Facebook)
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OVERLAP VS. NON-OVERLAP

Social “ego” network (from Facebook)
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OVERLAP VS. NON-OVERLAP
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SBM WITH LAYERS
T.P.P, Puys. REv. E 92, 042807 (2015)

7 \ T » Fairly straightforward. Easily
< AR o combined with
S — \// //’ > .
ST / N degree-correction, overlaps, etc.

7 o S » Edge probabilities are in general
L .6 St Sl Ll different in each layer.
- <
7T e 277 T » Node memberships can move or
<7 \ \‘ S~ ‘ ) /;\; stay the same across layer.
\T e~ —_ - o » Works as a general model for
L - )\\\// S . discrete as.well as discretized
< e /v J s edge covariates.
T \\ // ‘// /;\\’;‘f’b » Works as a model for temporal

~0 _ networks.



SBM WITH LAYERS

Edge covariates

Hlml !
P({AM8) = P(Adl ) [T Lo

r<s

Independent layers

P({A}{{6}:}. {¢}. {za}}) = [ [ P(Al{6}1,{})
l

Embedded models can be of any type: Traditional,
degree-corrected, overlapping.



LAYER INFORMATION CAN REVEAL HIDDEN
STRUCTURE
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... BUT IT
CAN ALSO HIDE STRUCTURE!
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MODEL SELECTION

Null model: Collapsed (aggregated) SBM + fully random layers

PUGYI0), (1)) = P(Cal(o)) L

(we can also aggregate layers into larger layers)



MODEL SELECTION

EXAMPLE: SOCIAL NETWORK OF PHYSICIANS

N = 241 Physicians

Survey questions:
» “When you need information or advice about questions of
therapy where do you usually turn?”

» “And who are the three or four physicians with whom you
most often find yourself discussing cases or therapy in the
course of an ordinary week — last week for instance?”

» “Would you tell me the first names of your three friends
whom you see most often socially?”

T.P.P, Phys. Rev. E 92, 042807 (2015)



MODEL SELECTION

EXAMPLE: SOCIAL NETWORK OF PHYSICIANS



MODEL SELECTION

EXAMPLE: SOCIAL NETWORK OF PHYSICIANS



MODEL SELECTION

EXAMPLE: SOCIAL NETWORK OF PHYSICIANS

logig A = —50



EXAMPLE: BRAZILIAN CHAMBER OF DEPUTIES

Voting network between members of congress (1999-2006)

Pag
MD&
“,
Q?&e %
$
&
&
H
8
2 5
(723 ~
o
P
2 >
‘?’; 0&%) &»\’ &
&O 3‘&})

¥ e ot
and
gQS‘d' aawa ‘8



EXAMPLE: BRAZILIAN CHAMBER OF DEPUTIES

Voting network between members of congress (1999-2006)
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EXAMPLE: BRAZILIAN CHAMBER OF DEPUTIES

Voting network between members of congress (1999-2006)
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REAL-VALUED EDGES?

Idea: Layers {¢} — bins of edge values!

P({Gu}{8} iy, {0}) = PUGH{8} (. {€}) x [ [ o)

l

Bayesian posterior — Number (and shape) of bins



MOVEMENT BETWEEN GROUPS...
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NETWORKS WITH METADATA

Many network datasets contain metadata: Annotations that go beyond the
mere adjacency between nodes.

Often assumed as indicators of topological structure, and used to validate
community detection methods. A.k.a. “ground-truth”.



EXAMPLE: AMERICAN COLLEGE FOOTBALL

Metadata (Conferences)



EXAMPLE: AMERICAN COLLEGE FOOTBALL

SBM fit



EXAMPLE: AMERICAN COLLEGE FOOTBALL

Discrepancy



EXAMPLE: AMERICAN COLLEGE FOOTBALL
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EXAMPLE:

AMERICAN COLLEGE FOOTBALL

Why the discrepancy?

Some hypotheses:

» The model is not
sufficiently descriptive.

» The metadata is not
sufficiently descriptive or
is inaccurate.

» Both.
» Neither.

Discrepancy



MODEL VARIATIONS: ANNOTATED NETWORKS
M.E.J. NEwMAN AND A. CLAUSET, ARX1v:1507.04001

Main idea: Treat metadata as data, not “ground truth”.

Annotations are partitions, {z;}

Can be used as priors:

P(G{x:}|0,7) = > P(GH{bi}, 0)P({bi}{i},7)
{b;}

P({bi}{zi},v) = H%izu

Drawbacks: Parametric (i.e. can overfit). Annotations are not always
partitions.



METADATA IS OFTEN VERY HETEROGENEOUS

ExampLE: IMDB FILM-ACTOR NETWORK
Data: 96,982 Films, 275,805 Actors, 1,812,657 Film-Actor Edges

Film metadata: Title, year, genre, production company, country,
user-contributed keywords, etc.

Actor metadata: Name, Age, Gender, Nationality, etc.

User-contributed keywords (93, 448)

° ®  Keyword occurrence

= M Number of keywords per film
10* [ ] -

10°

N

10!

10° O e Of

10° 10 10% 10° 10*



METADATA 1S OFTEN VERY HETEROGENEOUS

ExamMPLE: IMDB FILM-ACTOR NETWORK

Keyword Occurrences
’independent-film’ 15513
’based-on-novel’ 12303
’character-name-in-title’ 11801
‘murder’ 11184
’sex’ 9759
’female-nudity’ 9239
‘nudity’ 5846
’death’ 5791
’husband-wife-relationship’ 5568
’love’ 5560
’violence’ 5480
’police’ 5463

’father-son-relationship’ 5063



METADATA 1S OFTEN VERY HETEROGENEOUS

ExamMPLE: IMDB FILM-ACTOR NETWORK

Keyword Occurrences Keyword Occurrences
’independent-film’ 15513 ’discriminaton-against-anteaters’ 1
’based-on-novel’ 12303 ’partisan-violence’ 1
’character-name-in-title’ 11801 ’deliberately-leaving-something-behind’ 1
‘murder’ 11184 ’princess-from-outer-space’ 1
’sex’ 9759 ‘reference-to-aleksei-vorobyov’ 1
’female-nudity’ 9239 ’dead-body-on-the-beach’ 1
‘nudity’ 5846 ’liver-failure’ 1
’death’ 5791 ’hit-with-a-skateboard’ 1
’husband-wife-relationship’ 5568 ’helping-blind-man-cross-street’ 1
"love’ 5560 ’abandoned-pet’ 1
’violence’ 5480 retired-clown’ 1
’police’ 5463 ’resentment-toward-stepson’ 1
’father-son-relationship’ 5063 ’mutilating-a-plant’ 1



BETTER APPROACH: METADATA AS DATA

Main idea: Treat metadata as data, not “ground truth”.

Generalized annotations

A;; — Data layer
T;; — Annotation layer

» Joint model for data and
metadata (the layered SBM [1]).

» Arbitrary types of annotation.

» Both data and metadata are
clustered into groups.

» Fully nonparametric.




EXAMPLE: AMERICAN COLLEGE FOOTBALL

Tags Nodes
(Conferences) (Teams)

(a) Data (b) Metadata



PREDICTION OF MISSING EDGES

Drug-drug interactions

G= G U G
~— ~—
Observed  Missing

Posterior probability of missing edges

Y, P(GUSG|{b;},0)P(8)
P(3G|G, {b:}) = ‘929 PG}, 0)P(0)

A. Clauset, C. Moore, MEJ Newman,
Nature, 2008
R. Guimera, M Sales-Pardo, PNAS 2009

R. Guimera, M. Sales-Pardo, PLoS
Comput Biol, 2013



METADATA AND PREDICTION OF mussing nodes
Node probability, with known group membership:

> P(A, ailbi, b,0)P(6)
P(ailA,bi,b) = S, P(A|b,0)P(6)

Node probability, with unknown group membership:

P(a:|A,b) =Y P(ai|A,bi, b)P(b:|b),

b;
Node probability, with unknown group membership, but known metadata:

P(ai|A,T,b,c) = P(ai|A,bi,b)P(b;|T,b,c),
b;

Group membership probability, given metadata:

P(bi,b‘T, C) _ Z'y P(T|bi7b7 & V)P(bivb)P('Y)

P(b:|T, b, c) = - '
OIT50 = "pm ey = 5, 5, P, b.e, ) PE,LB)P()
Predictive likelihood ratio:
P(ai|A, T, b, c) A > 1/2 — the metadata improves

Ai = -
P(ai|A,T,b,c) + P(a;|A,b) the prediction task



METADATA AND PREDICTION OF MISSING NODES

Tags Nodes
(Conferences) (Teams)
=<
n/ 7 s 08
=
)\ g
. < K]
PO £ 07
s = £
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P 5 06
=
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Dataonly GN  TE

(b) Metadata (c) Node prediction




METADATA AND PREDICTION OF MISSING NODES
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METADATA AND PREDICTION OF MISSING NODES

Metadata

Data
Aligned Misaligned Random

1.0

0.9
0.8
0.7 —#— Aligned  —¥— Misaligned

0.6 ~4— Random  —— Misaligned (N/B = 10%)
0.5 = =

0.4
0.3

Average predictive likelihood ratio, (1)

0.2

2 3 4 5 6 7 8 9 10
Number of planted groups, B



METADATA PREDICTIVENESS
Neighbor probability:
Peilf) = ki 22
€b, €p;

Neighbour probability, given metadata tag:
Py(i) = D P(ilg)Pm (ilt)
J
Null neighbor probability (no metadata tag):

Q() =Y Pl
g

Kullback-Leibler divergence:

DkL(P||Q) = XZ: Py(i) In I;t((;))

Relative divergence:

Neighbour prob. without metadata

Neighbour prob. with metadata

P(i)

Dk, (P,
M — Metadata group predictiveness

= TTHQ)



METADATA PREDICTIVENESS

IMDB FILM-ACTOR NETWORK

Metadata group predictiveness, L,
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METADATA PREDICTIVENESS

APS CITATION NETWORK

v Journal = PACS @ Date

Metadata group predictiveness, L,

LB III T T TTTT II T T
10° 10! 10
Metadata group size, n,



METADATA PREDICTIVENESS

AMAZON CO-PURCHASES

Metadata group predictiveness, i,

= Categories

0.0

IIIII T T IIIIIII T T IIIIIII T LA
10! 10 10° 10*
Metadata group size, n,



METADATA PREDICTIVENESS

INTERNET AS

Metadata group predictiveness, (L,

1.0

0.8

0.6

0.4

0.2

0.0

Country

|

T

IIII
100

T T T I
10!
Metadata group size,



METADATA PREDICTIVENESS

FACEBOOK PENN STATE

v Dorm High School A Major Year
= Gender
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n-ORDER MARKOV CHAINS WITH COMMUNITIES
T. P. P. aAND MARTIN RosvaLL, ArRX1v: 1509.04740

Transitions conditioned on the last n tokens

p(x¢|Zi—1) — Probability of transition from
memory
ft71 = {mt,n, e ,xt71} to
token

Instead of such a direct parametrization, we
divide the tokens and memories into groups:

p(z]Z) = Oz v,

0, — Overall frequency of token x
Ars — Transition probability from memory
group s to token group r
by, bz — Group memberships of tokens and
groups

:"

{z¢} = "It was_ the best of times



n-ORDER MARKOV CHAINS WITH COMMUNITIES

Memories Tokens ]
{z;} = "It was the best of times"

P({z}]b) = / dxd6 P({z,}]b, X, )P(6)P())

The Markov chain likelihood is (almost)
identical to the SBM likelihood that gen-
erates the bipartite transition graph.

Nonparametric — We can select the
number of groups and the Markov
order based on statistical evidencel!

T. P. P. and Martin Rosvall, Nature Communications (in press)



BAYESIAN FORMULATION

P({z:}|b) = / d0dx P({x:}]b, X, 0) [[ Pr ({602 1) [ [ Ps({Ars})

Noninformative priors — Microcanonical model

P({z:}[b) = P({zm:}|b, {ers}; {ke}) x P({kz}{ers} b) x P({ers}),

where

P({z}|b,{ers}, {kz}) — Sequence likelihood,
P({kz}|{ers},b) — Token frequency likelihood,
P({ers}) — Transition count likelihood,

—In P({z+},b) — Description length of the sequence

‘ Inference <+ Compression




n-ORDER MARKOV CHAINS WITH COMMUNITIES

War and peace

Taxi movements

“Rock you” password list

5 By Bu B B By By B 5 By Bu B 5

364,385,780 365, 65 71 11,422,564 11,438,753 | 387 385 2,635,789 2,975,200 | 140 147 1,060,272,230 1,060,385, 582

319,851,871 326,511,545 | 62 435 9,175,833 9,370,379 | 397 1127 | 2,554,662 L586 | 109 1597 984,697,401 987,185,890

318,380,106 330,808,057 | 70 1366 7,609,366 8,493,211 | 393 1036 2,500,811 (586 | 1144703 910,330,062 | 930,926,370

318,842,968 337,988,620 | 72 1150 7,574,332 9,282,611 | 307 1071 2,628,813 L5586 | 114 5856 889,006,060 940,991,463
874,766 338,442,011 | 71 882 10,181,047 10,992,795 | 395 1095 2,664,990 8,586 | 99 6430 1,000,410,410 1,005,057,233
152,240 9,594,000 4,280,888 1,315, 388,208

LZMA 402,125,144 7,420,464 2,902,904

(SBM can compress your files!)

T. P. P. and Martin Rosvall, arXiv: 1509.04740

1,097,012, 288



n-ORDER MARKOV CHAINS WITH COMMUNITIES
EXAMPLE: FLIGHT ITINERARIES
Ty = {x1—3, Altanta|Las Vegas, x¢—1}

Previous n = 3 airports, &

Atlanta Las Vegas . . .
ana s e Destination airport, =

T. P. P. and Martin Rosvall, arXiv: 1509.04740



DYNAMIC NETWORKS

Each token is an edge: x+ — (4, )¢
Dynamic network — Sequence of edges: {x¢} = {(4, )¢}
Problem: Too many possible tokens! O(N?)

Solution: Group the nodes into B groups.
Pair of node groups (r,s) — edge group.

Number of tokens: O(B?) < O(N?)

Two-step generative process:

{ze} = {(r,8)}

(n-order Markov chain of pairs of group labels)

P((i,4)el(r, $)t)
(static SBM generating edges from group labels)

T. P. P. and Martin Rosvall, arXiv: 1509.04740



DYNAMIC NETWORKS

EXAMPLE: STUDENT PROXIMITY

Static part
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T. P. P. and Martin Rosvall, arXiv: 1509.04740



DYNAMIC NETWORKS

EXAMPLE: STUDENT PROXIMITY

Static part Temporal part
ot pe
$o)
& <
: 2
S <
—
e o
A g
Z
o)
f&g &
JISdIN

T. P. P. and Martin Rosvall, arXiv: 1509.04740



DYNAMIC NETWORKS IN CONTINUOUS TIME

x,+ — token at continuous time 7

P({z-}) = P({a:}) x P{Ad}{x:})

Discrete chain Waiting times

Exponential waiting time distribution
P({A{w}, A) = [[ Agze et
Bayesian integrated likelihood
PUa) =TT [ xe > Poja ),

_ H Ter +a)B”
L(a)(Ar 4 B)erte’

Hyperparameters: «, S. Noninformative limit o — 0, 8 — 0 leads to

Jeffreys prior: P(X) o< &

T. P. P. and Martin Rosvall, arXiv: 1509.04740



DYNAMIC NETWORKS

CONTINUOUS TIME

{z,} — Sequence of notes in Beethoven’s fifth symphony
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Without waiting times With waiting times

(n=1) (n=2)



NONSTATIONARITY DYNAMIC NETWORKS

{z+} — Concatenation of “War and peace,” by Leo Tolstoy, and “A la
recherche du temps perdu,” by Marcel Proust.

‘ Unmodified chain

Tokens Memories

—log, P({z:},b) = 7,450,322



NONSTATIONARITY DYNAMIC NETWORKS

{z+} — Concatenation of “War and peace,” by Leo Tolstoy, and “A la
recherche du temps perdu,” by Marcel Proust.

‘ Unmodified chain Annotated chain z; = (z, novel) ‘

Tokens Memories Tokens Memories

—log, P({x:},b) = 7,450,322 —log, P({x:},b) = 7,146,465



LATENT SPACE MODELS

P. D. HorF, A. E. RAFERTY, AND M. S. HanDCcOCK, J. AMER. STAT. Assoc.
97, 1090-1098 (2002)

G|{Jl‘z prw pz] _Aij

>3

pij = exp (— (& — &;)%).

(Human connectome)
Many other more elaborate embeddings (e.g. hyperbolic spaces).
Properties:
» Softer approach: Nodes are not placed into discrete categories.
» Exclusively assortative structures.

» Formulation for directed graphs less trivial.



DISCRETE VS. CONTINUOUS

Can we formulate a unified parametrization?



THE GRAPHON

P(Gl{wi}) = [ [ o (1 = pi)'

i>7

pij = w(zi, ;)

x; € [0, 1]

Properties:

» Mostly a theoretical tool.
» Cannot be directly inferred (without massively overfitting).

» Needs to be parametrized to be practical.



THE SBM — A PIECEWISE-CONSTANT GRAPHON

w(z,y)



A “SOFT” GRAPHON PARAMETRIZATION

dyudy
2m

Puv = W(Tw, To)

w(z,y) = Y ¢;uB;(x)Bu(y)

J k=0

Bernstein polynomials:

— k=0
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0.0



A “SOFT” GRAPHON PARAMETRIZATION

dyudy
2m

Puv = W(Tw, To)

w(z,y)

w(z,y) = Y ¢;uB;(x)Bu(y)

J k=0

Bernstein polynomials:

— k=0

08 —_— k=1

—~ 06 — k=2

= —_— k=3

Q04 k=4

02 - k=35
0.0



INFERRING THE MODEL

SEMI-PARAMETRIC BAYESIAN APPROACH

Belief-Propagation

Expectation-Maximization algorithm

1. E tati t
xpectation step Muso(@) = exp( Zdudw / G (y)w (w,y)dy)
) PAxle) o ’
40X) = Fpr e S
TP(A, x|c)dmx < 11 / Nusa (y)w(, y)dy,
w(#'u)l

2. Maximization step
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EXAMPLE: C. ELEGANS WORM
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EXAMPLE: INTERSTATE HIGHWAY
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