Statistical inference of network structure Part 2

Tiago P. Peixoto

 $University\ of\ Bath$

Berlin, August 2017

WEIGHTED GRAPHS

C. AICHER ET AL. JOURNAL OF COMPLEX NETWORKS 3(2), 221-248 (2015); T.P.P. ARXIV: 1708.01432

Adjacency: $A_{ij} \in \{0, 1\}$ or \mathbb{N}

Weights: $x_{ij} \in \mathbb{N}$ or \mathbb{R}

SBMs with edge covariates:

$$P(\boldsymbol{A},\boldsymbol{x}|\boldsymbol{\theta},\boldsymbol{\gamma},\boldsymbol{b}) = P(\boldsymbol{x}|\boldsymbol{A},\boldsymbol{\gamma},\boldsymbol{b})P(\boldsymbol{A}|\boldsymbol{\theta},\boldsymbol{b})$$

Adjacency:

$$P(\boldsymbol{A}|\boldsymbol{\theta} = \{\boldsymbol{\lambda}, \boldsymbol{\kappa}\}, \boldsymbol{b}) = \prod_{i < j} \frac{\mathrm{e}^{-\lambda_{b_i, b_j} \kappa_i \kappa_j} (\lambda_{b_i, b_j} \kappa_i \kappa_j)^{A_{ij}}}{A_{ij}!},$$

Edge covariates:

$$P(\boldsymbol{x}|\boldsymbol{A},\boldsymbol{\gamma},\boldsymbol{b}) = \prod_{r \leq s} P(\boldsymbol{x}_{rs}|\boldsymbol{\gamma}_{rs})$$

 $P(\boldsymbol{x}|\boldsymbol{\gamma}) \to \text{Exponential, Normal, Geometric, Binomial, Poisson, } \dots$

WEIGHTED GRAPHS

T.P.P ARXIV: 1708.01432

Nonparametric Bayesian approach

$$P(\boldsymbol{b}|\boldsymbol{A},\boldsymbol{x}) = \frac{P(\boldsymbol{A},\boldsymbol{x}|\boldsymbol{b})P(\boldsymbol{b})}{P(\boldsymbol{A},\boldsymbol{x})},$$

Marginal likelihood:

$$P(\mathbf{A}, \mathbf{x}|\mathbf{b}) = \int P(\mathbf{A}, \mathbf{x}|\mathbf{\theta}, \gamma, \mathbf{b}) P(\mathbf{\theta}) P(\gamma) d\mathbf{\theta} d\gamma$$
$$= P(\mathbf{A}|\mathbf{b}) P(\mathbf{x}|\mathbf{A}, \mathbf{b}),$$

Adjacency part (unweighted):

$$P(\boldsymbol{A}|\boldsymbol{b}) = \int P(\boldsymbol{A}|\boldsymbol{\theta}, \boldsymbol{b})P(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

Weights part:

$$P(\boldsymbol{x}|\boldsymbol{A},\boldsymbol{b}) = \int P(\boldsymbol{x}|\boldsymbol{A},\boldsymbol{\gamma},\boldsymbol{b})P(\boldsymbol{\gamma}) d\boldsymbol{\gamma}$$
$$= \prod_{r \leq s} \int P(\boldsymbol{x}_{rs}|\boldsymbol{\gamma}_{rs})P(\boldsymbol{\gamma}_{rs}) d\boldsymbol{\gamma}_{rs}$$

UN MIGRATIONS

UN MIGRATIONS

VOTES IN CONGRESS

HUMAN CONNECTOME

- SBM fit

SBM fit

0.6

(Palla et al 2005)

(Palla et al 2005)

(Palla et al 2005)

- ightharpoonup Number of nonoverlapping partitions: B^N
- ▶ Number of overlapping partitions: 2^{BN}

(Palla et al 2005)

- ▶ Number of nonoverlapping partitions: B^N
- \blacktriangleright Number of overlapping partitions: 2^{BN}

GROUP OVERLAP

$$P(\boldsymbol{A}|\boldsymbol{\kappa},\boldsymbol{\lambda}) = \prod_{i < j} \frac{e^{-\lambda_{ij}} \lambda_{ij}^{A_{ij}}}{A_{ij}!} \times \prod_{i} \frac{e^{-\lambda_{ii}/2} (\lambda_{ii}/2)^{A_{ii}/2}}{A_{ii}/2!}, \quad \lambda_{ij} = \sum_{rs} \kappa_{ir} \lambda_{rs} \kappa_{js}$$

Labelled half-edges:
$$A_{ij} = \sum G_{ij}^{rs}$$
, $P(\mathbf{A}|\mathbf{\kappa}, \lambda) = \sum_{\mathbf{G}} P(\mathbf{G}|\mathbf{\kappa}, \lambda)$

GROUP OVERLAP

$$P(\boldsymbol{A}|\boldsymbol{\kappa},\boldsymbol{\lambda}) = \prod_{i < j} \frac{e^{-\lambda_{ij}} \lambda_{ij}^{A_{ij}}}{A_{ij}!} \times \prod_{i} \frac{e^{-\lambda_{ii}/2} (\lambda_{ii}/2)^{A_{ii}/2}}{A_{ii}/2!}, \quad \lambda_{ij} = \sum_{rs} \kappa_{ir} \lambda_{rs} \kappa_{js}$$

Labelled half-edges: $A_{ij} = \sum G_{ij}^{rs}$, $P(\mathbf{A}|\mathbf{\kappa}, \lambda) = \sum_{\mathbf{k}} P(\mathbf{G}|\mathbf{\kappa}, \lambda)$

$$P(G) = \int P(G|\kappa, \lambda) P(\kappa) P(\lambda|\bar{\lambda}) d\kappa d\lambda,$$

$$= \frac{\bar{\lambda}^E}{(\bar{\lambda} + 1)^{E + B(B+1)/2}} \frac{\prod_{r < s} e_{rs}! \prod_r e_{rr}!!}{\prod_{r < j} \prod_{i < j} G_{ij}^{rs}! \prod_i G_{ii}^{rs}!!} \times \prod_r \frac{(N-1)!}{(e_r + N - 1)!} \times \prod_{ir} k_i^r!,$$

GROUP OVERLAP

$$P(\boldsymbol{A}|\boldsymbol{\kappa},\boldsymbol{\lambda}) = \prod_{i < j} \frac{e^{-\lambda_{ij}} \lambda_{ij}^{A_{ij}}}{A_{ij}!} \times \prod_{i} \frac{e^{-\lambda_{ii}/2} (\lambda_{ii}/2)^{A_{ii}/2}}{A_{ii}/2!}, \quad \lambda_{ij} = \sum_{rs} \kappa_{ir} \lambda_{rs} \kappa_{js}$$

Labelled half-edges: $A_{ij} = \sum_{r,s} G_{ij}^{rs}, \quad P(\boldsymbol{A}|\boldsymbol{\kappa}, \boldsymbol{\lambda}) = \sum_{\boldsymbol{G}} P(\boldsymbol{G}|\boldsymbol{\kappa}, \boldsymbol{\lambda})$

$$\begin{split} P(\boldsymbol{G}) &= \int P(\boldsymbol{G}|\boldsymbol{\kappa}, \boldsymbol{\lambda}) P(\boldsymbol{\kappa}) P(\boldsymbol{\lambda}|\bar{\boldsymbol{\lambda}}) \, \mathrm{d}\boldsymbol{\kappa} \mathrm{d}\boldsymbol{\lambda}, \\ &= \frac{\bar{\boldsymbol{\lambda}}^E}{(\bar{\boldsymbol{\lambda}}+1)^{E+B(B+1)/2}} \frac{\prod_{r < s} e_{rs}! \prod_r e_{rr}!!}{\prod_{r \leq s} G_{ij}^{rs}! \prod_i G_{ii}^{rs}!!} \times \prod_r \frac{(N-1)!}{(e_r + N - 1)!} \times \prod_{ir} k_i^r!, \end{split}$$

Microcanonical equivalence:

$$P(G) = P(G|k, e)P(k|e)P(e),$$

$$\begin{split} P(\boldsymbol{G}|\boldsymbol{k},\boldsymbol{e}) &= \frac{\prod_{r < s} e_{rs}! \prod_{r} e_{rr}!! \prod_{ir} k_{i}^{r}!}{\prod_{rs} \prod_{i < j} G_{ij}^{rs}! \prod_{i} G_{ii}^{rs}!! \prod_{r} e_{r}!}, \\ P(\boldsymbol{k}|\boldsymbol{e}) &= \prod_{r} \binom{e_{r}}{N}^{-1} \end{split}$$

OVERLAP VS. NON-OVERLAP

Social "ego" network (from Facebook)

OVERLAP VS. NON-OVERLAP

OVERLAP VS. NON-OVERLAP

SBM WITH LAYERS

T.P.P, Phys. Rev. E 92, 042807 (2015)

- ► Fairly straightforward. Easily combined with degree-correction, overlaps, etc.
- ► Edge probabilities are in general different in each layer.
- ► Node memberships can move or stay the same across layer.
- ➤ Works as a general model for discrete as well as *discretized* edge covariates.
- ► Works as a model for temporal networks.

SBM WITH LAYERS

Edge covariates

$$P(\{\boldsymbol{A}_l\}|\{\boldsymbol{\theta}\}) = P(\boldsymbol{A}_c|\{\boldsymbol{\theta}\}) \prod_{r \leq s} \frac{\prod_l m_{rs}^l!}{m_{rs}!}$$

Independent layers

$$P(\{A_l\}|\{\{\theta\}_l\},\{\phi\},\{z_{il}\}\}) = \prod_l P(A_l|\{\theta\}_l,\{\phi\})$$

Embedded models can be of any type: Traditional, degree-corrected, overlapping.

LAYER INFORMATION CAN REVEAL HIDDEN STRUCTURE

LAYER INFORMATION CAN REVEAL HIDDEN STRUCTURE

... BUT IT CAN ALSO HIDE STRUCTURE!

Null model: Collapsed (aggregated) SBM + fully random layers

$$P(\{G_l\}|\{\theta\}, \{E_l\}) = P(G_c|\{\theta\}) \times \frac{\prod_l E_l!}{E!}$$

(we can also aggregate layers into larger layers)

Example: Social network of physicians

N = 241 Physicians

Survey questions:

- ▶ "When you need information or advice about questions of therapy where do you usually turn?"
- ▶ "And who are the three or four physicians with whom you most often find yourself discussing cases or therapy in the course of an ordinary week last week for instance?"
- ▶ "Would you tell me the first names of your three friends whom you see most often socially?"

Example: Social network of physicians

Example: Social Network of Physicians

Example: Social network of physicians

EXAMPLE: BRAZILIAN CHAMBER OF DEPUTIES

Voting network between members of congress (1999-2006)

EXAMPLE: BRAZILIAN CHAMBER OF DEPUTIES

Voting network between members of congress (1999-2006)

EXAMPLE: BRAZILIAN CHAMBER OF DEPUTIES

Voting network between members of congress (1999-2006)

REAL-VALUED EDGES?

Idea: Layers $\{\ell\}$ \to bins of edge values!

$$P(\{G_x\}|\{\theta\}_{\{\ell\}},\{\ell\})) = P(\{G_l\}|\{\theta\}_{\{\ell\}},\{\ell\})) \times \prod_{l} \rho(x_l)$$

Bayesian posterior \rightarrow Number (and shape) of bins

MOVEMENT BETWEEN GROUPS...

NETWORKS WITH METADATA

Many network datasets contain *metadata*: Annotations that go beyond the mere adjacency between nodes.

Often assumed as indicators of topological structure, and used to validate community detection methods. A.k.a. "ground-truth".

EXAMPLE: AMERICAN COLLEGE FOOTBALL

Metadata (Conferences)

EXAMPLE: AMERICAN COLLEGE FOOTBALL

SBM fit

EXAMPLE: AMERICAN COLLEGE FOOTBALL

Discrepancy

EXAMPLE: AMERICAN COLLEGE FOOTBALL

Why the discrepancy?

Some hypotheses:

Discrepancy

EXAMPLE: AMERICAN COLLEGE FOOTBALL

Discrepancy

Why the discrepancy?

Some hypotheses:

► The model is not sufficiently descriptive.

Example: American college football

Discrepancy

Why the discrepancy?

Some hypotheses:

- ► The model is not sufficiently descriptive.
- ► The metadata is not sufficiently descriptive or is inaccurate.

EXAMPLE: AMERICAN COLLEGE FOOTBALL

Discrepancy

Why the discrepancy?

Some hypotheses:

- ► The model is not sufficiently descriptive.
- ► The metadata is not sufficiently descriptive or is inaccurate.
- ▶ Both.

EXAMPLE: AMERICAN COLLEGE FOOTBALL

Discrepancy

Why the discrepancy?

Some hypotheses:

- ► The model is not sufficiently descriptive.
- ► The metadata is not sufficiently descriptive or is inaccurate.
- ▶ Both.
- ▶ Neither.

Model variations: Annotated networks

M.E.J. NEWMAN AND A. CLAUSET, ARXIV:1507.04001

Main idea: Treat metadata as data, not "ground truth".

Annotations are partitions, $\{x_i\}$

Can be used as priors:

$$P(G, \{x_i\} | \theta, \gamma) = \sum_{\{b_i\}} P(G | \{b_i\}, \theta) P(\{b_i\} | \{x_i\}, \gamma)$$

$$P(\{b_i\}|\{x_i\},\gamma) = \prod_i \gamma_{b_i x_u}$$

Drawbacks: Parametric (i.e. can overfit). Annotations are not always partitions.

METADATA IS OFTEN VERY HETEROGENEOUS

Example: IMDB Film-Actor Network

Data: 96, 982 Films, 275, 805 Actors, 1, 812, 657 Film-Actor Edges

Film metadata: Title, year, genre, production company, country, user-contributed keywords, etc.

Actor metadata: Name, Age, Gender, Nationality, etc.

User-contributed keywords (93, 448)

METADATA IS OFTEN VERY HETEROGENEOUS

EXAMPLE: IMDB FILM-ACTOR NETWORK

Keyword	Occurrences
'independent-film'	15513
'based-on-novel'	12303
'character-name-in-title'	11801
'murder'	11184
'sex'	9759
'female-nudity'	9239
'nudity'	5846
'death'	5791
'husband-wife-relationship'	5568
'love'	5560
'violence'	5480
'police'	5463
'father-son-relationship'	5063

METADATA IS OFTEN VERY HETEROGENEOUS

EXAMPLE: IMDB FILM-ACTOR NETWORK

Occurrences	Keyword	Occurrences
15513	'discriminaton-against-anteaters'	1
12303	'partisan-violence'	1
11801	${\it `deliberately-leaving-something-behind'}$	1
11184	'princess-from-outer-space'	1
9759	${\it `reference-to-aleksei-vorobyov'}$	1
9239	'dead-body-on-the-beach'	1
5846	'liver-failure'	1
5791	'hit-with-a-skateboard'	1
5568	'helping-blind-man-cross-street'	1
5560	'abandoned-pet'	1
5480	'retired-clown'	1
5463	${\it `resentment-toward-stepson'}$	1
5063	'mutilating-a-plant'	1
	15513 12303 11801 11184 9759 9239 5846 5791 5568 5560 5480 5463	15513 'discriminaton-against-anteaters' 12303 'partisan-violence' 11801 'deliberately-leaving-something-behind' 11184 'princess-from-outer-space' 9759 'reference-to-aleksei-vorobyov' 9239 'dead-body-on-the-beach' 5846 'liver-failure' 5791 'hit-with-a-skateboard' 5568 'helping-blind-man-cross-street' 5560 'abandoned-pet' 5480 'retired-clown' 5463 'resentment-toward-stepson'

BETTER APPROACH: METADATA AS DATA

Main idea: Treat metadata as data, not "ground truth".

Generalized annotations

 $A_{ij} \to \text{Data layer}$ $T_{ij} \to \text{Annotation layer}$

- ▶ Joint model for data and metadata (the layered SBM [1]).
- ► Arbitrary types of annotation.
- ► Both data and metadata are clustered into groups.
- ► Fully nonparametric.

EXAMPLE: AMERICAN COLLEGE FOOTBALL

PREDICTION OF MISSING EDGES

$$G' = \underbrace{G}_{Observed} \cup \underbrace{\delta G}_{Missing}$$

Posterior probability of missing edges

$$P(\delta G|G, \{b_i\}) = \frac{\sum_{\theta} P(G \cup \delta G|\{b_i\}, \theta) P(\theta)}{\sum_{\theta} P(G|\{b_i\}, \theta) P(\theta)}$$

A. Clauset, C. Moore, MEJ Newman, Nature, 2008 R. Guimerà, M Sales-Pardo, PNAS 2009

Drug-drug interactions

R. Guimerà, M. Sales-Pardo, PLoS Comput Biol, 2013

METADATA AND PREDICTION OF missing nodes

Node probability, with known group membership:

$$P(\boldsymbol{a}_i|\boldsymbol{A},b_i,\boldsymbol{b}) = \frac{\sum_{\theta} P(\boldsymbol{A},\boldsymbol{a}_i|b_i,\boldsymbol{b},\theta)P(\theta)}{\sum_{\theta} P(\boldsymbol{A}|\boldsymbol{b},\theta)P(\theta)}$$

Node probability, with unknown group membership:

$$P(\boldsymbol{a}_i|\boldsymbol{A},\boldsymbol{b}) = \sum_{b_i} P(\boldsymbol{a}_i|\boldsymbol{A},b_i,\boldsymbol{b}) P(b_i|\boldsymbol{b}),$$

Node probability, with unknown group membership, but known metadata:

$$P(\boldsymbol{a}_i|\boldsymbol{A},\boldsymbol{T},\boldsymbol{b},\boldsymbol{c}) = \sum_{b_i} P(\boldsymbol{a}_i|\boldsymbol{A},b_i,\boldsymbol{b}) P(b_i|\boldsymbol{T},\boldsymbol{b},\boldsymbol{c}),$$

Group membership probability, given metadata:

$$P(b_i|\boldsymbol{T},\boldsymbol{b},\boldsymbol{c}) = \frac{P(b_i,\boldsymbol{b}|\boldsymbol{T},\boldsymbol{c})}{P(\boldsymbol{b}|\boldsymbol{T},\boldsymbol{c})} = \frac{\sum_{\gamma} P(\boldsymbol{T}|b_i,\boldsymbol{b},\boldsymbol{c},\gamma) P(b_i,\boldsymbol{b}) P(\gamma)}{\sum_{b'} \sum_{\gamma} P(\boldsymbol{T}|b'_i,\boldsymbol{b},\boldsymbol{c},\gamma) P(b'_i,\boldsymbol{b}) P(\gamma)}$$

Predictive likelihood ratio:

$$\lambda_i = \frac{P(\boldsymbol{a}_i|\boldsymbol{A},\boldsymbol{T},\boldsymbol{b},\boldsymbol{c})}{P(\boldsymbol{a}_i|\boldsymbol{A},\boldsymbol{T},\boldsymbol{b},\boldsymbol{c}) + P(\boldsymbol{a}_i|\boldsymbol{A},\boldsymbol{b})} \qquad \begin{array}{c} \lambda_i > 1/2 \to \text{the metadata improves} \\ \text{the prediction task} \end{array}$$

METADATA AND PREDICTION OF MISSING NODES

METADATA AND PREDICTION OF MISSING NODES

$$\lambda_i = \frac{P(\boldsymbol{a}_i|\boldsymbol{A},\boldsymbol{T},\boldsymbol{b},\boldsymbol{c})}{P(\boldsymbol{a}_i|\boldsymbol{A},\boldsymbol{T},\boldsymbol{b},\boldsymbol{c}) + P(\boldsymbol{a}_i|\boldsymbol{A},\boldsymbol{b})}$$

METADATA AND PREDICTION OF MISSING NODES

Neighbor probability:

$$P_e(i|j) = k_i \frac{e_{b_i,b_j}}{e_{b_i}e_{b_j}}$$

Neighbour probability, given metadata tag:

$$P_t(i) = \sum_{j} P(i|j) P_m(j|t)$$

Null neighbor probability (no metadata tag):

$$Q(i) = \sum_{j} P(i|j)\Pi(j)$$

Kullback-Leibler divergence:

$$D_{\mathrm{KL}}(P_t||Q) = \sum_{i} P_t(i) \ln \frac{P_t(i)}{Q(i)}$$

Relative divergence:

$$\mu_T \equiv \frac{D_{\mathrm{KL}}(P_t||Q)}{H(Q)} \rightarrow \text{Metadata group predictiveness}$$

Neighbour prob. without metadata

Neighbour prob. with metadata

IMDB FILM-ACTOR NETWORK

APS CITATION NETWORK

Amazon co-purchases

METADATA PREDICTIVENESS INTERNET AS

FACEBOOK PENN STATE

n-ORDER MARKOV CHAINS WITH COMMUNITIES

T. P. P. AND MARTIN ROSVALL, ARXIV: 1509.04740

Transitions conditioned on the last n tokens

$$p(x_t|\vec{x}_{t-1}) \to \text{Probability of transition from}$$

memory
 $\vec{x}_{t-1} = \{x_{t-n}, \dots, x_{t-1}\}$ to
token x_t

Instead of such a direct parametrization, we divide the tokens and memories into groups:

$$p(x|\vec{x}) = \theta_x \lambda_{b_x b_{\vec{x}}}$$

 $\theta_x \to \text{Overall frequency of token } x$ $\lambda_{rs} \to \text{Transition probability from memory}$ group s to token group r $b_x, b_{\vec{x}} \to \text{Group memberships of tokens and}$ groups

0000000000000

 $\{x_t\} = "It was the best of times"$

(c)

n-order Markov Chains with communities

Memories Tokens

$$\{x_t\} = \texttt{"It} \sqcup \texttt{was} \sqcup \texttt{the} \sqcup \texttt{best} \sqcup \texttt{of} \sqcup \texttt{times} \texttt{"}$$

$$P(\lbrace x_t \rbrace | b) = \int d\lambda d\theta \, P(\lbrace x_t \rbrace | b, \lambda, \theta) P(\theta) P(\lambda)$$

The Markov chain likelihood is (almost) identical to the SBM likelihood that generates the bipartite transition graph.

Nonparametric \rightarrow We can select the **number of groups** and the **Markov order** based on statistical evidence!

T. P. P. and Martin Rosvall, Nature Communications (in press)

Bayesian formulation

$$P(\lbrace x_t \rbrace | b) = \int d\theta \, d\lambda \, P(\lbrace x_t \rbrace | b, \lambda, \theta) \prod_r \mathcal{D}_r(\lbrace \theta_x \rbrace) \prod_s \mathcal{D}_s(\lbrace \lambda_{rs} \rbrace)$$

Noninformative priors \rightarrow Microcanonical model

$$P(\{x_t\}|b) = P(\{x_t\}|b, \{e_{rs}\}, \{k_x\}) \times P(\{k_x\}|\{e_{rs}\}, b) \times P(\{e_{rs}\}),$$
where

$$P(\{x_t\}|b, \{e_{rs}\}, \{k_x\}) \to \text{Sequence likelihood},$$

 $P(\{k_x\}|\{e_{rs}\}, b) \to \text{Token frequency likelihood},$
 $P(\{e_{rs}\}) \to \text{Transition count likelihood},$

 $-\ln P(\{x_t\}, b) \to \textbf{Description length}$ of the sequence

 $\mathbf{Inference} \leftrightarrow \mathbf{Compression}$

n-order Markov Chains with communities

	US Air Flights			War and peace			Taxi movements				"Rock you" password list					
n	B_N	B_M	Σ	Σ'	B_N	B_M	Σ	Σ'	B_N	B_M	Σ	Σ'	B_N	B_M	Σ	Σ'
1	384	365	364,385,780	365, 211, 460	65	71	11,422,564	11,438,753	387	385	2,635,789	2,975,299	140	147	1,060,272,230	1,060,385,582
2	386	7605	319,851,871	326, 511, 545	62	435	9,175,833	9, 370, 379	397	1127	2,554,662	3,258,586	109	1597	984,697,401	987, 185, 890
3	183	2455	318, 380, 106	339, 898, 057	70	1366	7,609,366	8, 493, 211	393	1036	2,590,811	3,258,586	114	4703	910, 330, 062	930, 926, 370
4	292	1558	318,842,968	337,988,629	72	1150	7,574,332	9, 282, 611	397	1071	2,628,813	3, 258, 586	114	5856	889, 006, 060	940, 991, 463
5	297	1573	335,874,766	338,442,011	71	882	10, 181, 047	10,992,795	395	1095	2,664,990	3,258,586	99	6430	1,000,410,410	1,005,057,233
gzip	ip 573, 452, 240				9, 594, 000			4, 289, 888			1, 315, 388, 208					
LZMA			402, 125, 144		7, 420, 464			2,902,904			1,097,012,288					

(SBM can compress your files!)

n-order Markov Chains with communities

Example: Flight itineraries

$$\vec{x}_t = \{x_{t-3}, \text{Altanta} | \text{Las Vegas}, x_{t-1}\}$$

Previous $n = 3$ airports, \vec{x}

T. P. P. and Martin Rosvall, arXiv: 1509.04740

Dynamic networks

Each token is an edge: $x_t \to (i, j)_t$

Dynamic network \rightarrow Sequence of edges: $\{x_t\} = \{(i,j)_t\}$

Problem: Too many possible tokens! $O(N^2)$

Solution: Group the nodes into B groups. Pair of node groups $(r, s) \rightarrow$ edge group.

Number of tokens: $O(B^2) \ll O(N^2)$

Two-step generative process:

$$\{x_t\} = \{(r, s)_t\}$$
(n-order Markov chain of pairs of group labels)

$$P((i,j)_t|(r,s)_t)$$
 (static SBM generating edges from group labels)

T. P. P. and Martin Rosvall, arXiv: 1509.04740

DYNAMIC NETWORKS

EXAMPLE: STUDENT PROXIMITY

Static part

T. P. P. and Martin Rosvall, arXiv: 1509.04740

DYNAMIC NETWORKS

EXAMPLE: STUDENT PROXIMITY

Temporal part

T. P. P. and Martin Rosvall, arXiv: 1509.04740

Dynamic networks in continuous time

 $x_{\tau} \to \text{token at continuous time } \tau$

$$P(\lbrace x_{\tau} \rbrace) = \underbrace{P(\lbrace x_{t} \rbrace)}_{\text{Discrete chain}} \times \underbrace{P(\lbrace \Delta_{t} \rbrace | \lbrace x_{t} \rbrace)}_{\text{Waiting times}}$$

Exponential waiting time distribution

$$P(\{\Delta_t\}|\{x_t\},\lambda) = \prod_{\vec{x}} \lambda_{b_{\vec{x}}}^{k_{\vec{x}}} e^{-\lambda_{b_{\vec{x}}} \Delta_{\vec{x}}}$$

Bayesian integrated likelihood

$$P(\{\Delta_t\}|\{x_t\}) = \prod_r \int_0^\infty d\lambda \, \lambda^{e_r} e^{-\lambda \Delta_r} P(\lambda|\alpha, \beta),$$
$$= \prod_r \frac{\Gamma(e_r + \alpha)\beta^{\alpha}}{\Gamma(\alpha)(\Delta_r + \beta)^{e_r + \alpha}}.$$

Hyperparameters: α , β . Noninformative limit $\alpha \to 0$, $\beta \to 0$ leads to Jeffreys prior: $P(\lambda) \propto \frac{1}{\lambda}$

DYNAMIC NETWORKS

Continuous time

 $\{x_{\tau}\} \to \text{Sequence of notes in Beethoven's fifth symphony}$

Without waiting times (n=1)

With waiting times (n=2)

NONSTATIONARITY DYNAMIC NETWORKS

 $\{x_t\} \to \text{Concatenation of "War and peace," by Leo Tolstoy, and "À la recherche du temps perdu," by Marcel Proust.$

Unmodified chain

$$-\log_2 P(\{x_t\}, b) = 7,450,322$$

NONSTATIONARITY DYNAMIC NETWORKS

 $\{x_t\} \to \text{Concatenation of "War and peace," by Leo Tolstoy, and "À la recherche du temps perdu," by Marcel Proust.$

Unmodified chain

Annotated chain $x'_t = (x_t, \text{novel})$

$$-\log_2 P(\lbrace x_t \rbrace, b) = 7,450,322$$

$$-\log_2 P(\{x_t\}, b) = 7,146,465$$

LATENT SPACE MODELS

P. D. Hoff, A. E. Raferty, and M. S. Handcock, J. Amer. Stat. Assoc. 97, 1090-1098 (2002)

$$P(G|\{\vec{x}_i\}) = \prod_{i>j} p_{ij}^{A_{ij}} (1 - p_{ij})^{1 - A_{ij}}$$
$$p_{ij} = \exp\left(-(\vec{x}_i - \vec{x}_j)^2\right).$$

(Human connectome)

Many other more elaborate embeddings (e.g. hyperbolic spaces). Properties:

- ▶ Softer approach: Nodes are not placed into discrete categories.
- ► Exclusively assortative structures.
- ► Formulation for directed graphs less trivial.

DISCRETE VS. CONTINUOUS

Can we formulate a unified parametrization?

THE GRAPHON

$$P(G|\{x_i\}) = \prod_{i>j} p_{ij}^{A_{ij}} (1 - p_{ij})^{1 - A_{ij}}$$
$$p_{ij} = \omega(x_i, x_j)$$
$$x_i \in [0, 1]$$

Properties:

- ► Mostly a theoretical tool.
- ► Cannot be directly inferred (without massively overfitting).
- ▶ Needs to be parametrized to be practical.

The SBM \rightarrow a piecewise-constant Graphon

A "SOFT" GRAPHON PARAMETRIZATION

$$p_{uv} = \frac{d_u d_v}{2m} \omega(x_u, x_v)$$
$$\omega(x, y) = \sum_{j,k=0}^{N} c_{jk} B_j(x) B_k(y)$$

Bernstein polynomials:

$$B_k(x) = \binom{N}{k} x^k (1-x)^{N-k}, \qquad k = 0 \dots N$$

A "SOFT" GRAPHON PARAMETRIZATION

$$p_{uv} = \frac{d_u d_v}{2m} \omega(x_u, x_v)$$
$$\omega(x, y) = \sum_{j,k=0}^{N} c_{jk} B_j(x) B_k(y)$$

Bernstein polynomials:

$$B_k(x) = \binom{N}{k} x^k (1-x)^{N-k}, \qquad k = 0 \dots l$$

Inferring the model

Semi-parametric Bayesian approach

Expectation-Maximization algorithm

Belief-Propagation

1. Expectation step

$$q(\mathbf{x}) = \frac{P(\mathbf{A}, \mathbf{x} | \mathbf{c})}{\int P(\mathbf{A}, \mathbf{x} | \mathbf{c}) d^n \mathbf{x}}$$

$$\eta_{u \to v}(x) = \frac{1}{Z_{u \to v}} \exp\left(-\sum_{w} d_u d_w \int_0^1 q_w(y)\omega(x, y) dy\right)$$
$$\times \prod_{\substack{w \ (\neq v) \\ q \ (\neq v)}} \int_0^1 \eta_{w \to u}(y)\omega(x, y) dy,$$

2. Maximization step

$$P(\mathbf{A}|\mathbf{c}) = \int P(\mathbf{A}, \mathbf{x}|\mathbf{c}) d^n \mathbf{x}$$

$$\hat{c}_{jk} = \underset{c_{jk}}{\operatorname{argmax}} P(\mathbf{A}|\mathbf{c})$$

$$q_{uv}(x,y) = \frac{\eta_{u \to v}(x)\eta_{v \to u}(y)\omega(x,y)}{\int_{0}^{1} \eta_{u \to v}(x)\eta_{v \to u}(y)\omega(x,y)\mathrm{d}x\mathrm{d}y}.$$

Algorithmic complexity: $O(mN^2)$

EXAMPLE: SBM SAMPLE

EXAMPLE: SCHOOL FRIENDSHIPS

EXAMPLE: C. ELEGANS WORM

Example: C. Elegans worm

EXAMPLE: INTERSTATE HIGHWAY

