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Percolation on graphs
Let Gn be any graph with n vertices and fix p ∈ [0, 1]. The percolated graph
Gn(p) is obtained from Gn by deciding independently for each edge e of Gn:

keep e with probability p,

otherwise delete e with probability 1− p.

Two typical scenarios:

(a) The network is robust: removing the edges does not change the global
features (e.g. the existence of a giant component), or

(b) a phase transition:

p < pc =⇒ Gn(p) has no giant component,

p > pc =⇒ Gn(p) has a giant component.

Example: (supercritical) configuration model with degree distribution µk ∼ k−τ .

τ ∈ (3,∞) =⇒ phase transition.

vs.
τ ∈ (2, 3) =⇒ robust.

; we are interested in evolving random graphs!
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Approaching criticality
Plot p 7→ θ(p), the asymptotic size of the giant component C(1)n (p) after
percolation, i.e. |Cn(p)|

n
→ θ(p).

vs.

Important question: How does θ(p) decay for p ↓ pc?

[Cohen, ben-Avraham, Havlin ’02] show for the configuration model with
tail exponent τ :

θ(p) ∼ (p − pc)β
′

for p ↓ pc ,
for

β′ =

{
1

τ−3 für τ ∈ (3, 4),

1 für τ > 4.

The exponent β′ is believed to be universal (and only depend on τ).
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Preferential attachment models
Preferential attachment models were proposed by [Barabási, Albert
1999] to model the growth of a network, such as the World Wide Web.

Two essential ingredients:
I evolving network: vertices are added to the system and connected to old

vertices.
I Preferential attachment: new vertices connect preferably to vertices that

already have a high degree.

[Barabási, Albert 1999] propose preferential attachment as a
mechanism explaining that many real-world networks are scale-free: the
degree distribution of a typical vertex converges to a power-law distribution:

X (n)

k =
1

n

∑
i=1

1l{degn(i)=k} → µk ≈ k−τ ,

where τ is a power law exponent.

First mathematical analysis by [Bollobás, Riordan, Spencer and
Tusnády, 2001]. For a robust approach, see [Dereich, O. ’14].

The tail exponent τ is supposed to determine many of the qualitative
features of the model.
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Tusnády, 2001]. For a robust approach, see [Dereich, O. ’14].

The tail exponent τ is supposed to determine many of the qualitative
features of the model.

Marcel Ortgiese (University of Bath) Near critical preferential attachment 28 August 2017 4 / 16



Preferential attachment models
Preferential attachment models were proposed by [Barabási, Albert
1999] to model the growth of a network, such as the World Wide Web.

Two essential ingredients:
I evolving network: vertices are added to the system and connected to old

vertices.
I Preferential attachment: new vertices connect preferably to vertices that

already have a high degree.

[Barabási, Albert 1999] propose preferential attachment as a
mechanism explaining that many real-world networks are scale-free: the
degree distribution of a typical vertex converges to a power-law distribution:

X (n)

k =
1

n

∑
i=1

1l{degn(i)=k} → µk ≈ k−τ ,

where τ is a power law exponent.

First mathematical analysis by [Bollobás, Riordan, Spencer and
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The model in a variation due to [Dereich, Mörters ’09].

The strength of preferential attachment is governed by an attachment rule
f : N0 → (0,∞) (e.g. f (k) = γk + β) such that f (k) ≤ k + 1.

At time 1 the network consists of a single vertex without edges.
At time n + 1, the new vertex n + 1 connects to each old vertex i
independently with probability

f (deg−n (i))

n
,

where deg−n (i) denotes the in-degree of vertex i at time n.

2F1

F1

1

2F1

F1
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Theorem 1 ([Dereich, Mörters ’09])

Let f be increasing and f (k) ≤ k + 1. There exists a probability distribution
µ = (µk)k∈N0 such that, almost surely,

1

n

n∑
i=1

1l{deg−n (i)=k} → µk

If f (k)/k → γ ∈ (0, 1), then

logµk

log k
→ −(1 +

1

γ
) := −τ.
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Giant components

In order to understand percolation, we need to understand the connectivity
structure:

A sequence of random graphs (Gn)n≥1 with largest connected components
(Cn)ngeq1 has a giant component if

|Cn|
n

n→∞−→ c ∈ (0, 1], in prob.
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Results also work for more general sublinear attachment rules.
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The percolation threshold for preferential attachment
If Gn denotes a graph on n vertices, denote by Gn(p) the percolated graph, where
each edge is kept independently with probability p.

Theorem 3 ([Dereich, Mörters ’13])

Let Gn be the preferential attachment graph with attachment rule f (k) = γk +β.

(i) The network is robust in the sense that Gn(p) has a giant component for all
p ∈ (0, 1] if and only if γ ≥ 1

2 .

(ii) If γ ∈ [0, 12 ) and β >
( 1
2−γ)

2

1−γ , then there exists pc = pc(γ, β) ∈ (0, 1) such
that

Gn(p) has a giant component ⇐⇒ p > pc .
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Approaching criticality in percolation

If pc ∈ (0, 1), what about θ(p) as p ↓ pc?

Theorem 4 (Eckhoff, Mörters and O.; in progress)

Let f be the linear attachment rule with f (k) = γk + β, with γ < 1
2 and

β >
( 1
2−γ)

2

1−γ and let θ(p, f ) be the asymptotic size of the giant component of the
p-percolated network. Then,

lim
p↓pc

√
p − pc log θ(p, f ) = − 1

2
√

2
πpcσβ,γ ,

where σβ,γ is an explicit function of β and γ.

Slightly supercritical percolated preferential attachment networks are
really small.

Does not show same behaviour as configuration model with the same tail
exponent, where the decay is polynomially.
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Slightly supercritical percolated preferential attachment networks are
really small.

Does not show same behaviour as configuration model with the same tail
exponent, where the decay is polynomially.
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Approaching the critical line for existence of giant

Instead of looking at size of the largest component, could also look at the
size of giant component and let (γ, β) converge to the ‘critical curve’, so that
θ(1, f )→ 0.

Define

βc(γ) =
( 1
2 − γ)2

1− γ
.

Theorem 5 (Eckhoff, Mörters and O.; in progress)

Let f (k) = γk + β with γ ∈ [0, 12 ) and β ∈ (0, 1]. Then

lim
β↓βc (γ)

√
β − βc(γ) log θ(1, f ) = − π

2
√

1− γ
.
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Theorem 5 (Eckhoff, Mörters and O.; in progress)

Let f (k) = γk + β with γ ∈ [0, 12 ) and β ∈ (0, 1]. Then

lim
β↓βc (γ)

√
β − βc(γ) log θ(1, f ) = − π

2
√

1− γ
.

Similar results also hold for any other fk ↓ f with θ(1, fk) > 0, but θ(1, f ) = 0.

Related work: [Riordan ’05] shows for models that morally correspond to
γ = 1/2, β = 0 and γ = 0, β = 1/4 that size of slightly super-critical
component is exponentially small.
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Local neighbourhoods in sparse random graphs
Run an exploration process on the graph

Start in a uniformly chosen vertex
Discover all its neighbours
Discover all the neighbours of the neighbours, etc.

In a sparse random graph you typically discover a (random) tree (if you don’t go
too far).
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Local neighbourhoods in sparse random graphs

Run an exploration process on the graph

Start in a uniformly chosen vertex

Discover all its neighbours

Discover all the neighbours of the neighbours, etc.

In a sparse random graph you typically discover a (random) tree (if you don’t go
too far).

General philosopy:

Existence of a giant component in the network
m

the (idealized) random tree is infinite with positive probability.

This also extends to the percolated network.
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Run an exploration process on the graph

Start in a uniformly chosen vertex

Discover all its neighbours

Discover all the neighbours of the neighbours, etc.

In a sparse random graph you typically discover a (random) tree (if you don’t go
too far).

General philosopy:

Existence of a giant component in the percolated network
m

the (idealized) percolated random tree is infinite with positive probability.

This also extends to the percolated network.
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Local neighbourhoods for the preferential attachment
model

Description by [Dereich and Mörters ’13].

Consider a linear attachment rule f . The local neighbourhoods described by a
branching random walk, where particles have:

a position: time of birth (on a logarithmic scale) relative to newest vertex.

Types: ` (explored from ‘left’) or r (explored from ‘right’).

Start with a particle at position −E of type `, where E ∼ Exp.

Place offspring relative to current position
I
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Local neighbourhoods for the preferential attachment
model Description by [Dereich and Mörters ’13].

Consider a linear attachment rule f . The local neighbourhoods described by a
branching random walk, where particles have:

a position: time of birth (on a logarithmic scale) relative to newest vertex.

Types: ` (explored from ‘left’) or r (explored from ‘right’).

Start with a particle at position −E of type `, where E ∼ Exp.
Place offspring relative to current position

I To the left according to a Poisson point process with intensity depending on f .
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Local neighbourhoods for the preferential attachment
model Description by [Dereich and Mörters ’13].

Consider a linear attachment rule f . The local neighbourhoods described by a
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a position: time of birth (on a logarithmic scale) relative to newest vertex.
Types: ` (explored from ‘left’) or r (explored from ‘right’).
Start with a particle at position −E of type `, where E ∼ Exp.
Place offspring relative to current position if of type `:

I To the right: according to jump times of the process Zt with Z0 = 0 that
jumps from k to k + 1 with rate f (k).
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Local neighbourhoods for the preferential attachment
model Description by [Dereich and Mörters ’13].

Consider a linear attachment rule f . The local neighbourhoods described by a
branching random walk, where particles have:

a position: time of birth (on a logarithmic scale) relative to newest vertex.
Types: ` (explored from ‘left’) or r (explored from ‘right’).
Start with a particle at position −E of type `, where E ∼ Exp.
Finally remove all particles with positive positions! ; Branching Random
Walk (BRW) with absorption at 0
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Proof of results

[Dereich, Mörters ’13] show:

Existence of giant component
m

Branching random walk absorbed at 0 survives with positive probability.

Also, if C(1)n (p) denotes the p-percolated random graph, then

|C(1)n (p)|
n

→ θ(p, f ),

where θ(p, f ) is the survival probability of the percolated branching random walk
(absorbed at 0). Thus, our task is reduced to understanding

θ(p, f ) ∼? as p ↓ pc .

Difference between our results and results for configuration model can be
explained by different branching process approximation.

Marcel Ortgiese (University of Bath) Near critical preferential attachment 28 August 2017 12 / 16



Proof of results

[Dereich, Mörters ’13] show:

Existence of giant component
m

Branching random walk absorbed at 0 survives with positive probability.

Also, if C(1)n (p) denotes the p-percolated random graph, then

|C(1)n (p)|
n

→ θ(p, f ),

where θ(p, f ) is the survival probability of the percolated branching random walk
(absorbed at 0). Thus, our task is reduced to understanding

θ(p, f ) ∼? as p ↓ pc .

Difference between our results and results for configuration model can be
explained by different branching process approximation.

Marcel Ortgiese (University of Bath) Near critical preferential attachment 28 August 2017 12 / 16



Proof of results

[Dereich, Mörters ’13] show:

Existence of giant component
m

Branching random walk absorbed at 0 survives with positive probability.

Also, if C(1)n (p) denotes the p-percolated random graph, then

|C(1)n (p)|
n

→ θ(p, f ),

where θ(p, f ) is the survival probability of the percolated branching random walk
(absorbed at 0). Thus, our task is reduced to understanding

θ(p, f ) ∼? as p ↓ pc .

Difference between our results and results for configuration model can be
explained by different branching process approximation.

Marcel Ortgiese (University of Bath) Near critical preferential attachment 28 August 2017 12 / 16



Proof of results

[Dereich, Mörters ’13] show:

Existence of giant component
m

Branching random walk absorbed at 0 survives with positive probability.

Also, if C(1)n (p) denotes the p-percolated random graph, then

|C(1)n (p)|
n

→ θ(p, f ),

where θ(p, f ) is the survival probability of the percolated branching random walk
(absorbed at 0). Thus, our task is reduced to understanding

θ(p, f ) ∼? as p ↓ pc .

Difference between our results and results for configuration model can be
explained by different branching process approximation.

Marcel Ortgiese (University of Bath) Near critical preferential attachment 28 August 2017 12 / 16



Proof of asymptotics of survival probability

We need to understand the asymptotics of the survival probability of a killed BRW
as it becomes more and more critical.

Our proof uses modern branching processes techniques. We adapt the proof
of a result of [Gantert, Hu, Shi ’09], who show asymptotics for a killed
branching random walk.

I Difference: we have infinitely many particles to the right.
I They kill just above maximal speed; in our case the model approaches

criticality!

Idea: identify optimal strategy!

Technical tools:
I Many-to-one lemma: reduce question about branching random walk to

question about random walk.
I A robust version of Mogulskii’s theorem: large deviations estimates for random

walk to stay in a small corridor.
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Some proof ideas
Introduce a new measure, by setting for any test function f

Eα
[
f (Si , i = 1, . . . ,N)

]
= E

[ ∑
|x|=N

e−αSN (x)f (Si (x), i = 1, . . . ,N)
]
.

For the right α, Si , i = 1, . . . , n is a centred random walk.

Then, take a sequence pn ↓ pc , choose paramaters

N = (b(pn − pc))3/2, for some b > 0.

We can show

P(survival) ≈ P(∃|x | = N : Si (x) ≈ i b
N2/3 ∀i ∈ [N])

≈ E
[ ∑
|x|=N

1l{Si (x) ≈ i b
N2/3 ∀i ∈ [N]}

]
= e

α b

N2/3 NPα(Si ≈ i b
N2/3 ∀i ∈ [N])

≈ exp
(
αbN1/3 − π2σ

2 N
1
3

)
= exp

(
−
√
pn − pc(π

2σ
2 b1/2 − αb3/2)

)
Then, choosing the optimal b gives the right answer.
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2 N
1
3

)
= exp

(
−
√
pn − pc(π

2σ
2 b1/2 − αb3/2)

)
Then, choosing the optimal b gives the right answer.
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Summary
We looked at the decay of the relative size θ(p) of the giant component in the
p-percolated network for p ↓ pc .

Configuration model
(degree exponent τ)
[Cohen et. al, 2002]

θ(p) ∼ (p − pc)β

where

β =

{
1

τ−3 τ ∈ (3, 4)

1 τ > 4

Preferential attachment model
(degree exponent τ ∈ (3,∞))

θ(p) ∼ e−c/
√
p−pc .

Local description:
Galton-Watson tree

Local description:
branching random walk with absorp-
tion.

τ does not (always) determine universality class!
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Outlook

I. Extension of the preferential attachment models

Classic preferential attachment models do not describe real-world networks
perfectly. Two shortcomings of PA:

I Local neighbourhoods are trees.
I The hubs are always born right at the beginning.

Two possible modifications of the model:
I Introduce a spatial component ; clustering.
I Introduce random fitness of nodes ; more interestingcompetition.

II. More complicated stochastic processes

Percolation is the easiest random process defined on top of random network.

Random walks, e.g. mixing and cover times. [Cooper, Frieze ’07].

Spread of rumours or diseases, i.e. first passage percolation.

Interacting particle systems: contact process, voter model, . . ..
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