
LAPLACIAN MATRIX AND APPLICATIONS

Alice Nanyanzi

Supervisors: Dr. Franck Kalala Mutombo & Dr. Simukai Utete

alicenanyanzi@aims.ac.za

August 24, 2017



1 Complex systems & Complex Networks

2 Networks Overview

3 Laplacian Matrix

Laplacian Centrality

Diffusion on networks

Alice Nanyanzi (AIMS-SU) Laplacian Matrix August 24, 2017 1 / 22



Complex Systems; Complex Network/Large graph
Approach

Figure

Alice Nanyanzi (AIMS-SU) Laplacian Matrix August 24, 2017 2 / 22



Introduction to Networks

Intuition of Networks

Whenever one mentions the word ’network’, one normally thinks of an
interconnection of items or things.
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Introduction to Networks

Intuition of Networks

Whenever one mentions the word ’network’, one normally thinks of an
interconnection of items or things.

Formal Definition

A network, G , is a pair (V ,E ). Where V is the set of vertices (nodes) of
G and E is the set of edges (links) of G . (Estrada & Knight).
Categories of networks include simple networks, directed networks,
undirected networks, weighted networks, etc (Estrada, 2015)
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Real-world Networks

(a) Internet (b) Protein-Protein

(c) Food web (d) Citation network

Source: www.wikipedia.com
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Laplacian Matrix

Definition

Consider a simple undirected network, the Laplacian matrix L is the
difference between the Degree matrix D and Adjacency matrix A i.e
L = D − A. The entries of L are given as

Li ,j =


ki if i = j

−1 if i 6= j and i is adjacent to j

0 otherwise,

where ki denotes the degree of node i (Estrada, 2011).
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Spectrum of the Laplacian Matrix

Spectrum

Spectrum of a matrix is a set eigenvalues and their multiplicities. Let λi
denote the eigenvalues of the Laplacian matrix. Considering the
nondecreasing order: λn ≥ λn−1 ≥ · · · ≥ λ2 ≥ λ1 = 0
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Spectrum of the Laplacian Matrix

Spectrum

Spectrum of a matrix is a set eigenvalues and their multiplicities. Let λi
denote the eigenvalues of the Laplacian matrix. Considering the
nondecreasing order: λn ≥ λn−1 ≥ · · · ≥ λ2 ≥ λ1 = 0

Insights from spectrum

The multiplicity of 0 as an eigenvalue of L is equal to the number of
connected components in the network.
A network, G, is connected if its second smallest eigenvalue is
nonzero. That is, λ2 > 0 if and only if G is connected. The
eigenvalue λ2 is thus called the algebraic connectivity of a network,
a(G ) (Estrada, 2011).
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Applications of Laplacian Matrix

Centrality measure

Diffusion on network

Consensus in multi-agent systems

Synchronization
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Centrality Measures

In networks, centrality is the measure how important/central a node is, in
the network (Newman, 2010). There exists various measures such as:

Degree centrality: Power through links

Closeness centrality: Power through proximity to others

Betweenness centrality: Ability to act as a bridge

Eigenvector centrality: Improvement in degree centrality

Subgraph centrality: Participation of a node in subgraphs in network

Laplacian centrality : Impact of deactivation of a node from the
network.
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Laplacian Centrality

Work presented is based on the paper: Laplacian centrality: A new
centrality measure for weighted networks by Qi et al., 2012.

Motivation

The growing need for centrality measures for weighted networks since
these networks contain rich information (Qi et al., 2012).

Standard centrality measures (degree, closeness, betweenness) have
been extended to cater for weighted networks, however, these
measures either capture the local or global characterisation of
networks (T.Opsahl ’2009, Newman ’2001, A.Barrat ’2004,
U.Brandes ’2001).

The Laplacian centrality is a measure between local and global (i.e
intermediate) characterisation of the centrality of a node.
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Laplacian Centrality Cont....

Laplacian Energy of a Network

The importance of a node is determined by the ability of the network to
respond to the deactivation of the node from the network. The response is
quantified by the relative drop in Laplacian energy (EL) of the network (Qi
et al., 2012).

EL(G ) =
n∑

i=1

λ2i =
n∑

i=1

x2i + 2
∑
i<j

w2
i ,j , (1)

where x ′i s are vertex sums and wij are weights of edges between vertices i
and j (Qi et al., 2012).
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Mathematical Formulation of Laplacian Centrality

Mathematically, Laplacian centrality for a node i in network G is given by
(Qi et al., 2012)

CL(vi ,G ) =
(∆E )i
EL(G )

=
EL(G )− EL(Gi )

EL(G )
, (2)

where
EL(G ) - Laplacian energy of network G .
EL(Gi ) - Laplacian energy of network G on removal of node i
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Graph Theoretical Interpretation of Laplacian Centrality

Expressing Equation 2 in terms of 2-walks of the node i gives

(∆E )i = 2 · NWM
2 (vi ) + 2 · NW E

2 (vi ) + 4 · NW C
2 (vi ), (3)

where NW C
2 (vi ), NW E

2 (vi ), and NWM
2 (vi ) are closed 2-walks containing

vertex vi , non-closed 2-walks with vertex vi as one of the end points and
non-closed 2-walks with vertex vi as the middle point (Qi et al., 2012).

x

v

y u

z

w

p

Figure: 2-walks at node v
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Application to real-world networks

Zachary’s Karate Network

The Zachary’s Karate Network was created from a dataset formed
by observation of 34 members of a karate club over two years.
Misunderstandings within the group led to a split into two groups, one
led by the Administrator (1) and the other by the instructor (34).

Nodes represent players in both groups while edges represent
interactions outside karate activities.

The weights on the edges correspond to different aspects of
interactions between players

Database Source: http:

//nexus.igraph.org/api/dataset_info?id=1&format=html
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Zachary’s Karate Network cont...

Figure: Zachary’s Karate Network
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Centrality rankings of the Zachary’s Karate network

Scores Ranks

Node Degree Betweenness Closeness Laplacian Degree Betweenness Closeness Laplacian

n0 42 250.15 0.2538 0.2544 2 1 1 2

n1 29 33.80 0.2000 0.1725 5 8 8 5

n2 33 36.65 0.1964 0.2166 4 6 11 4

n3 18 1.33 0.1765 0.0965 8 18 17 10

...
...

...
...

...
...

...
...

...

n18 3 3.00 0.1875 0.0226 31 16 15 29

n19 5 127.07 0.2481 0.0331 25 3 3 23

n20 4 0.00 0.2037 0.0280 28 24 6 26

n21 4 0.00 0.1765 0.0246 28 24 17 27

n22 5 0.00 0.1587 0.0382 25 24 24 19

...
...

...
...

...
...

...
...

...

n31 21 66.33 0.2089 0.1310 6 4 4 6

n32 38 38.13 0.2000 0.2371 3 5 8 3

n33 48 209.50 0.2519 0.3067 1 2 2 1

Table: The scores and ranks based on four centrality measures for the Zachary’s
karate club network.
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Interpretations of Results

Code in Python to compute the Laplacian Centralities for nodes as
shown in the table. https://docs.google.com/a/aims.ac.za/

viewer?a=v&pid=sites&srcid=

YWltcy5hYy56YXxhcmNoaXZlfGd4OjcyYjZkNjJmN2ExNmI0YjQ

The Laplacian centrality agrees with the standard measures on
assignment of extremes (if we consider all edges of the network with
equal weights)
For all the other centralities mentioned earlier and the laplacian
centrality, both the administrator and Instructor scored highly.

There is a good positive correlation between the degree and the
laplacian centralities.
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Possible Extension of Laplacian Centrality

How the story will be with directed networks?

L = Dout − A

L =


2 −1 0 −1

0 1 −1 0

−1 0 1 0

0 0 −1 1


To begin with, the laplacian matrix of the directed network is not
symmetric. This perhaps brings in a twist in the whole story.
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Diffusion on networks

Diffusion is a process by which information, epidermic, viruses, and any
other behaviours spread over networks [?]. Take a simple undirected
connected network. Consider a quantity of substance φi (heat) at each
node i at time t. The diffusion of heat over the network is given by

dφi
dt

= C
∑
j

Aij(φj − φi ) (4)

In matrix notation,

dφ

dt
+ CLφ = 0, φ(0) = φ0 (5)

whose solution
φ(t) = φ0 e−CLt (6)
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Equilibrium behaviour

As time t goes to infinity, the equilibrium state is completely determined
by the kernel of L. The quantity of heat φj(t) at any node j at time t is
given by

lim
t→∞

φj(t) =
1

n

n∑
i=1

φi (0).

NOTE:
The structure of the network has no influence over the equilibrium value
but plays a role in influencing the rate at which diffusion occurs.
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Illustration of diffusion over a simple network

Suppose we assign to each node heat quantities given by
φ0 = [2, 0, 8, 0, 5, 0, 0, 0, 0, 0] in order node 1 to 10. Let C = 1.

(a) t = 0

(b) t = 1 (c) t = 2

(d) t = 5 (e) t = 7 (f) t = 9
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Diffusion on a Lattice

Animation: www.wikipedia.com/laplacian_matrix
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Summary

Overview of the Network theory approach to the study of complex
systems

Representation of Network by the Laplacian Matrix

Application of the Laplacian Matrix

Laplacian centrality for directed weighted networks

Possible extension of laplacian centrality to directed networks

Diffusion over networks based on direct interactions between connected
nodes

Consideration of non direct interactions in diffusion process on networks
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