LAPLACIAN MATRIX AND APPLICATIONS

Alice Nanyanzi

Supervisors: Dr. Franck Kalala Mutombo & Dr. Simukai Utete

alicenanyanzi@aims.ac.za

August 24, 2017
1 Complex systems & Complex Networks

2 Networks Overview

3 Laplacian Matrix
 - Laplacian Centrality
 - Diffusion on networks
Complex Systems; Complex Network/Large graph Approach

![Diagram of network mapping and understanding]

Mathematical Modelling
- Validation
- Mapping
- Understanding & Representation

- Adjacency Matrix
- Clustering Coefficient
- Average Path length
- Small world
- Degree distribution

Laplacian Matrix (L= D-A)
- Connected components
- Spanning trees
- Diffusion over Network
- Centrality

Alice Nanyanzi (AIMS-SU)
Whenever one mentions the word 'network', one normally thinks of an interconnection of items or things.
Intuition of Networks
Whenever one mentions the word ‘network’, one normally thinks of an interconnection of items or things.

Formal Definition
A network, G, is a pair (V, E). Where V is the set of vertices (nodes) of G and E is the set of edges (links) of G. (Estrada & Knight).
Categories of networks include simple networks, directed networks, undirected networks, weighted networks, etc (Estrada, 2015)
Real-world Networks

(a) Internet
(b) Protein-Protein
(c) Food web
(d) Citation network

Source: www.wikipedia.com
Consider a simple undirected network, the Laplacian matrix L is the difference between the Degree matrix D and Adjacency matrix A, i.e., $L = D - A$. The entries of L are given as

$$L_{i,j} = \begin{cases} k_i & \text{if } i = j \\ -1 & \text{if } i \neq j \text{ and } i \text{ is adjacent to } j \\ 0 & \text{otherwise,} \end{cases}$$

where k_i denotes the degree of node i (Estrada, 2011).
Spectrum of the Laplacian Matrix

Spectrum

Spectrum of a matrix is a set eigenvalues and their multiplicities. Let λ_i denote the eigenvalues of the Laplacian matrix. Considering the nondecreasing order: $\lambda_n \geq \lambda_{n-1} \geq \cdots \geq \lambda_2 \geq \lambda_1 = 0$
Spectrum of the Laplacian Matrix

Spectrum

Spectrum of a matrix is a set eigenvalues and their multiplicities. Let λ_i denote the eigenvalues of the Laplacian matrix. Considering the nondecreasing order: $\lambda_n \geq \lambda_{n-1} \geq \cdots \geq \lambda_2 \geq \lambda_1 = 0$

Insights from spectrum

- The multiplicity of 0 as an eigenvalue of L is equal to the number of connected components in the network.
- A network, G, is connected if its second smallest eigenvalue is nonzero. That is, $\lambda_2 > 0$ if and only if G is connected. The eigenvalue λ_2 is thus called the algebraic connectivity of a network, $a(G)$ (Estrada, 2011).
Applications of Laplacian Matrix

- Centrality measure
- Diffusion on network
- Consensus in multi-agent systems
- Synchronization
In networks, centrality is the measure how important/central a node is, in the network (Newman, 2010). There exists various measures such as:

- **Degree centrality**: Power through links
- **Closeness centrality**: Power through proximity to others
- **Betweenness centrality**: Ability to act as a bridge
- **Eigenvector centrality**: Improvement in degree centrality
- **Subgraph centrality**: Participation of a node in subgraphs in network
- **Laplacian centrality**: Impact of deactivation of a node from the network.
In networks, centrality is the measure how important/central a node is, in the network (Newman, 2010). There exists various measures such as:

- **Degree centrality**: Power through links
In networks, centrality is the measure how important/central a node is, in the network (Newman, 2010). There exists various measures such as:

- **Degree centrality**: Power through links
- **Closeness centrality**: Power through proximity to others
Centrality Measures

In networks, centrality is the measure how important/central a node is, in the network (Newman, 2010). There exists various measures such as:

- Degree centrality: Power through links
- Closeness centrality: Power through proximity to others
- Betweenness centrality: Ability to act as a bridge
In networks, centrality is the measure how important/central a node is, in the network (Newman, 2010). There exists various measures such as:

- **Degree centrality**: Power through links
- **Closeness centrality**: Power through proximity to others
- **Betweenness centrality**: Ability to act as a bridge
- **Eigenvector centrality**: Improvement in degree centrality
In networks, centrality is the measure how important/central a node is, in the network (Newman, 2010). There exists various measures such as:

- **Degree centrality**: Power through links
- **Closeness centrality**: Power through proximity to others
- **Betweenness centrality**: Ability to act as a bridge
- **Eigenvector centrality**: Improvement in degree centrality
- **Subgraph centrality**: Participation of a node in subgraphs in network
In networks, centrality is the measure how important/central a node is, in the network (Newman, 2010). There exists various measures such as:

- **Degree centrality**: Power through links
- **Closeness centrality**: Power through proximity to others
- **Betweenness centrality**: Ability to act as a bridge
- **Eigenvector centrality**: Improvement in degree centrality
- **Subgraph centrality**: Participation of a node in subgraphs in network
- **Laplacian centrality**: Impact of deactivation of a node from the network.
Laplacian Centrality

- Work presented is based on the paper: Laplacian centrality: A new centrality measure for weighted networks by Qi et al., 2012.

Motivation

- The growing need for centrality measures for weighted networks since these networks contain rich information (Qi et al., 2012).
Laplacian Centrality

- Work presented is based on the paper: Laplacian centrality: A new centrality measure for weighted networks by Qi et al., 2012.

Motivation

- The growing need for centrality measures for weighted networks since these networks contain rich information (Qi et al., 2012).
- Standard centrality measures (degree, closeness, betweenness) have been extended to cater for weighted networks, however, these measures either capture the local or global characterisation of networks (T.Opsahl '2009, Newman '2001, A.Barrat '2004, U.Brandes '2001).
Laplacian Centrality

- Work presented is based on the paper: Laplacian centrality: A new centrality measure for weighted networks by Qi et al., 2012.

Motivation

- The growing need for centrality measures for weighted networks since these networks contain rich information (Qi et al., 2012).

- Standard centrality measures (degree, closeness, betweenness) have been extended to cater for weighted networks, however, these measures either capture the local or global characterisation of networks (T.Opsahl '2009, Newman '2001, A.Barrat '2004, U.Brandes '2001).

- The Laplacian centrality is a measure between local and global (i.e intermediate) characterisation of the centrality of a node.
The importance of a node is determined by the ability of the network to respond to the deactivation of the node from the network. The response is quantified by the relative drop in Laplacian energy (E_L) of the network (Qi et al., 2012).

\[
E_L(G) = \sum_{i=1}^{n} \lambda_i^2 = \sum_{i=1}^{n} x_i^2 + 2 \sum_{i<j} w_{i,j}^2, \tag{1}
\]

where $x_i's$ are vertex sums and $w_{i,j}$ are weights of edges between vertices i and j (Qi et al., 2012).
Mathematically, Laplacian centrality for a node i in network G is given by (Qi et al., 2012)

$$C_L(v_i, G) = \frac{(\Delta E)_i}{E_L(G)} = \frac{E_L(G) - E_L(G_i)}{E_L(G)},$$ \hspace{1cm} (2)$$

where

$E_L(G)$ - Laplacian energy of network G.

$E_L(G_i)$ - Laplacian energy of network G on removal of node i
Expressing Equation 2 in terms of 2-walks of the node i gives

$$(\Delta E)_i = 2 \cdot NW^M_2(v_i) + 2 \cdot NW^E_2(v_i) + 4 \cdot NW^C_2(v_i), \quad (3)$$

where $NW^C_2(v_i)$, $NW^E_2(v_i)$, and $NW^M_2(v_i)$ are closed 2-walks containing vertex v_i, non-closed 2-walks with vertex v_i as one of the end points and non-closed 2-walks with vertex v_i as the middle point (Qi et al., 2012).

Figure: 2-walks at node v
Zachary’s Karate Network

- **The Zachary’s Karate Network** was created from a dataset formed by observation of 34 members of a karate club over two years. Misunderstandings within the group led to a split into two groups, one led by the Administrator (1) and the other by the instructor (34).

- Nodes represent players in both groups while edges represent interactions outside karate activities.

- The weights on the edges correspond to different aspects of interactions between players.

- Database Source: http://nexus.igraph.org/api/dataset_info?id=1&format=html
Centrality rankings of the Zachary’s Karate network

<table>
<thead>
<tr>
<th>Node</th>
<th>Degree</th>
<th>Betweenness</th>
<th>Closeness</th>
<th>Laplacian</th>
<th>Degree</th>
<th>Betweenness</th>
<th>Closeness</th>
<th>Laplacian</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_0</td>
<td>42</td>
<td>250.15</td>
<td>0.2538</td>
<td>0.2544</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>n_1</td>
<td>29</td>
<td>33.80</td>
<td>0.2000</td>
<td>0.1725</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>n_2</td>
<td>33</td>
<td>36.65</td>
<td>0.1964</td>
<td>0.2166</td>
<td>4</td>
<td>6</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>n_3</td>
<td>18</td>
<td>1.33</td>
<td>0.1765</td>
<td>0.0965</td>
<td>8</td>
<td>18</td>
<td>17</td>
<td>10</td>
</tr>
<tr>
<td>n_{18}</td>
<td>3</td>
<td>3.00</td>
<td>0.1875</td>
<td>0.0226</td>
<td>31</td>
<td>16</td>
<td>15</td>
<td>29</td>
</tr>
<tr>
<td>n_{19}</td>
<td>5</td>
<td>127.07</td>
<td>0.2481</td>
<td>0.0331</td>
<td>25</td>
<td>3</td>
<td>3</td>
<td>23</td>
</tr>
<tr>
<td>n_{20}</td>
<td>4</td>
<td>0.00</td>
<td>0.2037</td>
<td>0.0280</td>
<td>28</td>
<td>24</td>
<td>6</td>
<td>26</td>
</tr>
<tr>
<td>n_{21}</td>
<td>4</td>
<td>0.00</td>
<td>0.1765</td>
<td>0.0246</td>
<td>28</td>
<td>24</td>
<td>17</td>
<td>27</td>
</tr>
<tr>
<td>n_{22}</td>
<td>5</td>
<td>0.00</td>
<td>0.1587</td>
<td>0.0382</td>
<td>25</td>
<td>24</td>
<td>24</td>
<td>19</td>
</tr>
<tr>
<td>n_{31}</td>
<td>21</td>
<td>66.33</td>
<td>0.2089</td>
<td>0.1310</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>n_{32}</td>
<td>38</td>
<td>38.13</td>
<td>0.2000</td>
<td>0.2371</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>n_{33}</td>
<td>48</td>
<td>209.50</td>
<td>0.2519</td>
<td>0.3067</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Table: The scores and ranks based on four centrality measures for the Zachary’s karate club network.
Interpretations of Results

- Code in Python to compute the Laplacian Centralities for nodes as shown in the table. https://docs.google.com/a/aims.ac.za/viewer?a=v&pid=sites&srcid=YWlty5hYy56YXhcmNoaXZlfGd4OjcyYjZkNjJmN2ExNmI0YjQ
Interpretations of Results

- Code in Python to compute the Laplacian Centralities for nodes as shown in the table. https://docs.google.com/a/aims.ac.za/viewer?a=v&pid=sites&srcid=YW1tcy5hYy56YXxhcNoaXZlfGd40jcyYjZkNjJmN2ExNmI0YjQ

- The Laplacian centrality agrees with the standard measures on assignment of extremes (if we consider all edges of the network with equal weights)
Interpretations of Results

- Code in Python to compute the Laplacian Centralities for nodes as shown in the table. https://docs.google.com/a/aims.ac.za/viewer?a=v&pid=sites&srcid=YWltcy5hYy56YXxhcmNoaXZlfGd4OjcyYjZkNjJmN2ExNmI0YjQ

- The Laplacian centrality agrees with the standard measures on assignment of extremes (if we consider all edges of the network with equal weights)

- For all the other centralities mentioned earlier and the laplacian centrality, both the administrator and Instructor scored highly.
Interpretations of Results

- Code in Python to compute the Laplacian Centralities for nodes as shown in the table. https://docs.google.com/a/aims.ac.za/viewer?a=v&pid=sites&srcid=YWltcy5hYy56YXxhcmNoaXZlfGd4OjcyYjZkNjJmN2ExNmlI0YjQ

- The Laplacian centrality agrees with the standard measures on assignment of extremes (if we consider all edges of the network with equal weights)

- For all the other centralities mentioned earlier and the laplacian centrality, both the administrator and Instructor scored highly.

- There is a good positive correlation between the degree and the laplacian centralities.
Possible Extension of Laplacian Centrality

How the story will be with directed networks?

To begin with, the laplacian matrix of the directed network is not symmetric. This perhaps brings in a twist in the whole story.

\[L = D_{out} - A \]

\[
\begin{pmatrix}
2 & -1 & 0 & -1 \\
0 & 1 & -1 & 0 \\
-1 & 0 & 1 & 0 \\
0 & 0 & -1 & 1
\end{pmatrix}
\]
Diffusion is a process by which information, epidermic, viruses, and any other behaviours spread over networks [?]. Take a simple undirected connected network. Consider a quantity of substance ϕ_i (heat) at each node i at time t. The diffusion of heat over the network is given by

$$\frac{d\phi_i}{dt} = C \sum_j A_{ij}(\phi_j - \phi_i)$$ \hspace{1cm} (4)

In matrix notation,

$$\frac{d\phi}{dt} + C L \phi = 0, \quad \phi(0) = \phi_0$$ \hspace{1cm} (5)

whose solution

$$\phi(t) = \phi_0 \ e^{-CLt}$$ \hspace{1cm} (6)
As time t goes to infinity, the equilibrium state is completely determined by the \textbf{kernel of L}. The quantity of heat $\phi_j(t)$ at any node j at time t is given by

$$\lim_{t \to \infty} \phi_j(t) = \frac{1}{n} \sum_{i=1}^{n} \phi_i(0).$$

\textbf{NOTE:}

The structure of the network has no influence over the equilibrium value but plays a role in influencing the rate at which diffusion occurs.
Illustration of diffusion over a simple network

Suppose we assign to each node heat quantities given by
\[\phi_0 = [2, 0, 8, 0, 5, 0, 0, 0, 0, 0] \] in order node 1 to 10. Let \(C = 1 \).

(a) \(t = 0 \)
Illustration of diffusion over a simple network

Suppose we assign to each node heat quantities given by
\[\phi_0 = [2, 0, 8, 0, 5, 0, 0, 0, 0, 0] \text{ in order node 1 to 10.} \text{ Let } C = 1. \]

![Diagram](image-url)

(a) \(t = 0 \)
(b) \(t = 1 \)
Suppose we assign to each node heat quantities given by
\(\phi_0 = [2, 0, 8, 0, 5, 0, 0, 0, 0, 0] \) in order node 1 to 10. Let \(C = 1 \).

(a) \(t = 0 \)

(b) \(t = 1 \)

(c) \(t = 2 \)
Illustration of diffusion over a simple network

Suppose we assign to each node heat quantities given by
\(\phi_0 = [2, 0, 8, 0, 5, 0, 0, 0, 0, 0] \) in order node 1 to 10. Let \(C = 1 \).

\[
\begin{align*}
(a) \quad t &= 0 \\
(b) \quad t &= 1 \\
(c) \quad t &= 2 \\
(d) \quad t &= 5
\end{align*}
\]
Illustration of diffusion over a simple network

Suppose we assign to each node heat quantities given by

\[\phi_0 = [2, 0, 8, 0, 5, 0, 0, 0, 0, 0] \]

in order node 1 to 10. Let \(C = 1 \).

(a) \(t = 0 \)

(b) \(t = 1 \)

(c) \(t = 2 \)

(d) \(t = 5 \)

(e) \(t = 7 \)
Suppose we assign to each node heat quantities given by
\[\phi_0 = [2, 0, 8, 0, 5, 0, 0, 0, 0, 0] \] in order node 1 to 10. Let \(C = 1 \).

Illustration of diffusion over a simple network

(a) \(t = 0 \)
(b) \(t = 1 \)
(c) \(t = 2 \)
(d) \(t = 5 \)
(e) \(t = 7 \)
(f) \(t = 9 \)
Diffusion on a Lattice

Animation: www.wikipedia.com/laplacian_matrix
Summary

- Overview of the Network theory approach to the study of complex systems
- Representation of Network by the Laplacian Matrix
- Application of the Laplacian Matrix
 - Laplacian centrality for directed weighted networks
 - Possible extension of laplacian centrality to directed networks
 - Diffusion over networks based on direct interactions between connected nodes
 - Consideration of non direct interactions in diffusion process on networks
DANKE SCHÖN