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• response    :  weighted, 
directed, from actor i to j  

• covariates    :  individual or 
pairwise attributes  

• Model linear relationship of 
covariates and response

Network regression

yij = x

T
ij� + ⇠ij

Y = X� + ⇠ 2 Rn(n�1)

Y

X



Network regression

Motivation 

• International Trade Data (Westveld and Hoff, 2011) 

• Informal Risk-Sharing Networks (Fafchamps and 
Gubert 2007,  Attansio et al 2012,  Banerjee et al 2013) 

• International Militarized Disputes (Russett and Oneal 
2011) 

• Friendship Networks (Goodreau et al 2009, Wimmer 
and Lewis 2010) 

• Speed Dating Networks (Fisman et al 2006) 



Network regression

yij = x

T
ij� + ⇠ij

• response Y:  weighted, 
directed, from actor i to j  

• covariates X:  individual or 
pairwise attributes Y = X� + ⇠ 2 Rn(n�1)



• Goal:  inference about 

• point estimates 

• uncertainty estimate 

•      highly structured error 

• i.e.         and         share a node, expect correlation 

Network regression

yij = x

T
ij� + ⇠ij
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Linear Regression

• Recall Ordinary Least Squares 

•      is  (n2 - n)  x  p matrix of covariates 

•     and      are  (n2 - n)  vectors of relations and errors 

• For inference on    , need an estimate of 

b� = argmin� ||Y �X�||22 = (XTX)�1XTY

⌃

⇠Y

X

b�

V ar(b�|X) = (XTX)�1XT⌃X(XTX)�1

⌃ = V ar(Y |X) = V ar(⇠)



Linear Regression

• Recall normal likelihood 

•      is  (n2 - n)  x  p matrix of covariates 

•     and      are  (n2 - n)  vectors of relations and errors 

• For inference on    , need a model for ⌃

⇠Y

X

b�

⌃ = V ar(Y |X) = V ar(⇠)

`(Y |�,⌃) / �1

2
log(|⌃|)� 1

2
⇠T⌃�1⇠



Dyadic Clustering

• Fafchamps and Gubert 2007  

• Non-parametric approach 

• Estimate every nonzero entry in  

• Plug-in estimator 

⌃ = V ar(Y |X) = V ar(⇠)

V ar(b�|X) = (XTX)�1XT⌃X(XTX)�1



Dyadic Clustering

• Assumes that non-overlapping pairs independent 

d
Cov(⇠BA, ⇠CD) = 0



Dyadic Clustering

• Model nonzero entries in      products of OLS residuals ⌃

d
Cov(⇠BA, ⇠AC) = eBAeAC

eAB := yAB � x

T
ij
b�



Dyadic Clustering

b⌃DC =

n(n� 1)⇥ n(n� 1)



Dyadic Clustering

• Issues: 

• More estimates than data points,  

• No sharing of information 

• Singular with probability 1 

• Can we add a reasonable assumption to improve the 
estimate? 

O(n3) > O(n2)



Exchangeability

• Intuition:  Node labeling on errors uninformative 

•      jointly exchangeable if, for any permutation       , 

(akin to homogenous variance assumption) 

• Many network models are exchangeable: e.g. latent space, 
stochastic block, etc. 

P ({⇠ij : i 6= j, 1  i, j  n}) = P
�
{⇠⇡(i)⇡(j) : i 6= j, 1  i, j  n}

�

⇠ ⇡(.)



Exchangeability

=P

Original Permuted⇠ ⇠

 = Swap B and D⇡({A,B,C,D})



Exchangeability

• Major contribution:  Prove covariance matrix of jointly 
exchangeable vector     has 5 covariances and 1 variance 

• Regardless of 

⇠

n



Exchangeability



Exchangeable estimator

• Maintain independence assumption from DC 

• Pool across all relations to estimate 5 nonzero terms in 

• i.e. 1 variance and 4 covariances 

• Estimate      ,       with mean of products of OLS residuals 

• Projection of          onto subspace of exchangeable 
covariance matrices

Cov(⇠ij , ⇠kl) = 0 when {i, j} \ {k, l} = ?

b⌃E

b�2 b�i

b⌃DC



Exchangeable estimator

• Adds assumption of joint exchangeability of     to DC estimator 

• Shares information: should see reduced variability 

• Should see improved performance when assumption is reasonable 

• Covariates explain all variability except for exchangeable 
structure 

• Heterogeneities small relative to variability across 5 parameters 

• Subsumes ALL exchangeable networks modeled with random 
effects, such as Latent Factor Model of Hoff (2005, 2007) 

• Fast, direct estimation of covariance matrices

⇠



Latent Factor Model of Hoff (2005)

• Issues: 

• Parametric model 

• Random effects model 

• May be slow to estimate 

⇠ij = ai + bj + �(ij) + zTi zj + ✏ij



Simulation study

• Generate data for networks of size n 

• Estimate coefficients using OLS  

• Estimate standard errors with exchangeable,  dyadic 
clustering, and heteroskedasticity consistent estimators 

  
yij = �1 + �21i1j + �3|x3i � x3j |+ �4x4ij + ⇠ij

1i ⇠iid Bernoulli(1/2)

x3i, x4ij ⇠iid N(0, 1)



IID Errors

Probability true coefficient pertaining to each covariate is in 
95% confidence interval 

1i1j |x3i � x3j | x4ij



Exchangeable Errors

1i1j |x3i � x3j | x4ij

Probability true coefficient pertaining to each covariate is in 
95% confidence interval 



Nonexchangeable Errors

1i1j |x3i � x3j | x4ij

Probability true coefficient pertaining to each covariate is in 
95% confidence interval 



Theoretical Results

• Theorem:  OLS is consistent and asymptotically normal 
under exchangeable error structure. 

p
n(b� � �)

d�! N(0, V0)

V0 = (�b + �c + 2�d)E[xjkx
T
jk]

�1



Theoretical Results

• Theorem:  Exchangeable estimator is consistent. 

p
n(bVE � V ar(�))

p�! 0

bVE := (XTX)�1XT b⌃EX(XTX)�1



Theoretical Results

• Theorem:  The bias of the exchangeable estimator is less 
than that of the dyadic clustering estimator (for centered 
simple linear regression).  

bVDC := (XTX)�1XT b⌃DCX(XTX)�1

|Bias(bVDC)|
|Bias(bVE)|

� 1



Theoretical Results

(Previously discussed) 

• Theorem:  Covariance matrix of exchangeable errors has at most 6 unique terms. 

• Theorem:  Dyadic Clustering estimate of covariance matrix of the errors is singular 
with probability 1. 

(Still to prove) 

• Conjecture:  Exchangeable estimate of covariance matrix of errors is invertible 
with probability 1. 

• Conjecture:  Precision matrix of exchangeable errors has at most 6 unique terms 
in the same pattern! (leads to 6x6 inversion regardless of     ) 

• Conjecture:  Exchangeable estimator is asymptotically efficient for normally-
distributed exchangeable errors.   

n



International trade example

• 25 countries over 20 years 

• “gravity model” of trade 

• 8 covariates 

• Nodal 

• Edge 

• Fit with Iteratively-reweighted least squares/GEE 

• Working covariance has 10 terms 

•  5 at same time, 5 at different times



International trade example

• Westveld and Hoff fit Bayesian regression model 

• Stationary working covariance model 

• Appx 30 parameters 

• Complex hierarchical model with many modeling 
decisions



International trade example
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International trade example



International trade example



Summary

• Dyadic clustering approach may be noisy 

• Exchangeable covariance matrix 

• 6 unique terms, one of which we assume is zero 

• Many common network models are jointly exchangeable 

• i.e. Latent Factor Model of Hoff (2005) 

• Estimates of             based on exchangeable error structure 
perform well 

• simulations and trade data

se{b�}



Future work

• Prove conjectures 

• Extend approach to binary data 

• Test for exchangeability 

• Principled extensions to heterogeneous cases 



Thank you!

Frank Marrs 

Colorado State University 

frank.marrs@colostate.edu 

http://www.stat.colostate.edu/~marrs 
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Simulation study

• Error structures: 

1. IID errors 

2. Exchangeable errors (latent distance model of Hoff) 

3. Non-exchangeable error structure 

• 1,000 error draws for each of 500 X draws 

• Fit OLS and estimate standard errors using DC, E 
estimators 



Standard error comparison - IID errors
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Standard error comparison - EXCH errors
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Standard error comparison - Non-exch. errors
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