Uncertainty quantification for network regression

Frank W. Marrs
Colorado State University
frank.marrs@colostate.edu
Collaborators

Bailey K. Fosdick
Colorado State University

Tyler H. McCormick
University of Washington
Network regression

- response Y: **weighted, directed**, from actor i to j
- covariates X: individual or pairwise attributes
- Model linear relationship of covariates and response

\[
y_{ij} = x_{ij}^T \beta + \xi_{ij}
\]

\[
Y = X\beta + \xi \in \mathbb{R}^{n(n-1)}
\]
Network regression

Motivation

- **International Trade Data** (Westveld and Hoff, 2011)
- **Informal Risk-Sharing Networks** (Fafchamps and Gubert 2007, Attansio et al 2012, Banerjee et al 2013)
- **International Militarized Disputes** (Russett and Oneal 2011)
- **Friendship Networks** (Goodreau et al 2009, Wimmer and Lewis 2010)
- **Speed Dating Networks** (Fisman et al 2006)
Network regression

\[y_{ij} = x_{ij}^T \beta + \xi_{ij} \]

\[Y = X \beta + \xi \in \mathbb{R}^{n(n-1)} \]

- response \(Y \): **weighted**, **directed**, from actor \(i \) to \(j \)
- covariates \(X \): individual or pairwise attributes

\[
\begin{array}{cccc}
A & B & C & D \\
A & y_{AB} & y_{AC} & y_{AD} \\
B & y_{BA} & y_{BC} & y_{BD} \\
C & y_{CA} & y_{CB} & y_{CD} \\
D & y_{DA} & y_{DB} & y_{DC} \\
\end{array}
\]

\[
Y = \begin{bmatrix} y_{BA} \\ y_{CA} \\ \cdots \\ y_{CD} \end{bmatrix}, \quad X = \begin{bmatrix} x_{BA}^T \\ x_{CA}^T \\ \cdots \\ x_{CD}^T \end{bmatrix}
\]
Goal: inference about β

- point estimates ($\hat{\beta}$)
- uncertainty estimate ($\hat{\beta} \pm \hat{\text{se}}\{\hat{\beta}\}$)

ξ_{ij} highly structured error

i.e. ξ_{ij} and ξ_{ik} share a node, expect correlation
Linear Regression

• Recall Ordinary Least Squares

\[\hat{\beta} = \operatorname{argmin}_\beta \| Y - X\beta \|^2_2 = (X^T X)^{-1} X^T Y \]

\[\operatorname{Var}(\hat{\beta}|X) = (X^T X)^{-1} X^T \Sigma X (X^T X)^{-1} \]

\[\Sigma = \operatorname{Var}(Y|X) = \operatorname{Var}(\xi) \]

• X is $(n^2 - n) \times p$ matrix of covariates

• Y and ξ are $(n^2 - n)$ vectors of relations and errors

• For inference on $\hat{\beta}$, need an estimate of Σ
Linear Regression

• Recall normal likelihood

\[
\ell(Y|\beta, \Sigma) \propto -\frac{1}{2} \log(|\Sigma|) - \frac{1}{2} \xi^T \Sigma^{-1} \xi
\]

\[
\Sigma = \text{Var}(Y|X) = \text{Var}(\xi)
\]

• \(X\) is \((n^2 - n) \times p\) matrix of covariates

• \(Y\) and \(\xi\) are \((n^2 - n)\) vectors of relations and errors

• For inference on \(\widehat{\beta}\), need a model for \(\Sigma\)
Dyadic Clustering

- Fafchamps and Gubert 2007
- Non-parametric approach
- Estimate every nonzero entry in

\[\Sigma = \text{Var}(Y|X) = \text{Var}(\xi) \]

- Plug-in estimator

\[\text{Var}(\hat{\beta}|X) = (X^T X)^{-1} X^T \Sigma X (X^T X)^{-1} \]
Dyadic Clustering

- Assumes that non-overlapping pairs independent

\[
\hat{\xi} = \begin{array}{cccc}
A & B & C & D \\
A & \xi_{AB} & \xi_{AC} & \xi_{AD} \\
B & \xi_{BA} & \xi_{BC} & \xi_{BD} \\
C & \xi_{CA} & \xi_{CB} & \xi_{CD} \\
D & \xi_{DA} & \xi_{DB} & \xi_{DC} \\
\end{array}
\]

\[
\text{Cov}(\xi_{BA}, \xi_{CD}) = 0
\]
Dyadic Clustering

- Model nonzero entries in \sum products of OLS residuals

\[\xi = \begin{array}{cccc}
A & B & C & D \\
A & \xi_{AB} & \xi_{AC} & \xi_{AD} \\
B & \xi_{BA} & \xi_{BC} & \xi_{BD} \\
C & \xi_{CA} & \xi_{CB} & \xi_{CD} \\
D & \xi_{DA} & \xi_{DB} & \xi_{DC} \\
\end{array} \]

\[\hat{\text{Cov}}(\xi_{BA}, \xi_{AC}) = e_{BA}e_{AC} \]

\[e_{AB} := y_{AB} - x_{ij}^T\hat{\beta} \]
Dyadic Clustering

\[\sum_{DC} = n(n - 1) \times n(n - 1) \]
Dyadic Clustering

• **Issues:**

 • More estimates than data points, \(O(n^3) > O(n^2) \)

 • No sharing of information

 • Singular with probability 1

 • Can we add a reasonable assumption to improve the estimate?
Exchangeability

- **Intuition:** Node labeling on errors uninformative

- **ξ jointly exchangeable** if, for any permutation $\pi(.)$,

 $$\mathbb{P}(\{\xi_{ij} : i \neq j, 1 \leq i, j \leq n\}) = \mathbb{P}(\{\xi_{\pi(i)\pi(j)} : i \neq j, 1 \leq i, j \leq n\})$$

 (akin to homogenous variance assumption)

- Many network models are exchangeable: e.g. latent space, stochastic block, etc.
Exchangeability

\[\pi(\{A, B, C, D\}) = \text{Swap } B \text{ and } D \]
Exchangeability

- **Major contribution**: Prove covariance matrix of jointly exchangeable vector ξ has 5 covariances and 1 variance.

- Regardless of n
Exchangeability

<table>
<thead>
<tr>
<th>ξ_{BA}</th>
<th>ξ_{CA}</th>
<th>ξ_{DA}</th>
<th>ξ_{AB}</th>
<th>ξ_{CB}</th>
<th>ξ_{DB}</th>
<th>ξ_{AC}</th>
<th>ξ_{BC}</th>
<th>ξ_{AB}</th>
<th>ξ_{CD}</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ^2</td>
<td>φ_b</td>
<td>φ_b</td>
<td>φ_a</td>
<td>φ_d</td>
<td>φ_d</td>
<td>φ_b</td>
<td>φ_c</td>
<td>φ_d</td>
<td>φ_c</td>
</tr>
<tr>
<td>φ_b</td>
<td>σ^2</td>
<td>φ_b</td>
<td>φ_d</td>
<td>φ_c</td>
<td>φ_d</td>
<td>φ_b</td>
<td>φ_d</td>
<td>φ_d</td>
<td>φ_c</td>
</tr>
<tr>
<td>φ_b</td>
<td>φ_b</td>
<td>σ^2</td>
<td>φ_d</td>
<td>φ_c</td>
<td>φ_d</td>
<td>φ_b</td>
<td>φ_d</td>
<td>φ_d</td>
<td>φ_c</td>
</tr>
<tr>
<td>φ_a</td>
<td>φ_d</td>
<td>φ_d</td>
<td>σ^2</td>
<td>φ_b</td>
<td>φ_b</td>
<td>φ_c</td>
<td>φ_d</td>
<td>φ_c</td>
<td>φ_d</td>
</tr>
<tr>
<td>φ_d</td>
<td>φ_c</td>
<td>φ_b</td>
<td>φ_b</td>
<td>σ^2</td>
<td>φ_d</td>
<td>φ_a</td>
<td>φ_d</td>
<td>φ_d</td>
<td>φ_c</td>
</tr>
<tr>
<td>φ_d</td>
<td>φ_b</td>
<td>φ_b</td>
<td>φ_c</td>
<td>φ_d</td>
<td>σ^2</td>
<td>φ_b</td>
<td>φ_b</td>
<td>φ_c</td>
<td>φ_d</td>
</tr>
<tr>
<td>φ_d</td>
<td>φ_a</td>
<td>φ_d</td>
<td>φ_c</td>
<td>φ_d</td>
<td>φ_b</td>
<td>σ^2</td>
<td>φ_d</td>
<td>φ_b</td>
<td>φ_b</td>
</tr>
<tr>
<td>φ_d</td>
<td>φ_b</td>
<td>φ_d</td>
<td>φ_d</td>
<td>φ_b</td>
<td>φ_b</td>
<td>φ_b</td>
<td>σ^2</td>
<td>φ_d</td>
<td>φ_b</td>
</tr>
<tr>
<td>φ_d</td>
<td>φ_d</td>
<td>φ_a</td>
<td>φ_c</td>
<td>φ_d</td>
<td>φ_c</td>
<td>φ_d</td>
<td>φ_d</td>
<td>σ^2</td>
<td>φ_b</td>
</tr>
<tr>
<td>φ_d</td>
<td>φ_a</td>
<td>φ_a</td>
<td>φ_b</td>
<td>φ_d</td>
<td>φ_c</td>
<td>φ_d</td>
<td>φ_d</td>
<td>φ_d</td>
<td>φ_b</td>
</tr>
<tr>
<td>φ_d</td>
<td>φ_b</td>
<td>φ_b</td>
<td>φ_d</td>
<td>φ_d</td>
<td>φ_b</td>
<td>φ_b</td>
<td>φ_b</td>
<td>φ_b</td>
<td>σ^2</td>
</tr>
</tbody>
</table>
Exchangeable estimator

- Maintain independence assumption from DC

\[\text{Cov}(\xi_{ij}, \xi_{kl}) = 0 \text{ when } \{i, j\} \cap \{k, l\} = \emptyset \]

- Pool across all relations to estimate 5 nonzero terms in \(\hat{\Sigma}_E \)

- i.e. 1 variance and 4 covariances

- Estimate \(\hat{\sigma}^2, \hat{\phi}_i \) with mean of products of OLS residuals

- Projection of \(\hat{\Sigma}_{DC} \) onto subspace of exchangeable covariance matrices
Exchangeable estimator

- Adds assumption of joint exchangeability of ξ to DC estimator
- Shares information: should see reduced variability
- Should see improved performance when assumption is reasonable
 - Covariates explain all variability except for exchangeable structure
 - Heterogeneities small relative to variability across 5 parameters
- Subsumes ALL exchangeable networks modeled with random effects, such as Latent Factor Model of Hoff (2005, 2007)
- Fast, direct estimation of covariance matrices
Latent Factor Model of Hoff (2005)

\[
\xi_{ij} = a_i + b_j + \gamma(i, j) + z_i^T z_j + \epsilon_{ij}
\]

• **Issues:**

 • Parametric model
 • Random effects model
 • May be slow to estimate
Simulation study

• Generate data for networks of size n

• Estimate coefficients using OLS

• Estimate standard errors with exchangeable, dyadic clustering, and heteroskedasticity consistent estimators

\[y_{ij} = \beta_1 + \beta_2 1_i 1_j + \beta_3 |x_{3i} - x_{3j}| + \beta_4 x_{4ij} + \xi_{ij} \]

\[1_i \sim iid \text{ Bernoulli}(1/2) \]

\[x_{3i}, x_{4ij} \sim iid \text{ N}(0, 1) \]
IID Errors

Probability true coefficient pertaining to each covariate is in 95% confidence interval
Exchangeable Errors

\[1_i 1_j \quad |x_{3i} - x_{3j}| \quad x_{4ij} \]

Probability true coefficient pertaining to each covariate is in 95% confidence interval.
Nonexchangeable Errors

\[1_i 1_j \quad \left| x_{3i} - x_{3j} \right| \quad x_{4ij} \]

Probability true coefficient pertaining to each covariate is in 95% confidence interval
Theoretical Results

- **Theorem**: OLS is consistent and asymptotically normal under exchangeable error structure.

\[\sqrt{n}(\hat{\beta} - \beta) \xrightarrow{d} N(0, V_0) \]

\[V_0 = (\phi_b + \phi_c + 2\phi_d)E[x_{jk}x_{jk}^T]^{-1} \]
Theoretical Results

• **Theorem:** Exchangeable estimator is consistent.

\[
\sqrt{n} (\hat{V}_E - \text{Var}(\beta)) \xrightarrow{p} 0
\]

\[
\hat{V}_E := (X^T X)^{-1} X^T \hat{\Sigma} E X (X^T X)^{-1}
\]
Theoretical Results

- **Theorem:** The bias of the exchangeable estimator is less than that of the dyadic clustering estimator (for centered simple linear regression).

\[
\frac{|\text{Bias}(\hat{V}_{DC})|}{|\text{Bias}(\hat{V}_E)|} \geq 1
\]

\[
\hat{V}_{DC} := (X^TX)^{-1} X^T \hat{\Sigma}_{DC} X (X^TX)^{-1}
\]
(Previously discussed)

- **Theorem:** Covariance matrix of exchangeable errors has at most 6 unique terms.

- **Theorem:** Dyadic Clustering estimate of covariance matrix of the errors is singular with probability 1.

(Still to prove)

- **Conjecture:** Exchangeable estimate of covariance matrix of errors is invertible with probability 1.

- **Conjecture:** Precision matrix of exchangeable errors has at most 6 unique terms in the same pattern! (leads to 6x6 inversion regardless of \(n \))

- **Conjecture:** Exchangeable estimator is asymptotically efficient for normally-distributed exchangeable errors.
International trade example

- 25 countries over 20 years
- “gravity model” of trade
- 8 covariates
 - Nodal
 - Edge
- Fit with Iteratively-reweighted least squares/GEE
- Working covariance has 10 terms
 - 5 at same time, 5 at different times
International trade example

- Westveld and Hoff fit Bayesian regression model
- Stationary working covariance model
 - Appx 30 parameters
- Complex hierarchical model with many modeling decisions
International trade example

\[
\begin{array}{cccc}
 t = 1 & t = 2 & t = 3 & t = 4 \\
 \Omega_1 & \Omega_2 & \Omega_2 & \Omega_2 \\
 \Omega_2 & \Omega_1 & \Omega_2 & \Omega_2 \\
 \Omega_2 & \Omega_2 & \Omega_1 & \Omega_2 \\
 \Omega_2 & \Omega_2 & \Omega_2 & \Omega_1 \\
\end{array}
\]
International trade example
International trade example
Summary

- Dyadic clustering approach may be noisy
- Exchangeable covariance matrix
 - 6 unique terms, one of which we assume is zero
- Many common network models are jointly exchangeable
 - i.e. Latent Factor Model of Hoff (2005)
- Estimates of $\text{se}\{\hat{\beta}\}$ based on exchangeable error structure perform well
 - simulations and trade data
Future work

- Prove conjectures
- Extend approach to binary data
- Test for exchangeability
- Principled extensions to heterogeneous cases
Thank you!

Frank Marrs

Colorado State University

frank.marrs@colostate.edu

http://www.stat.colostate.edu/~marrs

Simulation study

- Error structures:
 1. IID errors
 2. Exchangeable errors (latent distance model of Hoff)
 3. Non-exchangeable error structure

- 1,000 error draws for each of 500 X draws

- Fit OLS and estimate standard errors using DC, E estimators
Standard error comparison - IID errors

$1_i 1_j$

$|x_{3i} - x_{3j}|$

x_{4ij}

Mean SE

- **Expected percent error, given X**
 - Number of actors: 20, 40, 80, 160, 320

sd(SE)

- **Standard deviation**
 - Number of actors: 20, 40, 80, 160, 320
Standard error comparison - EXCH errors

\[1_i 1_j \]

\[|x_{3i} - x_{3j}| \]

\[x_{4ij} \]

Mean SE

- Expected percent error, given X
 - Number of actors: 20, 40, 80, 160, 320
 - Graphs show comparison across different numbers of actors.

sd(SE)

- Standard deviation
 - Number of actors: 20, 40, 80, 160, 320
 - Graphs illustrate standard deviation with different colors indicating different clustering methods.

- Exchangeable
- Dyadic Clustering
- Heteroskedasticity−Consistent
Standard error comparison - Non-exch. errors

$1_i 1_j$

$|x_{3i} - x_{3j}|$

x_{4ij}

Mean SE

sd(SE)