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Introduction Definitions

Tree? Profile?

root
δ0

5δ1

6δ2

4δ3leaves

The profile of a tree τ is the probability measure

Πτ ∝ ∑
ν∈τ

δ
∣ν∣,

where the sum’s indices are the nodes ν of τ , and
∣ν∣ is the (graph) distance from ν to the root.
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Introduction The Catalan tree

Describing the “shape” of random trees

One famous example: the Catalan tree (or Galton-Watson tree)

Pick a tree Tn uniformly among all n-leaf binary trees.
What is its “typical shape” when n →∞?

Scaling limit: the CRT

[I. Kortchemski]

Local limit:

∞

i.i.d. critical
(binary) GW
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Introduction The Catalan tree

Describing the “shape” of random trees

One famous example: the Catalan tree (or Galton-Watson tree)

Pick a tree Tn uniformly among all n-leaf binary trees.
What is its “typical shape” when n →∞?

Profile: “local time of a Brownian excursion”

√
n

√
n

[Drmota & Gittenberger ’96]

Cv. of the profile in prob.

[J.-F. Marckert]
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Introduction The binary search tree

Another example: the BST

no scaling limit
local limit: full infinite binary tree
[Devroye ’86]

profile: almost surely

ΠBSTn(

√

2 log n ⋅ +2 log n) → N(0,1),

in the weak topology.
[Chauvin, Drmota, Jabbour-Hattab ’01]

ΠBSTn

2 log n

√
2 log n

(n large)
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Introduction The binary search tree

Another example: the BST

1/2 1/2
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Introduction The binary search tree

Another example: the BST

1/3 1/3

1/3

no scaling limit
local limit: full infinite binary tree
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Introduction The binary search tree

Another example: the BST

1/4 1/4
1/4

1/4

no scaling limit
local limit: full infinite binary tree
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Introduction Outline of the talk

Trailer of the talk

1 The random recursive tree and its profile seen as an
infinitely-many-colour Pólya urn. [with J.-F. Marckert]

2 The weighted random recursive tree and its profile as a tool to
study a “reinforced” random walk. [with G. Uribe-Bravo]

3 Preferential attachment trees and their profile: an exciting open
problem. [with T. Rogers]
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The random recursive tree Definition

The random recursive tree
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The random recursive tree Definition

The random recursive tree

n nodes
→ RRTn
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The random recursive tree Definition

The random recursive tree

n nodes
→ RRTn

The profile is a Pólya urn: at each
time-step, we

pick a ball (node) uniformly at
random, say, of colour (height) k
add a new ball (node) of colour
(height) k + 1.
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The random recursive tree Definition

The random recursive tree

n nodes
→ RRTn

The profile is a Pólya urn: at each
time-step, we

pick a ball (node) uniformly at
random, say, of colour (height) k
add a new ball (node) of colour
(height) k + 1.

There are infinitely-many colours!!

Don’t panick!
Proving convergence in probability of the profile of RRTn is actually the
key to a general theory of infinitely-many-colour Pólya urns.
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The random recursive tree Convergence in probability

Convergence in probability of the profile of RRTn

Theorem: [MM17]

When n goes to infinity, in probability

ΠRRTn(

√

log n ⋅ + log n) → N(0,1),

for the weak topology on the space of probability distributions.

Ideas of the proof:
Take Un a node taken uniformly at random in RRTn (cond. on
RRTn). It is easy to show that

∣Un∣ − log n
√

log n
⇒N(0,1), in distribution.

This only implies that E[ΠRRTn(

√

log n ⋅ + log n)] → N(0,1).
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The random recursive tree Convergence in probability

Convergence in probability of the profile of RRTn

Theorem: [MM17]

When n goes to infinity, in probability

ΠRRTn(

√

log n ⋅ + log n) → N(0,1),

for the weak topology on the space of probability distributions.

Ideas of the proof:
To prove the result, we need to take Un and Vn two independent
uniform nodes in RRTn (cond. on RRTn), and show that

⎛

⎝

∣Un∣ − log n
√

log n
,
∣Vn∣ − log n
√

log n

⎞

⎠

⇒ (Λ1,Λ2),

where Λ1 and Λ2 are two independent standard Gaussians.
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The random recursive tree Convergence in probability

Convergence in probability of the profile of RRTn

To prove the result, we need to take Un and Vn two independent
uniform nodes in RRTn (cond. on RRTn), and show that

⎛

⎝

∣Un∣ − log n
√

log n
,
∣Vn∣ − log n
√

log n

⎞

⎠

⇒ (Λ1,Λ2),

where Λ1 and Λ2 are two independent standard Gaussians.

Un

Vn

O(1)

log nlog n

The key arguments are

1 ∣Un ∧Vn∣ → G ∼ Geom(1/3)

2 given G, the subtrees rooted
at the two children of G

▸ are i.i.d. random recursive
trees and

▸ have linear size in n.
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The random recursive tree Convergence in probability

Convergence of the profile of RRTn

Theorem: [MM17]

When n goes to infinity, in probability

ΠRRTn(

√

log n ⋅ + log n) → N(0,1),

for the weak topology on the space of probability distributions.

Advertisement for [MM17]:
Actually, using different techniques, we can prove convergence
almost sure of the profile of the random recursive tree.
One can define infinitely-many-colour urns as branching Markov
chains on the random recursive tree.
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The “monkey” walk A model of “reinforced random walk”

A model of “reinforced random walk”

Take: [Boyer et al. ’14-’17]

a “step” distribution on Z, e.g. P(ξ = 1) = P(ξ = −1) = 1/2;
a “run-length” distribution on N, e.g. P(ω = k) = (1/2)k .

Let (ξn)n≥1, and (ωi)i≥1 be i.i.d. copies of ξ and ω.

time

position

local time

ω1
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The “monkey” walk A model of “reinforced random walk”

A model of “reinforced random walk”

Take: [Boyer et al. ’14-’17]

a “step” distribution on Z, e.g. P(ξ = 1) = P(ξ = −1) = 1/2;
a “run-length” distribution on N, e.g. P(ω = k) = (1/2)k .

Let (ξn)n≥1, and (ωi)i≥1 be i.i.d. copies of ξ and ω.

time

position

local time

ω1 ω2

ω3

ω4

relocations driven by local time

runs of the underlying simple random walk
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The “monkey” walk A model of “reinforced random walk”

The weighted random recursive tree (WRRT)

time

position

local time

ω1

µ1

µ1
ω1

0

1

2

Main idea: drawing a position according to ∑k
i=1 µk is the same as

1 drawing an integer Ik with probability P(Ik = i) ∝ ωi ;
2 and then draw a position according to µIk .
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The “monkey” walk A model of “reinforced random walk”

The weighted random recursive tree (WRRT)

time

position

local time

ω1

µ1

µ1
ω1

0

1

2

µ1

We couple the monkey walk with a (randomly) labelled WRRT: at every
time step, we

draw a node (say node number Ik ) of the WRRT at random with
probability proportional to the weights (ωi)i≥1;
we add a child to this node, we draw a position Xk according to
µIk , and label the new node by the local time measure of a random
walk starting at Xk and of length ωk .
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The “monkey” walk A model of “reinforced random walk”

The weighted random recursive tree (WRRT)

time

position

local time

ω1 ω2

µ2

∑
µi

µ1
ω1

0

1

2

µ1
ω1

µ2
ω2

−1

0

1

−2

−3

We couple the monkey walk with a (randomly) labelled WRRT: at every
time step, we

draw a node (say node number Ik ) of the WRRT at random with
probability proportional to the weights (ωi)i≥1;
we add a child to this node, we draw a position Xk according to
µIk , and label the new node by the local time measure of a random
walk starting at Xk and of length ωk .
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The “monkey” walk A model of “reinforced random walk”

A branching Markov chain

µ1

µ8µ7

µ6µ3

µ5

µ10

µ2 µ4

µ9

underlying tree = WRRT;

the labels are a branching Markov chain (on
the space of measures), i.e.

▸ the sequence of labels along each branch is
a Markov chain (all of the same Kernel);

▸ two distinct branches are independent after
they branch.

We are interested in ∑k
i=1 µi/∑

k
i=1 ωi which is

the local time of the monkey walk just before the k +1-th relocation
the distribution of the monkey walk at the k + 1-th relocation.

Understanding the Markov chain + the profile of the WRRT is enough
to understand ∑k

i=1 µi .
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The “monkey” walk A model of “reinforced random walk”

Result and conjecture

Theorem [MUB++]
Let (ωi)i≥1 be an i.i.d. sequence of weights of mean m and finite
variance. Let WRRTk be the k -node weighted random recursive tree
with weights (ωi)i≥1. Then, (ωi)i≥1-a.s., in probability when n →∞,

ΠWRRTk (

√

log n ⋅ + log n) → N(0,1).

Conjecture:
Let (Mn)n≥0 be the monkey walk. In distribution when n →∞,

Mn − c1 log n
√

c2 log n
⇒N(0,1).

Further: can we prove convergence as a process to, say, a Brownian
motion with random reinforced relocations?
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Preferential attachment trees

The preferential attachment tree - Barabási and Albert

At time 1, one node (the root).

At time n, add the nth node in
the tree: link it to a random
node chosen with probability
proportional to the degrees.
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Preferential attachment trees

The preferential attachment tree - Barabási and Albert

At time 1, one node (the root).

At time n, add the nth node in
the tree: link it to a random
node chosen with probability
proportional to the degrees.

Theorem [Katona ’05]
Almost surely when n →∞ (for the weak topology),

ΠBAn

⎛

⎝

√

log n
2

⋅ +
log n

2
⎞

⎠

→ N(0,1).
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Preferential attachment trees The preferential attachment tree - Bianconi & Barabási

The preferential attachment tree with fitnesses

Fix (Xn)n≥1 i.i.d. fitnesses.

At time 1, one node (the root).

At time n, add the nth node in
the tree: link it to a random
node chosen with probability
proportional to the degrees
times the fitnesses.
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Preferential attachment trees The preferential attachment tree - Bianconi & Barabási

The preferential attachment tree with fitnesses

X11

Fix (Xn)n≥1 i.i.d. fitnesses.

At time 1, one node (the root).

At time n, add the nth node in
the tree: link it to a random
node chosen with probability
proportional to the degrees
times the fitnesses.

Two competing dynamics: rich-gets-richer and fit-gets-richer.

Conjecture – the winner takes it all [Bianconi & Barabási]

lim inf
n→∞

max degree at time n
n

> 0 [see P. Mörters’ course]
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Preferential attachment trees The preferential attachment tree - Bianconi & Barabási

Condensation

µ = fitness distribution on [0,1] Xi = fitness of node νi (i.i.d.)

Empirical fitness distribution: Ξn =
1
n

n
∑

i=1
deg(νi)δXi .

Ξn converges (weakly) almost surely to

If (cond) fails:

0 1

(cond)

∫

1

0

dµ(x)
1 − x

< 2

If (cond) holds:

0 1

Conjecture:
In probability when n →∞ (for the weak topology):
if (cond) fails, then ΠBBn(

√

c log n ⋅ +c log n);
if (cond) holds, then ΠBBn(αn ⋅ +βn) → N(0,1) with αn, βn = o(log n).
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Concluding remarks

Conclusion

This talk in a nutshell:
The profile of a random tree is a way to describe its shape -
particularly useful when there is no scaling/local limit, typically for
“short fat” trees.
Proving convergence in probability is done by taking two nodes at
random in the tree and look at the joint distribution of their
respective heights. (Almost sure convergence is much harder.)
Convergence of the profile can be the first step towards studying
more intricate objects such as the infinitely-many-colour urns and
the monkey walk.
Many fun open problems such as the BB-tree profile convergence.

Thanks!!
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