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Outline

1 Background and motivation: Scaling limits at criticality.

2 Prerequisites: Gromov-Hausdorff convergence.
3 Starting point: Addario-Berry, Broutin, Goldschmidt results on Erdős-Rényiscaling limits.
4 3 major families of random graph models: known results and Sampling of our results.
5 Key principle 1: Dynamics and behavior after the barely subcritical regime.
6 Key principle 2: Blob-level picture: Universality for the multiplicative coalescent and Tilted

p-trees.
7 Key principle 3: Inter blob-distances and Blob-level averaging.
8 Case study: Configuration model.
9 Conclusion: extensions and open problems.
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All the work in this lecture joint with Nicolas Broutin, Sanchayan Sen and Xuan Wang. 



Heavy tails and Networks

Figure: CRTs and Inhomogeneous CRTs
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Minimal spanning tree (MST) and scaling limits

Consider a network model

Suppose each edge has a (random) edge length.
Consider the minimal spanning tree (MST). (Strong disorder) How does this object scale?
Precisely: suppose we view this tree as a metric space using graph distance. Does this tree
appropriately rescaled converge to a limiting object?
How do these depend on the degree distribution? Is there universality?

Predictions from Statistical Physics (Braunstein et al, 2006)

Phase transition at ⌧ = 4: When ⌧ > 4 distances scale like n1/3. When ⌧ 2 (3, 4) distances
scale like n(⌧�3)/(⌧�1).
Also predict universality: Results should hold for a wide array of random graph models.
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MST on the complete graph

MST on the complete graph on 100,000 vertices. Generated by Nicolas Broutin.
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MST on the complete graph and critical Erdős-Rényi random graphs

Kruskal’s algorithm

Setting: Complete graph with uniform [0, 1] iid edge weights. Let Mn denote MST.
Construction: Start with n isolated vertices. At each step, add unique edge of smallest
weight joining two distinct components. Stop when all vertices connected.

Erdős-Rényi random graph process

Start with n isolated vertices.
At each stage choose an edge at random and place it in the system.
Think for yourself: easy to couple Kruskal’s algorithm and Erdős-Rényirandom graph
process.
A giant component of MST present when cn/2 edges in the system (for any c > 1). Most of
the global structure of MST present at this stage.
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Fundamental finding of Addario-Berry, Broutin, Goldschmidt, Miermont
(ABGM)

MST and critical random graphs

Recall from Lecture 1 that the “critical scaling window” corresponds to edges of the sort
n/2 + �n2/3.
ABGM in 2013 showed that the MST on the complete graph looks like the maximal
component C(1)

n (�) “for large �”.

Deep result and novel ideas to make the above notion precise since obviously
|C(1)

n (�)|/n = (n�1/3
) so has a very small fraction of the eventual MST.

Conclusion
Thus another major motivation to study metric structure of the maximal components in the critical
regime.

Now “random objects” live in the space of compact metric spaces. So need proper notion of
metric so as to talk about weak convergence.
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Gromov-Hausdorff distance and weak convergence

Metric dGH

Fix two metric spaces X1 = (X1, d1) and X2 = (X2, d2). For subset C ✓ X1 ⇥X2, distortion of
C is defined as

dis(C) := sup {|d1(x1, y1)� d2(x2, y2)| : (x1, x2), (y1, y2) 2 C} . (0.1)

A correspondence C between X1 and X2 is a measurable subset of X1 ⇥X2 such that for every
x1 2 X1 there exists at least one x2 2 X2 such that (x1, x2) 2 C and vice-versa. The
Gromov-Hausdorff distance between the two metric spaces (X1, d1) and (X2, d2) is defined as

dGH(X1, X2) =
1

2

inf {dis(C) : C is a correspondence between X1 and X2} . (0.2)

Bottom line
S space of compact metric spaces can be metrized via above metric (and results in a Polish
space). Can talk about weak convergence of S -valued random variables.
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Starting point: Aldous’s continuum random tree (CRT)

First: some motivation
Random trees a very vast field

Example: Uniform measure on the space of all trees with n nodes
Arises in lots of applied and theoretical contexts
Asymptotics as size of tree grows large of crucial interest
Plays a huge role in various algorithms, e.g phylogenetics
Want to understand things like height (distance from root) etc

Example arising in RNA studies
On the space of trees of size n consider probability measure

pn,�(t) / exp(�# leaves in t)
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Dyck paths or Harris correspondence

Methodology of Analysis

Harris realized that for some random trees (random planar trees)
Dyck path has same distribution as conditioned simple random walk
Aldous early 90s realized that something like this could be extended to many other families
In particular all conditioned branching processes

Proved that many of these trees, if you rescale each edge by n�1/2 then the tree seen as
metric spaces converges (with space of compact metric spaces metrized by the
Gromov-Hausdorff metric dGH as above) to a random fractal called continuum random
tree.

Height
In many models, there exists constant c such that

Hn

c
p
n

d�! h
ex

h
ex

height of standard Brownian excursion.
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Courtesy the amazingly beautiful survey by J.F.Le Gall: Random trees and applications, 
Prob. Surveys, 2005



Contour functions and “real trees”

Can metrize support of function using the “distance”

dg(s, t) = g(s) + g(t)� 2mg(s, t)

Resulting metric space called the real tree corresponding to g. 

Courtesy the amazingly beautiful survey by J.F.Le Gall: Random trees and applications, 
Prob. Surveys, 2005



Brownian excursion and Aldous’s continuum 
random tree

Brownian excursion simulation 
By Shiyu Ji (Own work) [CC BY-SA 4.0 
(http://creativecommons.org/licenses/
by-sa/4.0)], via Wikimedia Commons

Approximation of Aldous’s CRT. 
By Igor Kortchemski 

https://www.normalesup.org/
~kortchem/english.html
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Background

Criticality and emergence of the giant
Fundamental problem in random graphs: connectivity and emergence of the giant.
Many random graph models come with a parameter t (often related to edge
density) and model dependent “critical time” tc.
If t < tc no giant component (C1(t) = oP (n)).
If t > tc then C1(t) ⇠ f(t)n. Giant component.

Current obsession
What happens in the critical regime?

What happens to the metric structure of the
maximal components?
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Classical example: Erdos-Renyi random graph at criticality

History

after initial work by [ER1960], further fundamental work in Luczak and [JKLP1994]. Form we
will use finally proved by [Aldous1997].

Formal existence of multiplicative coalescent.

Problem statement

Connection probability pn :=

1
n

h
1 +

�
n1/3

i
.

C(i)
n (�) size of the i-th largest component.

Surplus (Complexity) of a component

N (n)

i (�) = E(C(i)
n (�))� (C(i)

n (�)� 1)

l2# =

�
(xi)i>1 : x1 > x2 > · · · > 0,

P
i x

2
i < 1
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C

⇤
n(�) := n�2/3

(|C1(�)|, |C2(�)|, . . .)

W�(t) = W (t) + �t�
t2

2

,

¯W�(·) is the above process reflected at 0.
Let ⇠(�) lengths of excursions away from 0 of ¯W (·) arranged in decreasing order

Aldous (97)
As n ! 1, in l2# one has

C

⇤
n(�)

d�! ⇠(�)

Complexity

Surplus in maximal component N (n)

i (�) = OP (1). Nice point process description of the limit.
Punchline: Components almost tree-like.
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In pictures

Figure: Reflected process
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Metric structure: Addario-Berry, Broutin, Goldschmidt

Intuition: Ci(�)

Uniform random tree Tcn2/3 on cn2/3 viewed as metric space then

n�1/3Tcn2/3
dGH ,w�! CRTc

Recall that CRT random real tree encoded by Brownian excursion 2ec(·).

For Ci(�)
n�1/3Tcn2/3

dGH ,w�! Criti(�)

Construction: Recall |C1(�)| ⇠ ⇠i(�)n2/3. Start with a tilted Brownian excursion ˜

e⇠i (·) of
length ⇠i(�).

d⌫̃c
d⌫c

(h) =
exp

�R c
0 h(s)ds

�
R
El

exp

�R c
0 h0

(s)ds
�
d⌫c(dh0

)

, h 2 Ec.

˜Ti: Random random real tree encoded by this excursion. Pick a Poisson # of leaves L with
density proportional to height.
For each x 2 L pick a uniform point on unique path from root ⇢ to x, Ux. Identify x and Ux.
This gives limit object Criti(�).
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Brownian excursion and Aldous’s continuum 
random tree

Brownian excursion simulation 
By Shiyu Ji (Own work) [CC BY-SA 4.0 
(http://creativecommons.org/licenses/
by-sa/4.0)], via Wikimedia Commons

Approximation of Aldous’s CRT. 
By Igor Kortchemski 

https://www.normalesup.org/
~kortchem/english.html
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Motivation

Last few years motivated by data, wide array of interesting random graph models proposed.
1 Configuration model
2 Inhomogeneous random graph
3 Bounded size rules

Tremendous amount of work on understanding phase transition especially above and below
critical regime.

Lot of work on maximal component sizes in the critical regime. Often match Erdos-Renyi in
terms of size scaling and components being described via excursions of inhomogeneous
BM.

Aims/questions of the research program

Develop general techniques that enable one to prove scaling limits of maximal components
in the critical regime at the metric level that can work in different settings.
Probability theory: Lots of invariance principles (Martingale FCLT, Donsker,
Lindeberg-Levy-Feller-Lyapunov CLT, Continuum random tree etc).
View the scaling limit for Erdos-Renyi limits as analog of the normal distribution/BM: what
“Asymptotic negligibility conditions” do we need to ensure that for a random graph model in
the critical regime, maximal components scale like n1/3 and converge to (Criti(·))?
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Organization/Aims of the talk

Why should you care?
1 Technique hopefully general enough to be useful in other regimes. Will show

results in 3 major classes.
2 Scaling limit of critical components first step in understanding more complicated

objects such as the MST.

Logical flow of talk
1 Give you basic idea of our attempts at this universality.
2 Hard to understand if I just state the abstract result so first will give you what this

result (+ a lot of work!) gives for 3 major classes of random graphs
3 Then give intuition of why we started thinking along these lines
4 State abstract result and ramifications
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Model I: Percolation on supercritical Configuration model

Model definition
Fix pmf pdeg = {pk : k > 0}. Assume p2 < 1. Also assume

⌫ =

P
k k(k � 1)pkP

k kpk
> 1, � =

X

k

k(k � 1)(k � 2)pk

Let d ⇠ pdeg. Assume exponential tails: for some � > 0, E(e�d) < 1.

Just technical
assumption should be easily relaxable, see open problems portion.

[n] = {1, 2, . . . , n}. Let di ⇠iid pdeg. Start with n vertices with degree/# free/alive half
edges di. Perform uniform matching of half-edges to get full edges.
Random graph CMn (1). Now consider critical percolation with edge retention probability

p(�) =
1

⌫
+

�

n1/3
.

Denote the corresponding graph Percn(�).
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Model I: Percolation on the configuration model

Known results
Enormous amount of work (Bollobas, Janson, Molloy and Reed, Riordan....). Used
also extensively in applications.
p > 1/⌫: Giant component
p < 1/⌫: C1 = oP (n)

p = p(�): All maximal component sizes |Ci| ⇠ ⇠in
2/3 [Nachmias-Peres (random

regular graph); Joseph; Riordan (bounded degree).]
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Model I: Percolation on the configuration model [Our results]

Theorem: Continuum scaling limits of metric structure for Percn(�)
For critical percolation on the CMn we can show

✓
�2/3

µ⌫

1

n1/3
C(n)

i (�) : i > 1

◆
w�! Crit1

✓
⌫2

�2/3
�

◆
, as n ! 1.

Distances in maximal components scale like n1/3.
Convergence not just in dGH but in dGHP.

Corollary: Random r-regular graph

p(�) =
1

r � 1

+

�

n1/3
.

Then the maximal components viewed as metric spaces satisfy
✓
(r(r � 1)(r � 2))

2/3

r(r � 1)

1

n1/3
C(n)

i (�) : i > 1

◆
w�! Crit1

✓
(r � 1)

2

(r(r � 1)(r � 2))

2/3
�

◆
,
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Model II: Inhomogenous random graphs

Model definition (Bollobas, Janson, Riordan)

Vertex type space: X = [K] = {1, 2, . . . ,K}

Can be extended to general types. Each
vertex i 2 [n] has type xi 2 X .
n-dependent kernel: n : [K]⇥ [K] ! R+.
Empirical distribution of types: µn(x) = # {i 2 [n] : xi = x} /n.
Connect vertex i, j with probability

pij := 1� exp

✓
�
n(xi, xj)

n

◆
.

Associated operator

(Tnf)(x) :=
X

y2[K]

n(x, y)f(y)µn(y), x 2 [K], f 2 R[K].

By BJR[05]: Assume n ⇡ , µn ⇡ µ. Let ||T|| operator norm of T in L2
([K], µ).

Supercritical regime: If ||T|| > 1 C1 ⇠ ⇢(, µ)n.
Subcritical regime: If ||T|| < 1 C1 = oP (n).
Critical regime: If ||T|| = 1: content of this talk.
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Model II: Inhomogeneous random graphs at Criticality

Known results
Amazing array of results in BJR[05], especially above and below criticality.
Number of results on susceptibility functions by Janson and Riordan when
||T|| = 1� " (barely subcritical regime).
At this level of generality no results even for component sizes in the critical regime.
Critical scaling window?
One particular example: rank one/Norros-Reittu/Chung-Lu/Britton-Deijfen.
Here type space is R+.

pij := 1� exp(�xixj/n)

Under moment conditions [SB, Hofstad, van Leeuwarden] and [Turova] showed
that again maximal components scale like |C1| ⇠ ⇠in

2/3.
Will show up later. Original talk was supposed to be all about this model. Forms a
key component in proving the results.
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Model II: Inhomogeneous random graphs at Criticality

Assumptions
1 Convergence of the kernels: There exists a kernel (·, ·) : [K]⇥ [K] ! R+ and a matrix

A = ((axy))x,y2[K] such that

min

x,y2[K]
(x, y) > 0 and lim

n
n1/3

(n(x, y)� (x, y)) = axy for x, y 2 [K].

2 Convergence of the empirical measures: There exists a probability measure µ on [K] and
a vector b = (b1, . . . , bK)

t such that

min

x2[K]
µ(x) > 0 and lim

n
n1/3

(µn(x)� µ(x)) = bx for x 2 [K].

3 Criticality of the model: The operator norm of T in L2
([K], µ) equals one. Equivalent to:

Matrix M having max-eigen value ⇢(M) = 1 where M = µ(j)(i, j).

Parameters required for main result
1

u,v: right and left eigen-vectors of M ; D = Diag(µ); B = Diag(b).

2 ↵ =

1
(vt1)·(µtu)

, � =

P
i2[K] viu

2
i

(vt1)·(µtu)2
and ⇣ = ↵ ·

⇥
v

t
(AD + B)u

⇤
.

Shankar Bhamidi Lecture 3



Model II: Inhomogeneous random graphs at Criticality

Assumptions
1 Convergence of the kernels: There exists a kernel (·, ·) : [K]⇥ [K] ! R+ and a matrix

A = ((axy))x,y2[K] such that

min

x,y2[K]
(x, y) > 0 and lim

n
n1/3

(n(x, y)� (x, y)) = axy for x, y 2 [K].

2 Convergence of the empirical measures: There exists a probability measure µ on [K] and
a vector b = (b1, . . . , bK)

t such that

min

x2[K]
µ(x) > 0 and lim

n
n1/3

(µn(x)� µ(x)) = bx for x 2 [K].

3 Criticality of the model: The operator norm of T in L2
([K], µ) equals one. Equivalent to:

Matrix M having max-eigen value ⇢(M) = 1 where M = µ(j)(i, j).

Parameters required for main result
1

u,v: right and left eigen-vectors of M ; D = Diag(µ); B = Diag(b).

2 ↵ =

1
(vt1)·(µtu)

, � =

P
i2[K] viu

2
i

(vt1)·(µtu)2
and ⇣ = ↵ ·

⇥
v

t
(AD + B)u

⇤
.

Shankar Bhamidi Lecture 3



Model II: Inhomogeneous random graphs at Criticality

Theorem: Continuum scaling limits of metric structure of critical IRG
Consider the critical IRG with assumptions as in previous slide. View it as a measured
metric space with mass 1 to each vertex and usual graph metric. Then

✓
scl

✓
�2/3

↵n1/3
,
�1/3

n2/3

◆
Ci(G(n)

IRG) : i � 1

◆
w�! Crit1

✓
⇣

�2/3

◆

Corollary: Sizes of components
We get scaling limits for component sizes as a by-product namely component sizes
satisfy ✓

�1/3

n2/3
|Ci(G(n)

IRG)| : i � 1

◆
w�! ⇠

✓
⇣

�2/3

◆
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Model III: Bounded size rules. Effect of limited choice

[Bohman, Frieze 2001]The Bohman-Frieze random graph

Motivated by very interesting question of D. Achlioptas. Delay emergence of giant
component using simple rules

Each step, two candidate edges (e1, e2) chosen uniformly among all
�n
2

�
⇥

�n
2

�
possible

pairs of ordered edges. If e1 connect two singletons (component of size 1), then add e1 to
the graph; otherwise, add e2.
Shall consider continuous time version wherein between any ordered pair of edges, poisson
process with rate 2/n3.
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process with rate 2/n3.
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Model III: The Bohman-Frieze process

[Bohman, Frieze 2001] The delay of phase transition
Consider the continuous time version GBF

n (t), then there exists ✏ > 0 such that at time
tER
c + ✏,

C1(t
ER
c + ✏) = o(n)

[Spencer, Wormald 2004] The critical time
tBF
c ⇡ 1.1763 > tER

c = 1.
(super-critical) when t > tc, C1 = ⇥(n), C2 = O(log n).
(sub-critical) when t < tc, C1 = O(log n), C2 = O(log n).

Near Criticality
Janson and Spencer (2011) analyzed how s2(·), s3(·) ! 1 as t " tc.
Kang, Perkins and Spencer (2011) analyze the near subcritical (tc � ✏) regime.
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General bounded size rules

Fix K > 1

Let ⌦K = {1, 2, . . . ,K,!}
General bounded size rule: subset F ⇢ ⌦

4
K .

Pick 4 vertices uniformly at random. If (c(v1), c(v2), c(v3), c(v4)) 2 F then choose edge e1
else e2

BF model
K = 1, F = {(1, 1,↵,�)}.
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Model III: Bounded size rules in the critical regime

Theorem (Bhamidi, Budhiraja, Wang, 2012)

Let (C(1)
n (t), C(2)

n (t), ...) be the component sizes of GBSR
n (t) in decreasing order. Define

the rescaled size vector Cn(�), �1 < � < +1 as the vector

Cn(�) := (

¯Ci(�) : i � 1) =

✓
�1/3

n2/3
C(i)
n (tc +

�2/3↵�

n1/3
) : i � 1

◆

where ↵,� are constants determined by the BSR process. Then

{Cn(�) : �1 < � < 1} d�! {⇠(�) : �1 < � < 1}

.
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Model III: Bounded size rules [Critical regime]

BF constants

x0
(t) = �x2

(t)� (1� x2
(t))x(t) for t 2 [0,1) x(0) = 1

s02(t) = x2
(t) + (1� x2

(t))s22(t) for t 2 [0, tc), s2(0) = 1

s03(t) = 3x2
(t) + 3(1� x2

(t))s2(t)s3(t) for t 2 [0, tc), s3(0) = 1.

s2(t) ⇠
↵

tc � t
, s3(t) ⇠ �(s2(t))

3 ⇠ �
↵3

(tc � t)3
as t " tc.

Final equation:

v0(t) := �2x2
(t)2y(t)v(t) +

x2
(t)y2(t)

2

+ 1� x2
(t), v(0) = 0.

Easy to check
lim

t"tc
v(t) := % ⇡ .811.
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Model III: Bounded size rules [Critical regime]

Theorem: Metric space asymptotics
For the Bohman Frieze process we have

✓
scl

✓
�2/3

%n1/3
,
�1/3

n2/3

◆
C(n)

i

✓
tc +

�2/3↵

n1/3
�

◆
: i > 1

◆
w�! Crit1(�),

Theorem
Same is true for any bounded size rule with appropriate rule dependent constants
↵F ,�F and ⇢F
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Key principle 1: Dynamics and behavior after barely subcritical regime

Other than as an artifact of the proof technique (Martingale FCLT) why do maximal
components in the critical regime look like Erdos-Renyi?
One reason: Dynamics after the barely subcritical regime.
What do I mean?
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Key principle 1: Dynamics and behavior after barely subcritical regime

Erdos-Renyi: dynamics

Assign independent Poisson processes rate 1/n on each of the
�n
2

�
possible edges {i, j}.

When process corresponding to an edge fires, place that edge.

Gives a continuous time version of the Erdos-Renyi evolving at rate n/2

For fixed �

Cn(�) := n�2/3
(|Ci(1 + �/n1/3

)| : i > 1, )
d�! ⇠(�) := Excursion lengths .

Important question
What happens to {C⇤

n(�) : �1 < � < 1} as a a process in �?
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Rate of mergers

Recall we are looking at the new time scale t = 1 + �/n1/3

In this time scale, in time interval [�,�+ d�), components a and b merge at rate

1

n1/3
⇥

Ca(1 + �/n1/3
)Cb(1 + �/n1/3

)

n
=

¯Ca(�) ¯Ca(�)

Aldous showed there exists an l2# valued Markov process {X(�) : �1 < � < 1} called the
Standard multiplicative coalescent such that

{Cn(�) : �1 < � < 1} d
=) {⇠(�) : �1 < � < 1}
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Standard Multiplicative coalescent

Dynamics

For each fixed �, ⇠(�) has distribution given by excursion lengths

suppose X(�) = (x1, x2, x3, ...), each xl is viewed as the size of a cluster.
each pair of clusters of sizes (xi, xj) merges at rate xixj into a cluster of size xi + xj .
if xi, xj is merging, then (x1, x2, x3, ...) (x0

1, x
0
2, x

0
3, ...) where the latter is the re-ordering

of {xi + xj , xl : l 6= i, j}.
If your initial starting configuration at time “� = �1” has good properties and follows the
merging dynamics of the multiplicative coalescent then

{Cn(�) : �1 < � < 1} d
=) {⇠(�) : �1 < � < 1}
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Key principle 1: Dynamics and behavior after barely subcritical regime

Recall CMn: Related to Janson-Luczak dynamic construction

Start with n vertices with di half-edges for i 2 [n]. At time t = 0 start with n-isolated vertices.
Each half-edge has exponential rate one clock. When clock rings, chooses one of the alive
(active) half-edges, forms a full edge and both half-edges die (leave system).

If you ran this process for t = 1 then get full CMn(1).

{CMn(t) : t > 0} dynamic graph valued process.

Standard results imply critical time

tc =

1

2

log

⌫

⌫ � 1

.

Phase transition
t < tc: C1(t) = O(logn).
t > tc: C1(t) = f(t)n. f(t) " ⇢(⌫).
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Key principle 1: Dynamics and behavior after barely subcritical regime

By results of Fountanakis and Janson

Percn(p(�)) ⇡ CMn

✓
tc +

⌫

2(⌫ � 1)

�

n1/3

◆

So what?
Have transferred a nice static problem (percolation) into something about a dynamic graph
valued process.

Components do not merge at rate proportional to size of components
Abusing notation, let fi(t) be the number of alive edges in Ci(t) at time t. The Ci(t) and
Cj(t) merge at rate

fi(t)
fj(t)

ns̄1(t)
+ fj(t)

fi(t)

ns̄1(t)
=

2fi (t)fj (t)

ns̄1 (t)
.

New component has size fi(t) + fj(t)� 2.
However hard to control this graph-valued process all the way from t = 0.
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Key principle 1: Most technical definition of talk: Blob

Barely subcritical regime

Recall that we are interested in times of the form tc + �/n1/3.

Fix � 2 (1/5, 1/6). Define

tn := tc �
1

n�
.

Call a component at time tn a Blob.

Figure: Blob: From http://blue-cat00.deviantart.com/art/Mr-Ice-Cream-Blob-366286224
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Setup

Switching to general methodology
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Three ingredients of a maximal component at criticality

Can think of the metric structure of the component in the critical scaling window as composed of
three parts.

I: Blob-level superstructure

Random graphs: Viewing each blob as a single vertex this encapsulates connections
between blobs formed in the interval


tc �

1

n�
, tc +

�

n1/3

�

Can hope that as we move from barely subcritical to critical scaling window, blobs merge like
the multiplicative coalescent

(approximately at rate proportional xixj where xi some
appropriate functional of blob, e.g. free edges as in Aldous’s multiplicative coalescent) all the
action happens here, so need delicate estimates but there is hope!.
Abstract case: Collection of blobs Vblob := [m] with weights x and parameter q. G(x, q)
random graph formed using connection probability

pij = 1� exp(�qxixj)
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1

n�
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�

n1/3
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Three ingredients of a maximal component at criticality

II: Blobs
Random graphs: Components at time tn. Note that when we connect two
vertices in blobs we do not choose these vertices uniformly in CMn but with
probability proportional to number of live edges at time tn.

Typical blobs: size n�.
Maximal blob size: n2� with log correction. Heavy tails!

Abstract case: A family of compact connected measured metric spaces
M := {(Mi, di, µi) : i 2 V}, one for each blob in G(x, q). Further assume that for
all i 2 V, µi is a probability measure namely µi(Mi) = 1.

III: Blob-blob junction points
Random graphs: e.g. configuration model, choose vertices with probability
proportional to number of live edges at time tn = tc � n��.
Abstract case: This is a collection of points X := (Xi,j : i 2 V, j 2 Vblob) such
that Xi,j ⇠ µi 2 Mi iid for all i, j.
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Metric space with the three ingredients

Given above 3 ingredients form metric space ¯M :=

F
i2[n] Mi in the obvious manner.

For x, y 2 ¯M

¯d(x, y) = inf

k;i0,...,ik

(
k + di0 (x,Xi0,i1 ) +

k�1X

`=1

di` (Xi`,i`�1 , Xi`,i`+1 ) + dik (Xik,ik�1 , y)

)
,
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
tc �

1

n�
, tc +

�

n1/3

�



Key principle 2: Blob-level picture and universality

Aim: study G(x, q).

Negligibility Assumptions

Aldous’s assumptions for multiplicative coalescent. �k =

P
i2[m] x

k
i

�3

(�2)
3
! 1, q �

1

�2
! �,

xmax

�2
! 0,

Additional assumptions: There exist ⌘0 2 (0, 1/2) and r0 2 (0,1) as n ! 1, we have

xmax

�
3/2+⌘0
2

! 0,
�r0
2

xmin
! 0.

Theorem: Blob-level scaling
Treat (Ci : i > 1) as measured metric spaces using graph distance and weighted measure where
each blob i 2 [m] has weight xi. Under above Assumptions, for maximal components in G(x, q)

(here size of a component C ✓ G(x, q) is
P

i2C xi) we have

(scl(�2, 1)Ci : i > 1)

w�! Crit1(�)
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Key principle 2: Blob-level picture and universality

Aim: study G(x, q).

Negligibility Assumptions

Aldous’s assumptions for multiplicative coalescent. �k =

P
i2[m] x

k
i

�3

(�2)
3
! 1, q �

1

�2
! �,

xmax

�2
! 0,

Additional assumptions: There exist ⌘0 2 (0, 1/2) and r0 2 (0,1) as n ! 1, we have

xmax

�
3/2+⌘0
2
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�r0
2

xmin
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What does this imply for Random graphs?

Intuitive calculation
For wide variety of models (e.g. Janson, Janson+Riordan, Janson+Luczak, Janson +
Spencer) one can show that susceptibility

s2(t) =
1

n

X

i

|Ci(t)|2 ⇠
↵

tc � t

Note tn = tc � n�� . Pick a vertex Vn at random, expect E(CVn (tn)) ⇠ ↵n� .

Our techniques imply that at tc + �/n1/3, # of blobs in C1(�) is n2/3�� .

So expect Blob-level-superstructure should scale like
p
n2/3��

= n1/3��/2. Typical blob
should look like a critical random tree of size n� so distance within blob n�/2.

Thus distances scale like n1/3 Awesome!

Right answer, wrong intuition

Theorem
In critical random graphs, for the blob-level superstructure one has

1

n1/3��
˜C1(�)

w�! Crit1(�).

Shankar Bhamidi Lecture 3



What does this imply for Random graphs?

Intuitive calculation
For wide variety of models (e.g. Janson, Janson+Riordan, Janson+Luczak, Janson +
Spencer) one can show that susceptibility

s2(t) =
1

n

X

i

|Ci(t)|2 ⇠
↵

tc � t

Note tn = tc � n�� . Pick a vertex Vn at random, expect E(CVn (tn)) ⇠ ↵n� .

Our techniques imply that at tc + �/n1/3, # of blobs in C1(�) is n2/3�� .

So expect Blob-level-superstructure should scale like
p
n2/3��

= n1/3��/2. Typical blob
should look like a critical random tree of size n� so distance within blob n�/2.

Thus distances scale like n1/3 Awesome! Right answer, wrong intuition

Theorem
In critical random graphs, for the blob-level superstructure one has

1

n1/3��
˜C1(�)

w�! Crit1(�).

Shankar Bhamidi Lecture 3



One key idea behind blob-level scaling result: My original talk

p-trees
Fix pmf p = {p1, p2, . . . pm}. A rooted random planar tree T p with vertex set [m] is called a
p-tree if it has probability distribution

Pord(T p
= t) =

Y

v2[m]

p
dv(t)
v

(dv(t))!
, t 2 Tord

m .

Tilted p-trees

Any rooted planar tree t defines a natural depth first exploration. Start with root and use
order associated t.

P(t): collection of permitted edges (pairs of vertices both belong to stack of active vertices
during exploration process).

Define function L : Tord
m ! R

L(t) :=
Y

(i,j)2E(t)


exp(apipj)� 1

apipj

�
exp

0

@
X

(i,j)2P(t)

apipj

1

A , t 2 Tord
m .

d˜Pord

dPord
(t) =

L(t)

Eord[L(T p
)]

, for t 2 Tm,
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Connected components of G(x, q)

qu,v = 1� exp(�apipj).

Consider distribution on space of connected simple graphs with vertex set m

Pcon(G;p, a) :=
1

Z(p, a)

Y

(u,v)2E(G)

quv
Y

(u,v)/2E(G)

(1� quv), for G 2 Gcon
V ,

Major technical tool in establishing universality:

Theorem (SB, Sanchayan Sen, Xuan Wang)
A random graph Gm ⇠ Pcon with distribution as above can be constructed as follows:

1 Generate tilted p-tree ˜T .
2 Conditional on ˜T permitted edges {u, v} 2 P(

˜T ) independently with probability quv .

Used to show continuum scaling limits of rank-one/Norros-Reittu/Britton-Deijfen/Chung-Lu model.
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Key principle 3: Incorporating blob-level information

Setting and assumptions

Recall Xi,1: junction point in Mi picked using measure µi. Let ui,1 = E(di(Xi,1, Xi,2)).

dmax = maxi(diam(Mi)).
Assumptions: In addition to previous assumptions, assume

xmax

�
3/2+⌘0
2

! 0,
�r0
2

xmin
! 0,

dmax�
3/2�⌘0
2P1

i=1 x
2
i ui,1 + �2

! 0,
�2xmaxdmaxP

i2[n] x
2
i ui,1

! 0.

Theorem: Complete metric space scaling
Under above assumptions

 
scl

 
(�2)

2

�2 +

P
i2[n] x

2
i ui,1

, 1

!
¯Ci : i > 1

!
w�! Crit1(�).
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Case Study: Configuration model

Glimpse of how to carry out this program in a particular example. Assume � = 0 for notational
convenience.

What is needed?

Show that mergers in [tc � n�� , tc] can be approximated via Multiplicative coalescent

where
size of blob is number of free edges fi = fi(tn).
Show that blobs at time tn have “good properties”

Merging dynamics

Recall components merge at rate

2fi(t)fj(t)

ns̄1(t)
⇡

2⌫fi(t)fj(t)

n(µ(⌫ � 1))

, t 2

tc �

1

n�
, tc

�
.

Modified process Gmodi
n : Start at time tn with CMn(tn). For all

e = (u, v) 2 FR(tn)⇥ FR(tn),

Pe rate ⌫/(nµ(⌫ � 1)) Poisson process. When one of these ring, complete full edge but
continue to consider (u, v) as “alive”.
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Case Study: Configuration model

Natural coupling ensuring CMn ✓ Gmodi
n (sampling without replacement and with

replacement).

Here � > 1/6 important.

Assume CMn(tn) has good properties, apply main universality theorem to get that
maximal free-weight components in Gmodi

n (tc) satisfy
 
�2/3

µ⌫

1

n1/3
Cmodi
i : i > 1

!
w�! Crit1 (0)

Technical argument 1: Showing that n�2/3
free(Ci) ⇡ n�2/3

free(Cmodi
i ). So Ci ✓ Cmodi

i
whp.

Tricky Technical argument 2 in picture form
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Case Study: Configuration model

Technical argument 2

Show that n�2/3|Ci| ⇡ n�2/3|C modi
i |.

Properties of limit random metric space implies “white-space” vanishes in the limit.

Punchline
Assuming CMn(tn) (barely subcritical regime) has good properties, using modified
process allows us to prove asserted limit for maximal components.
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Barely subcritical CMn(·)

Theorem: Bounds on maximal component and diameter
Given � < 1/4 and ↵ > 0, there exists C = C(�,↵) > 0 such that

P
✓
C1(tc � t) 6 C(logn)2

(tc � t)2
,

diammax(tc � t) 6 C(logn)2

(tc � t)
for all 0 6 t < tc �

↵

n�

◆
! 1,

as n ! 1.

Why important
Recall universality result:

 
scl

 
(�2)

2

�2 +

P
i2[n] x

2
i ui,1

, 1

!
¯Ci : i > 1

!
w�! Crit1(�).
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Barely subcritical {CMn(t) : 0 6 t 6 tn}

Definitions

Susceptibility functions: sl(t) :=
1
n

P
i f

l
i (t), g(t) := 1

n

P
i fi(t)|Ci(t)|.

Distance based susceptibility: D1(C(t)) =
P

e,f2C(t),e,f free d(e, f).

¯D(t) :=
1

n

X

i

D1(Ci(t)).

Need to have refined estimates of above at t = tn.

Theorem
Fix � 2 (1/6, 1/5) and tn = tc � n�� . Then

�����
n1/3

s2(tn)
�

⌫2n1/3��

µ(⌫ � 1)

2

�����
P�! 0,

s3(tn)

s32(tn)
P�!

�

µ3
(⌫ � 1)

3
.

and further
D̄(tn )

n2�

P�!
µ(⌫ � 1)

2

⌫3
,

g(tn)

n�

P�!
(⌫ � 1)µ

⌫2
.
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Barely subcritical {CMn(t) : 0 6 t 6 tn}: Proof idea

Idea 1: Use couplings to barely subcritical branching processes. Used in our analysis of IRG.

Idea 2: Make dynamics work for us.

Example: At rate fi(t)fj(t)/ns̄1(t) components Ci(t), Cj(t) merge. Assume this happens
due to merging e0 2 Ci and f0 2 Cj . Change

n(�D̄(t)) = 2
X

e2Ci,
e6=e0

X

f2Cj ,

f 6=f0

(d(e, e0) + d(f, f0) + 1) � 2
X

e2Ci

d(e0, e) � 2
X

f2Cj

d(f0, f)

= 2

2

64
X

e2Ci

X

f2Cj

(d(e0, e) + d(f, f0) + 1) �
X

e2Ci

(d(e, e0) + 1) �
X

f2Cj

(d(f, f0) + 1) + 1

3

75

� 2D(u) � 2D(v)

=2
h
D(u)fj + fiD(v) + fifj � D(u) � fi � D(v) � fj + 1

i
� 2D(u) � 2D(v).

Suggests that ¯D(t) ! d(t) where limit function d satisfies differential equation:

d0(t) =
1

S1

⇥
4dS2 + 2S2

2 � 4dS1 � 4S2S1 + 2S2
1 � 4dS1

⇤
,

where S1,S2 limits of s2, s1. Similar simpler analysis for s2, s3.
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Barely subcritical {CMn(t) : 0 6 t 6 tn}: Proof idea

Explicit form

S2(t) =
µe�2t

�
�2⌫ + (⌫ � 1)e2t

�

�⌫ + e2t(⌫ � 1)

.

S3(t) =
�� + e3(t)

[�⌫ + (⌫ � 1) exp(2t)]3
,

where

e3(t) =� 4⌫3µ� 9⌫2µe2t + 9⌫3µe2t � 6⌫µe4t + 12⌫2µe4t

� 6⌫3µe4t � µe6t + 3µ⌫e6t � 3⌫2µe6t + ⌫3µe6t.

and e3(tc) = 0.

d(t) :=
⌫2µ(1� e�2t

)

(⌫ � (⌫ � 1)e2t)2
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Barely subcritical {CMn(t) : 0 6 t 6 tn}: Proof idea

Differential equation method
See nice work of Tom Kurtz and Nick Wormald’s beautiful survey.
Here: Limiting functions explode at tc.
Semi-martingale techniques: Developed in (SB, Budhiraja, Wang) to push
approximation close to the barely subcritical regime.

They work assuming one has good bounds on jumps of processes involved, in this
case maximal component size and diameter. Which is what bound on maxima and
diameter provides.

P
✓
C1(tc � t) 6 C(log n)2

(tc � t)2
, diammax(tc � t) 6 C(log n)2

(tc � t)
for all 0 6 t < tc �

↵

n�

◆
! 1,

as n ! 1.

The differential equation approximation required � < 1/5
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Conclusion

Described methodology to understand metric level structure of random graph
models at criticality.
One key point: dynamics.
Works when (a) from the barely subcritical regime to the critical scaling window,
components (“blobs”) merge approximately like the multiplicative coalescent; (b)
Good properties of the blobs at the entrance boundary.
Intuition fails when naively thinking about superstructure and effect of averaging.
Natural owing to heavy tails of blob sizes and size-biasing within connected
components.
Proof of concept in 3 classical families of random graphs
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Conclusion: open problems/questions to explore next

Questions
Other random graph models in the critical regime

Have shown maximal components converge in the product topology on the space S N

induced by dGHP. Can think of the stronger l4 metric introduced by [AB-Br-Go]. Currently
thinking of what one needs for this.

For rank-one model have shown with Sanchayan and
Xuan that for product topology convergence essential 6-th moments enough. For l4 need
higher moments.
Currently think of how to now push this to understand MST scaling for general random
graphs.

Extensions specific to models in talk

Configuration model: Assumed exponential tails. Just a technical assumption to keep the
paper to below 100 pages. Arises to get easy bounds in the subcritical regime. Can/should
be easily reducible to finite moment conditions. Finite third moment?

IRG: Again assume finite state space and strict positivity of the kernel  to ignore issues
such as reducibility of the associated multi-type BP. [BJR 05] derive conditions for general
IRG when scaling exponents (barely supercritical regime) match those of Erdos-Renyi.
Extend results to this regime?
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The end

Thank you for your attention!
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