Lecture 3: Dynamic network models Probabilistic and statistical methods for networks Berlin Bath summer school for young researchers

Shankar Bhamidi

Department of Statistics and Operations Research University of North Carolina

August, 2017

SQ (V

Ξ

< ∃ >

 \equiv

Background and motivation: Scaling limits at criticality.

Ē

 $\mathcal{O} \mathcal{Q} (\mathcal{P})$

<ロ > < 団 > < 臣 > < 臣 > < 臣 > <

Background and motivation: Scaling limits at criticality.

Prerequisites: Gromov-Hausdorff convergence.

Ę.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

▲ 글 ▶ ▲ 글 ▶

< □ ▶ < @ ▶

Background and motivation: Scaling limits at criticality.

2 Prerequisites: Gromov-Hausdorff convergence.

3 Starting point: Addario-Berry, Broutin, Goldschmidt results on Erdős-Rényiscaling limits.

Ē

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

∃►

∢ ≣ ▶

- Background and motivation: Scaling limits at criticality.
- 2 Prerequisites: Gromov-Hausdorff convergence.
- Starting point: Addario-Berry, Broutin, Goldschmidt results on Erdős-Rényiscaling limits.
- ④ 3 major families of random graph models: known results and Sampling of our results.

Ξ

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< ∃ >

 $\Xi \rightarrow$

- Background and motivation: Scaling limits at criticality.
- Prerequisites: Gromov-Hausdorff convergence.
- Starting point: Addario-Berry, Broutin, Goldschmidt results on Erdős-Rényiscaling limits.
- ④ 3 major families of random graph models: known results and Sampling of our results.
- 5 Key principle 1: Dynamics and behavior after the barely subcritical regime.

< ∃ >

Ξ

 $\mathcal{A} \subset \mathcal{A}$

- Background and motivation: Scaling limits at criticality.
- Prerequisites: Gromov-Hausdorff convergence.
- Starting point: Addario-Berry, Broutin, Goldschmidt results on Erdős-Rényiscaling limits.
- ④ 3 major families of random graph models: known results and Sampling of our results.
- 5 Key principle 1: Dynamics and behavior after the barely subcritical regime.
- Key principle 2: Blob-level picture: Universality for the multiplicative coalescent and Tilted p-trees.

< ∃ >

Ξ

 $\mathcal{A} \subset \mathcal{A}$

- Background and motivation: Scaling limits at criticality.
- Prerequisites: Gromov-Hausdorff convergence.
- 3 Starting point: Addario-Berry, Broutin, Goldschmidt results on Erdős-Rényiscaling limits.
- ④ 3 major families of random graph models: known results and Sampling of our results.
- Sey principle 1: Dynamics and behavior after the barely subcritical regime.
- Key principle 2: Blob-level picture: Universality for the multiplicative coalescent and Tilted p-trees.
- Key principle 3: Inter blob-distances and Blob-level averaging.

- < ∃ >

Ξ

 $\mathcal{A} \subset \mathcal{A}$

- Background and motivation: Scaling limits at criticality.
- Prerequisites: Gromov-Hausdorff convergence.
- 3 Starting point: Addario-Berry, Broutin, Goldschmidt results on Erdős-Rényiscaling limits.
- ④ 3 major families of random graph models: known results and Sampling of our results.
- Sey principle 1: Dynamics and behavior after the barely subcritical regime.
- Key principle 2: Blob-level picture: Universality for the multiplicative coalescent and Tilted p-trees.
- Key principle 3: Inter blob-distances and Blob-level averaging.
- Case study: Configuration model.

 $\checkmark Q (\sim$

- Background and motivation: Scaling limits at criticality.
- Prerequisites: Gromov-Hausdorff convergence.
- 3 Starting point: Addario-Berry, Broutin, Goldschmidt results on Erdős-Rényiscaling limits.
- ④ 3 major families of random graph models: known results and Sampling of our results.
- Sey principle 1: Dynamics and behavior after the barely subcritical regime.
- Key principle 2: Blob-level picture: Universality for the multiplicative coalescent and Tilted p-trees.
- Key principle 3: Inter blob-distances and Blob-level averaging.
- Output: Configuration model.
- Onclusion: extensions and open problems.

All the work in this lecture joint with Nicolas Broutin, Sanchayan Sen and Xuan Wang.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Ξ.

Heavy tails and Networks

◀◻▶ ◀舂▶

≣

≣ ▶

< Ξ

 $\mathcal{O} \mathcal{Q} (\mathcal{P})$

Figure: CRTs and Inhomogeneous CRTs

- Consider a network model
- Suppose each edge has a (random) edge length.
- Consider the minimal spanning tree (MST). (*Strong disorder*) How does this object scale? Precisely: suppose we view this tree as a metric space using graph distance. Does this tree appropriately rescaled converge to a limiting object?
- How do these depend on the degree distribution? Is there universality?

王

MST on the complete graph on 100,000 vertices. Generated by Nicolas Broutin.

- Consider a network model
- Suppose each edge has a (random) edge length.
- Consider the minimal spanning tree (MST). (*Strong disorder*) How does this object scale? Precisely: suppose we view this tree as a metric space using graph distance. Does this tree appropriately rescaled converge to a limiting object?
- How do these depend on the degree distribution? Is there universality?

Predictions from Statistical Physics (Braunstein et al, 2006)

- Phase transition at $\tau = 4$: When $\tau > 4$ distances scale like $n^{1/3}$. When $\tau \in (3, 4)$ distances scale like $n^{(\tau-3)/(\tau-1)}$.
- Also predict *universality*: Results should hold for a wide array of random graph models.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\checkmark Q (~$

Kruskal's algorithm

- Setting: Complete graph with uniform [0, 1] iid edge weights. Let \mathcal{M}_n denote MST.
- Construction: Start with *n* isolated vertices. At each step, add unique edge of smallest weight joining two distinct components. Stop when all vertices connected.

· < 토 ► < 토 ►

王

 $\checkmark Q (~$

Kruskal's algorithm

- Setting: Complete graph with uniform [0, 1] iid edge weights. Let \mathcal{M}_n denote MST.
- Construction: Start with *n* isolated vertices. At each step, add unique edge of smallest weight joining two distinct components. Stop when all vertices connected.

Erdős-Rényi random graph process

- Start with *n* isolated vertices.
- At each stage choose an edge at random and place it in the system.
- Think for yourself: easy to couple Kruskal's algorithm and Erdős-Rényirandom graph process.

▲ □ ▶ ▲ 三 ▶ ▲ □ ▶

王

 $\checkmark Q (\land$

Kruskal's algorithm

- Setting: Complete graph with uniform [0, 1] iid edge weights. Let \mathcal{M}_n denote MST.
- Construction: Start with *n* isolated vertices. At each step, add unique edge of smallest weight joining two distinct components. Stop when all vertices connected.

Erdős-Rényi random graph process

- Start with *n* isolated vertices.
- At each stage choose an edge at random and place it in the system.
- Think for yourself: easy to couple Kruskal's algorithm and Erdős-Rényirandom graph process.
- A giant component of MST present when cn/2 edges in the system (for any c > 1). Most of the global structure of MST present at this stage.

◀◻▶◀氬▶◀壹▶◀重▶

王

 $\checkmark Q (\land$

Fundamental finding of Addario-Berry, Broutin, Goldschmidt, Miermont (ABGM)

MST and critical random graphs

- Recall from Lecture 1 that the "critical scaling window" corresponds to edges of the sort $n/2 + \lambda n^{2/3}$.
- ABGM in 2013 showed that the MST on the complete graph *looks* like the maximal component $C_n^{(1)}(\lambda)$ "for large λ ".
- Deep result and novel ideas to make the above notion precise since obviously $|C_n^{(1)}(\lambda)|/n = (n^{-1/3})$ so has a very small fraction of the eventual MST.

▲□▶ ▲□▶ ▲□▶ ▲□▶ →

 $\checkmark Q (~$

Fundamental finding of Addario-Berry, Broutin, Goldschmidt, Miermont (ABGM)

MST and critical random graphs

- Recall from Lecture 1 that the "critical scaling window" corresponds to edges of the sort $n/2 + \lambda n^{2/3}$.
- ABGM in 2013 showed that the MST on the complete graph *looks* like the maximal component $C_n^{(1)}(\lambda)$ "for large λ ".
- Deep result and novel ideas to make the above notion precise since obviously $|C_n^{(1)}(\lambda)|/n = (n^{-1/3})$ so has a very small fraction of the eventual MST.

Conclusion

Thus another major motivation to study metric structure of the maximal components in the critical regime.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\checkmark Q (~$

Fundamental finding of Addario-Berry, Broutin, Goldschmidt, Miermont (ABGM)

MST and critical random graphs

- Recall from Lecture 1 that the "critical scaling window" corresponds to edges of the sort $n/2 + \lambda n^{2/3}$.
- ABGM in 2013 showed that the MST on the complete graph *looks* like the maximal component $C_n^{(1)}(\lambda)$ "for large λ ".
- Deep result and novel ideas to make the above notion precise since obviously $|C_n^{(1)}(\lambda)|/n = (n^{-1/3})$ so has a very small fraction of the eventual MST.

Conclusion

Thus another major motivation to study metric structure of the maximal components in the critical regime.

Now "random objects" live in the space of compact metric spaces. So need proper notion of metric so as to talk about weak convergence.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Metric $d_{\rm GH}$

Fix two metric spaces $X_1 = (X_1, d_1)$ and $X_2 = (X_2, d_2)$. For subset $C \subseteq X_1 \times X_2$, distortion of *C* is defined as

$$\operatorname{dis}(C) := \sup \left\{ \left| d_1(x_1, y_1) - d_2(x_2, y_2) \right| : (x_1, x_2), (y_1, y_2) \in C \right\}.$$
(0.1)

◆□▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □

 $\checkmark Q (~$

A correspondence *C* between X_1 and X_2 is a measurable subset of $X_1 \times X_2$ such that for every $x_1 \in X_1$ there exists at least one $x_2 \in X_2$ such that $(x_1, x_2) \in C$ and vice-versa. The Gromov-Hausdorff distance between the two metric spaces (X_1, d_1) and (X_2, d_2) is defined as

 $d_{\rm GH}(X_1, X_2) = \frac{1}{2} \inf \left\{ \operatorname{dis}(C) : C \text{ is a correspondence between } X_1 \text{ and } X_2 \right\}.$ (0.2)

Metric $d_{\rm GH}$

Fix two metric spaces $X_1 = (X_1, d_1)$ and $X_2 = (X_2, d_2)$. For subset $C \subseteq X_1 \times X_2$, distortion of *C* is defined as

$$\operatorname{dis}(C) := \sup \left\{ \left| d_1(x_1, y_1) - d_2(x_2, y_2) \right| : (x_1, x_2), (y_1, y_2) \in C \right\}.$$
(0.1)

▲□▶▲□▶▲□▶▲□▶ = □

 $\checkmark Q ($

A correspondence *C* between X_1 and X_2 is a measurable subset of $X_1 \times X_2$ such that for every $x_1 \in X_1$ there exists at least one $x_2 \in X_2$ such that $(x_1, x_2) \in C$ and vice-versa. The Gromov-Hausdorff distance between the two metric spaces (X_1, d_1) and (X_2, d_2) is defined as

 $d_{\rm GH}(X_1, X_2) = \frac{1}{2} \inf \left\{ \operatorname{dis}(C) : C \text{ is a correspondence between } X_1 \text{ and } X_2 \right\}.$ (0.2)

Bottom line

 \mathscr{S} space of compact metric spaces can be metrized via above metric (and results in a Polish space). Can talk about weak convergence of \mathscr{S} -valued random variables.

Random trees a very vast field

E

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

·< Ē ▶ < Ē ▶

白▼►

 $\langle \square \rangle$

Tree with 11 nodes

- Random trees a very vast field
- Example: Uniform measure on the space of all trees with n nodes

Ē

 $\checkmark Q (\sim$

- ₹ ►

- Random trees a very vast field
- Example: Uniform measure on the space of all trees with n nodes
- Arises in lots of applied and theoretical contexts
- Asymptotics as size of tree grows large of crucial interest
- Plays a huge role in various algorithms, e.g phylogenetics
- Want to understand things like height (distance from root) etc

< ∃ →

I.

 $\mathcal{A} \cap \mathcal{A}$

- Random trees a very vast field
- Example: Uniform measure on the space of all trees with *n* nodes
- Arises in lots of applied and theoretical contexts
- Asymptotics as size of tree grows large of crucial interest
- Plays a huge role in various algorithms, e.g phylogenetics
- Want to understand things like height (distance from root) etc

Example arising in RNA studies

On the space of trees of size n consider probability measure

 $p_{n,\beta}(\mathbf{t}) \propto \exp(\beta \# \text{ leaves in } \mathbf{t})$

< ∃ ▶

-∢ ⊒ ▶

I.

Shankar Bhamidi Lecture 3

Ē

 \mathcal{A}

< □ > < □ > < □ > < □ > < □ > .

• Harris realized that for some random trees (random planar trees)

Ē

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

<= Ē ► < Ē ►

白▼►

 \bullet

- Harris realized that for some random trees (random planar trees)
- Dyck path has same distribution as **conditioned** simple random walk

Ē

 $\checkmark Q (\sim$

∃►

- ₹ ►

- Harris realized that for some random trees (random planar trees)
- Dyck path has same distribution as **conditioned** simple random walk
- Aldous early 90s realized that something like this could be extended to many other families
- In particular all conditioned branching processes

▲ 글 ▶

Ξ

 $\checkmark Q (\land$

Courtesy the amazingly beautiful survey by J.F.Le Gall: Random trees and applications, Prob. Surveys, 2005

Can metrize support of function using the "distance"

 $d_g(s,t) = g(s) + g(t) - 2m_g(s,t)$

Resulting metric space called the real tree corresponding to g.

Courtesy the amazingly beautiful survey by J.F.Le Gall: Random trees and applications, Prob. Surveys, 2005

Brownian excursion simulation By Shiyu Ji (Own work) [CC BY-SA 4.0 (http://creativecommons.org/licenses/ by-sa/4.0)], via Wikimedia Commons

Approximation of Aldous's CRT.

By Igor Kortchemski https://www.normalesup.org/ ~kortchem/english.html

- Harris realized that for some random trees (random planar trees)
- Dyck path has same distribution as **conditioned** simple random walk
- Aldous early 90s realized that something like this could be extended to many other families
- In particular all conditioned branching processes
- Proved that many of these trees, if you rescale each edge by n^{-1/2} then the tree seen as metric spaces converges (with space of compact metric spaces metrized by the Gromov-Hausdorff metric d_{GH} as above) to a random fractal called continuum random tree.

I.

 $\checkmark Q ($

- Harris realized that for some random trees (random planar trees)
- Dyck path has same distribution as **conditioned** simple random walk
- Aldous early 90s realized that something like this could be extended to many other families
- In particular all conditioned branching processes
- Proved that many of these trees, if you rescale each edge by n^{-1/2} then the tree seen as metric spaces converges (with space of compact metric spaces metrized by the Gromov-Hausdorff metric d_{GH} as above) to a random fractal called continuum random tree.

Height

In many models, there exists constant c such that

$$\frac{H_n}{c\sqrt{n}} \stackrel{d}{\longrightarrow} h_{\texttt{ex}}$$

< ロ > < 同 > < 三 > < 三 > <

I.
Methodology of Analysis

- Harris realized that for some random trees (random planar trees)
- Dyck path has same distribution as **conditioned** simple random walk
- Aldous early 90s realized that something like this could be extended to many other families
- In particular all conditioned branching processes
- Proved that many of these trees, if you rescale each edge by n^{-1/2} then the tree seen as metric spaces converges (with space of compact metric spaces metrized by the Gromov-Hausdorff metric d_{GH} as above) to a random fractal called continuum random tree.

Height

In many models, there exists constant c such that

$$\frac{H_n}{c\sqrt{n}} \stackrel{d}{\longrightarrow} h_{\text{ex}}$$

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

 h_{ex} height of standard Brownian excursion.

Background

Criticality and emergence of the giant

- Fundamental problem in random graphs: connectivity and emergence of the giant.
- Many random graph models come with a parameter t (often related to edge density) and model dependent "critical time" t_c.
- If $t < t_c$ no giant component ($C_1(t) = o_P(n)$).
- If $t > t_c$ then $C_1(t) \sim f(t)n$. Giant component.

Current obsession

What happens in the critical regime?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

王

 $\checkmark Q (\land$

Background

Criticality and emergence of the giant

- Fundamental problem in random graphs: connectivity and emergence of the giant.
- Many random graph models come with a parameter t (often related to edge density) and model dependent "critical time" t_c.
- If $t < t_c$ no giant component ($C_1(t) = o_P(n)$).
- If $t > t_c$ then $C_1(t) \sim f(t)n$. Giant component.

Current obsession

What happens in the critical regime? What happens to the metric structure of the maximal components?

▲ □ ▶ ▲ 三 ▶ ▲ □ ▶

E.

 $\checkmark Q (\land$

History

- after initial work by [ER1960], further fundamental work in Luczak and [JKLP1994]. Form we
 will use finally proved by [Aldous1997].
- Formal existence of multiplicative coalescent.

< = > < = >

王

History

- after initial work by [ER1960], further fundamental work in Luczak and [JKLP1994]. Form we
 will use finally proved by [Aldous1997].
- Formal existence of multiplicative coalescent.

Problem statement

- Connection probability $p_n := \frac{1}{n} \left[1 + \frac{\lambda}{n^{1/3}} \right]$.
- $C_n^{(i)}(\lambda)$ size of the *i*-th largest component.
- Surplus (Complexity) of a component

$$N_i^{(n)}(\lambda) = E(\mathcal{C}_n^{(i)}(\lambda)) - (\mathcal{C}_n^{(i)}(\lambda) - 1)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ●

E

History

- after initial work by [ER1960], further fundamental work in Luczak and [JKLP1994]. Form we
 will use finally proved by [Aldous1997].
- Formal existence of multiplicative coalescent.

Problem statement

- Connection probability $p_n := \frac{1}{n} \left[1 + \frac{\lambda}{n^{1/3}} \right]$.
- $C_n^{(i)}(\lambda)$ size of the *i*-th largest component.
- Surplus (Complexity) of a component

$$N_i^{(n)}(\lambda) = E(\mathcal{C}_n^{(i)}(\lambda)) - (\mathcal{C}_n^{(i)}(\lambda) - 1)$$

王

 $\checkmark Q (\land$

•
$$l^2_{\downarrow} = \{(x_i)_{i \ge 1} : x_1 \ge x_2 \ge \dots \ge 0, \sum_i x_i^2 < \infty\}$$

$$\mathbf{C}_n^*(\lambda) := n^{-2/3}(|\mathcal{C}_1(\lambda)|, |\mathcal{C}_2(\lambda)|, \ldots)$$
$$W_\lambda(t) = W(t) + \lambda t - \frac{t^2}{2},$$

٩

・・

$$\mathbf{C}_n^*(\lambda) := n^{-2/3}(|\mathcal{C}_1(\lambda)|, |\mathcal{C}_2(\lambda)|, \ldots)$$
$$W_\lambda(t) = W(t) + \lambda t - \frac{t^2}{2},$$

• $\overline{W}_{\lambda}(\cdot)$ is the above process reflected at 0.

٩

• Let $\xi(\lambda)$ lengths of excursions away from 0 of $\overline{W}(\cdot)$ arranged in decreasing order

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶

Ē

$$\mathbf{C}_n^*(\lambda) := n^{-2/3}(|\mathcal{C}_1(\lambda)|, |\mathcal{C}_2(\lambda)|, \ldots)$$
$$W_\lambda(t) = W(t) + \lambda t - \frac{t^2}{2},$$

- $\overline{W}_{\lambda}(\cdot)$ is the above process reflected at 0.
- Let $\xi(\lambda)$ lengths of excursions away from 0 of $\overline{W}(\cdot)$ arranged in decreasing order

Aldous (97)

٩

As $n \to \infty,$ in l^2_\downarrow one has

$$\mathbf{C}_n^*(\lambda) \xrightarrow{d} \boldsymbol{\xi}(\lambda)$$

▲□▶▲圖▶▲臣▶▲臣▶ = 臣

$$\mathbf{C}_n^*(\lambda) := n^{-2/3}(|\mathcal{C}_1(\lambda)|, |\mathcal{C}_2(\lambda)|, \ldots)$$
$$W_\lambda(t) = W(t) + \lambda t - \frac{t^2}{2},$$

- $\overline{W}_{\lambda}(\cdot)$ is the above process reflected at 0.
- Let $\boldsymbol{\xi}(\lambda)$ lengths of excursions away from 0 of $\overline{W}(\cdot)$ arranged in decreasing order

Aldous (97)

As $n \to \infty$, in l^2_\downarrow one has

$$\mathbf{C}_n^*(\lambda) \xrightarrow{d} \boldsymbol{\xi}(\lambda)$$

Complexity

Surplus in maximal component $N_i^{(n)}(\lambda) = O_P(1)$. Nice point process description of the limit. **Punchline: Components almost tree-like.**

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ● 豆

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Uniform random tree $\mathcal{T}_{cn^{2/3}}$ on $cn^{2/3}$ viewed as metric space then

$$m^{-1/3}\mathcal{T}_{cn^{2/3}} \stackrel{d_{GH},w}{\longrightarrow} \operatorname{CRT}_{cn^{2/3}}$$

• Recall that CRT random real tree encoded by Brownian excursion $2e_{c}(\cdot)$.

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ .

王

Brownian excursion simulation By Shiyu Ji (Own work) [CC BY-SA 4.0 (http://creativecommons.org/licenses/ by-sa/4.0)], via Wikimedia Commons

Approximation of Aldous's CRT.

By Igor Kortchemski https://www.normalesup.org/ ~kortchem/english.html

• Uniform random tree $\mathcal{T}_{cn^{2/3}}$ on $cn^{2/3}$ viewed as metric space then

$$n^{-1/3}\mathcal{T}_{cn^{2/3}} \stackrel{d_{GH},w}{\longrightarrow} \operatorname{CRT}_{cn^{2/3}}$$

- Recall that CRT random real tree encoded by Brownian excursion $2e_{c}(\cdot)$.
- For $C_i(\lambda)$

$$n^{-1/3}\mathcal{T}_{\mathbf{c}n^{2/3}} \stackrel{d_{GH},w}{\longrightarrow} \operatorname{Crit}_{i}(\lambda)$$

< □ > < □ > < □ > < □ > < □ > .

E

• Uniform random tree $\mathcal{T}_{cn^{2/3}}$ on $cn^{2/3}$ viewed as metric space then

$$m^{-1/3}\mathcal{T}_{cn^{2/3}} \stackrel{d_{GH},w}{\longrightarrow} \operatorname{CRT}_{cn^{2/3}}$$

- Recall that CRT random real tree encoded by Brownian excursion $2e_{c}(\cdot)$.
- For $C_i(\lambda)$

$$n^{-1/3}\mathcal{T}_{\mathbf{c}n^{2/3}} \xrightarrow{d_{GH},w} \operatorname{Crit}_i(\lambda)$$

• Construction: Recall $|C_1(\lambda)| \sim \xi_i(\lambda) n^{2/3}$. Start with a tilted Brownian excursion $\tilde{\mathbf{e}}_{\xi_i}(\cdot)$ of length $\xi_i(\lambda)$.

< □ > < □ > < □ > < □ > < □ > .

王

• Uniform random tree $\mathcal{T}_{cn^{2/3}}$ on $cn^{2/3}$ viewed as metric space then

$$m^{-1/3}\mathcal{T}_{cn^{2/3}} \stackrel{d_{GH},w}{\longrightarrow} \operatorname{CRT}_{cn^{2/3}}$$

- Recall that CRT random real tree encoded by Brownian excursion $2e_{c}(\cdot)$.
- For $C_i(\lambda)$

$$n^{-1/3}\mathcal{T}_{\mathbf{c}n^{2/3}} \stackrel{d_{GH},w}{\longrightarrow} \operatorname{Crit}_{i}(\lambda)$$

Construction: Recall |C₁(λ)| ~ ξ_i(λ)n^{2/3}. Start with a tilted Brownian excursion ẽ_{ξi}(·) of length ξ_i(λ).

$$\frac{d\tilde{\nu}_c}{d\nu_c}(h) = \frac{\exp\left(\int_0^c h(s)ds\right)}{\int_{\mathcal{E}_l} \exp\left(\int_0^c h'(s)ds\right)d\nu_c(dh')}, \qquad h \in \mathcal{E}_c$$

< □ > < □ > < □ > < □ > < □ > .

王

• Uniform random tree $\mathcal{T}_{cn^{2/3}}$ on $cn^{2/3}$ viewed as metric space then

$$m^{-1/3}\mathcal{T}_{cn^{2/3}} \stackrel{d_{GH},w}{\longrightarrow} \operatorname{CRT}_{cn^{2/3}}$$

- Recall that CRT random real tree encoded by Brownian excursion $2e_{c}(\cdot)$.
- For $C_i(\lambda)$

$$n^{-1/3}\mathcal{T}_{\mathbf{c}n^{2/3}} \stackrel{d_{GH},w}{\longrightarrow} \operatorname{Crit}_{i}(\lambda)$$

• Construction: Recall $|C_1(\lambda)| \sim \xi_i(\lambda) n^{2/3}$. Start with a tilted Brownian excursion $\tilde{\mathbf{e}}_{\xi_i}(\cdot)$ of length $\xi_i(\lambda)$.

$$\frac{d\tilde{\nu}_c}{d\nu_c}(h) = \frac{\exp\left(\int_0^c h(s)ds\right)}{\int_{\mathcal{E}_l} \exp\left(\int_0^c h'(s)ds\right)d\nu_c(dh')}, \qquad h \in \mathcal{E}_c$$

- $\tilde{\mathcal{T}}_i$: Random random real tree encoded by this excursion. Pick a Poisson # of leaves \mathcal{L} with density proportional to height.
- For each $x \in \mathcal{L}$ pick a uniform point on unique path from root ρ to x, U_x . Identify x and U_x .

 \mathcal{A}

• This gives limit object $\operatorname{Crit}_i(\lambda)$.

- Last few years motivated by data, wide array of interesting random graph models proposed.
 - Configuration model
 - Inhomogeneous random graph
 - **3** Bounded size rules
- Tremendous amount of work on understanding phase transition especially above and below critical regime.
- Lot of work on maximal component sizes in the critical regime. Often match Erdos-Renyi in terms of size scaling and components being described via excursions of inhomogeneous BM.

- < ∃ >

Ξ

- Last few years motivated by data, wide array of interesting random graph models proposed.
 - Configuration model
 - Inhomogeneous random graph
 - **3** Bounded size rules
- Tremendous amount of work on understanding phase transition especially above and below critical regime.
- Lot of work on maximal component sizes in the critical regime. Often match Erdos-Renyi in terms of size scaling and components being described via excursions of inhomogeneous BM.

Aims/questions of the research program

Develop general techniques that enable one to prove scaling limits of maximal components in the critical regime at the **metric level** that can work in different settings.

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

E

- Last few years motivated by data, wide array of interesting random graph models proposed.
 - Configuration model
 - Inhomogeneous random graph
 - **3** Bounded size rules
- Tremendous amount of work on understanding phase transition especially above and below critical regime.
- Lot of work on maximal component sizes in the critical regime. Often match Erdos-Renyi in terms of size scaling and components being described via excursions of inhomogeneous BM.

Aims/questions of the research program

- Develop general techniques that enable one to prove scaling limits of maximal components in the critical regime at the **metric level** that can work in different settings.
- **Probability theory:** Lots of invariance principles (Martingale FCLT, Donsker, Lindeberg-Levy-Feller-Lyapunov CLT, Continuum random tree etc).

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Last few years motivated by data, wide array of interesting random graph models proposed.
 - Configuration model
 - Inhomogeneous random graph
 - **3** Bounded size rules
- Tremendous amount of work on understanding phase transition especially above and below critical regime.
- Lot of work on maximal component sizes in the critical regime. Often match Erdos-Renyi in terms of size scaling and components being described via excursions of inhomogeneous BM.

Aims/questions of the research program

- Develop general techniques that enable one to prove scaling limits of maximal components in the critical regime at the **metric level** that can work in different settings.
- **Probability theory:** Lots of invariance principles (Martingale FCLT, Donsker, Lindeberg-Levy-Feller-Lyapunov CLT, Continuum random tree etc).
- View the scaling limit for Erdos-Renyi limits as analog of the normal distribution/BM: what "Asymptotic negligibility conditions" do we need to ensure that for a random graph model in the critical regime, maximal components scale like $n^{1/3}$ and converge to $(\operatorname{Crit}_i(\cdot))$?

<ロ > < 回 > < 回 > < 回 > < 回 > <

Why should you care?

- Technique hopefully general enough to be useful in other regimes. Will show results in 3 major classes.
- Scaling limit of critical components first step in understanding more complicated objects such as the MST.

Logical flow of talk

- Give you basic idea of our attempts at this universality.
- 2 Hard to understand if I just state the abstract result so first will give you what this result (+ a lot of work!) gives for 3 major classes of random graphs
- Then give intuition of why we started thinking along these lines
- State abstract result and ramifications

▲ 글 ▶ ◀ 글 ▶

Ξ

 $\checkmark Q (\land$

• Fix pmf $\mathbf{p}_{deg} = \{p_k : k \ge 0\}$. Assume $p_2 < 1$. Also assume

$$\nu = \frac{\sum_{k} k(k-1)p_{k}}{\sum_{k} kp_{k}} > 1, \qquad \beta = \sum_{k} k(k-1)(k-2)p_{k}$$

• Let $d \sim \mathbf{p}_{deg}$. Assume exponential tails: for some $\gamma > 0$, $\mathbb{E}(e^{\gamma d}) < \infty$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ─ 豆

• Fix pmf $\mathbf{p}_{deg} = \{p_k : k \ge 0\}$. Assume $p_2 < 1$. Also assume

$$\nu = \frac{\sum_{k} k(k-1)p_{k}}{\sum_{k} kp_{k}} > 1, \qquad \beta = \sum_{k} k(k-1)(k-2)p_{k}$$

• Let $d \sim \mathbf{p}_{deg}$. Assume exponential tails: for some $\gamma > 0$, $\mathbb{E}(e^{\gamma d}) < \infty$. Just technical assumption should be easily relaxable, see open problems portion.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

• Fix pmf $\mathbf{p}_{deg} = \{p_k : k \ge 0\}$. Assume $p_2 < 1$. Also assume

$$\nu = \frac{\sum_{k} k(k-1)p_{k}}{\sum_{k} kp_{k}} > 1, \qquad \beta = \sum_{k} k(k-1)(k-2)p_{k}$$

- Let $d \sim \mathbf{p}_{deg}$. Assume exponential tails: for some $\gamma > 0$, $\mathbb{E}(e^{\gamma d}) < \infty$. Just technical assumption should be easily relaxable, see open problems portion.
- $[n] = \{1, 2, ..., n\}$. Let $d_i \sim_{iid} \mathbf{p}_{deg}$. Start with *n* vertices with degree/# free/alive half edges d_i . Perform uniform matching of half-edges to get full edges.

◀□▶◀@▶◀≧▶◀≧▶

王

 $\checkmark Q (\land$

• Fix pmf $\mathbf{p}_{deg} = \{p_k : k \ge 0\}$. Assume $p_2 < 1$. Also assume

$$\nu = \frac{\sum_{k} k(k-1)p_{k}}{\sum_{k} kp_{k}} > 1, \qquad \beta = \sum_{k} k(k-1)(k-2)p_{k}$$

- Let $d \sim \mathbf{p}_{deg}$. Assume exponential tails: for some $\gamma > 0$, $\mathbb{E}(e^{\gamma d}) < \infty$. Just technical assumption should be easily relaxable, see open problems portion.
- $[n] = \{1, 2, ..., n\}$. Let $d_i \sim_{iid} \mathbf{p}_{deg}$. Start with *n* vertices with degree/# free/alive half edges d_i . Perform uniform matching of half-edges to get full edges.
- Random graph CM_n

◀□▶◀@▶◀≧▶◀≧▶

王

 $\checkmark Q (\land$

$$d_1 = 1, \quad d_2 = 2, \quad d_3 = 2, \quad d_4 = 1$$

• Fix pmf $\mathbf{p}_{deg} = \{p_k : k \ge 0\}$. Assume $p_2 < 1$. Also assume

$$\nu = \frac{\sum_{k} k(k-1)p_{k}}{\sum_{k} kp_{k}} > 1, \qquad \beta = \sum_{k} k(k-1)(k-2)p_{k}$$

- Let $d \sim \mathbf{p}_{deg}$. Assume exponential tails: for some $\gamma > 0$, $\mathbb{E}(e^{\gamma d}) < \infty$. Just technical assumption should be easily relaxable, see open problems portion.
- $[n] = \{1, 2, ..., n\}$. Let $d_i \sim_{iid} \mathbf{p}_{deg}$. Start with n vertices with degree/# free/alive half edges d_i . Perform uniform matching of half-edges to get full edges.
- Random graph $CM_n(\infty)$. Now consider <u>critical percolation</u> with edge retention probability

$$p(\lambda) = \frac{1}{\nu}$$

▲□▶▲圖▶▲≣▶▲≣▶

王

• Fix pmf $\mathbf{p}_{deg} = \{p_k : k \ge 0\}$. Assume $p_2 < 1$. Also assume

$$\nu = \frac{\sum_{k} k(k-1)p_{k}}{\sum_{k} kp_{k}} > 1, \qquad \beta = \sum_{k} k(k-1)(k-2)p_{k}$$

- Let $d \sim \mathbf{p}_{deg}$. Assume exponential tails: for some $\gamma > 0$, $\mathbb{E}(e^{\gamma d}) < \infty$. Just technical assumption should be easily relaxable, see open problems portion.
- $[n] = \{1, 2, ..., n\}$. Let $d_i \sim_{iid} \mathbf{p}_{deg}$. Start with n vertices with degree/# free/alive half edges d_i . Perform uniform matching of half-edges to get full edges.
- Random graph $CM_n(\infty)$. Now consider <u>critical percolation</u> with edge retention probability

$$p(\lambda) = \frac{1}{\nu} + \frac{\lambda}{n^{1/3}}.$$

◀□▶◀@▶◀≧▶◀≧▶

王

• Denote the corresponding graph $\operatorname{Perc}_n(\lambda)$.

Known results

- Enormous amount of work (Bollobas, Janson, Molloy and Reed, Riordan....). Used also extensively in applications.
- $p > 1/\nu$: Giant component
- $p < 1/\nu$: $C_1 = o_P(n)$
- $p = p(\lambda)$: All maximal component sizes $|C_i| \sim \xi_i n^{2/3}$ [Nachmias-Peres (random regular graph); Joseph; Riordan (bounded degree).]

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

王

Theorem: Continuum scaling limits of metric structure for $Perc_n(\lambda)$

For critical percolation on the CM_n we can show

$$\left(\frac{\beta^{2/3}}{\mu\nu}\frac{1}{n^{1/3}}\mathcal{C}_i^{(n)}(\lambda):i\geqslant 1\right) \stackrel{\mathrm{w}}{\longrightarrow} \mathbf{Crit}_{\infty}\left(\frac{\nu^2}{\beta^{2/3}}\lambda\right), \qquad \text{as } n\to\infty.$$

< ∃ >
Theorem: Continuum scaling limits of metric structure for $Perc_n(\lambda)$

For critical percolation on the CM_n we can show

$$\left(\frac{\beta^{2/3}}{\mu\nu}\frac{1}{n^{1/3}}\mathcal{C}_i^{(n)}(\lambda):i\geqslant 1\right) \stackrel{\mathrm{w}}{\longrightarrow} \mathbf{Crit}_{\infty}\left(\frac{\nu^2}{\beta^{2/3}}\lambda\right), \qquad \text{as } n\to\infty.$$

- Distances in maximal components scale like $n^{1/3}$.
- Convergence not just in $d_{\rm GH}$ but in $d_{\rm GHP}$.

Corollary: Random *r*-regular graph

$$p(\lambda) = \frac{1}{r-1} + \frac{\lambda}{n^{1/3}}.$$

Then the maximal components viewed as metric spaces satisfy

$$\left(\frac{(r(r-1)(r-2))^{2/3}}{r(r-1)}\frac{1}{n^{1/3}}\mathcal{C}_i^{(n)}(\lambda):i\geqslant 1\right) \stackrel{\mathrm{w}}{\longrightarrow} \mathbf{Crit}_{\infty}\left(\frac{(r-1)^2}{(r(r-1)(r-2))^{2/3}}\lambda\right),$$

Model definition (Bollobas, Janson, Riordan)

• Vertex type space: $\mathscr{X} = [K] = \{1, 2, \dots, K\}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 \mathcal{A}

Model definition (Bollobas, Janson, Riordan)

- Vertex type space: $\mathscr{X} = [K] = \{1, 2, ..., K\}$ Can be extended to general types. Each vertex $i \in [n]$ has type $x_i \in \mathscr{X}$.
- *n*-dependent kernel: $\kappa_n : [K] \times [K] \to \mathbb{R}_+$.
- Empirical distribution of types: $\mu_n(x) = \# \{i \in [n] : x_i = x\} / n$.
- Connect vertex i, j with probability

$$p_{ij} := 1 - \exp\left(-\frac{\kappa_n(x_i, x_j)}{n}\right)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\checkmark Q ($

Model definition (Bollobas, Janson, Riordan)

- Vertex type space: $\mathscr{X} = [K] = \{1, 2, ..., K\}$ Can be extended to general types. Each vertex $i \in [n]$ has type $x_i \in \mathscr{X}$.
- *n*-dependent kernel: $\kappa_n : [K] \times [K] \to \mathbb{R}_+$.
- Empirical distribution of types: $\mu_n(x) = \# \{i \in [n] : x_i = x\} / n$.
- Connect vertex i, j with probability

$$p_{ij} := 1 - \exp\left(-\frac{\kappa_n(x_i, x_j)}{n}\right).$$

Associated operator

$$(T_{\kappa_n}f)(x) := \sum_{y \in [K]} \kappa_n(x, y) f(y) \mu_n(y), \quad x \in [K], f \in \mathbb{R}^{[K]}.$$

By **BJR[05]**: Assume $\kappa_n \approx \kappa$, $\mu_n \approx \mu$. Let $||T_{\kappa}||$ operator norm of T_{κ} in $L^2([K], \mu)$.

- Supercritical regime: If $||T_{\kappa}|| > 1 C_1 \sim \rho(\kappa, \mu)n$.
- Subcritical regime: If $||T_{\kappa}|| < 1 C_1 = o_P(n)$.
- Critical regime: If $||T_{\kappa}|| = 1$: content of this talk.

< □ > < □ > < □ > < □ > < □ > .

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Known results

- Amazing array of results in BJR[05], especially above and below criticality.
- Number of results on susceptibility functions by Janson and Riordan when $||T_{\kappa}|| = 1 \varepsilon$ (barely subcritical regime).
- At this level of generality no results even for component sizes in the critical regime. Critical scaling window?
- One particular example: rank one/Norros-Reittu/Chung-Lu/Britton-Deijfen.
 Here type space is R₊.

$$p_{ij} := 1 - \exp(-x_i x_j/n)$$

- Under moment conditions [SB, Hofstad, van Leeuwarden] and [Turova] showed that again maximal components scale like $|C_1| \sim \xi_i n^{2/3}$.
- Will show up later. Original talk was supposed to be all about this model. Forms a key component in proving the results.

王

Assumptions

OCONVERGENCE OF THE KERNELS: There exists a kernel $\kappa(\cdot, \cdot) : [K] \times [K] \to \mathbb{R}^+$ and a matrix $A = ((a_{xy}))_{x,y \in [K]}$ such that

$$\min_{x,y\in[K]}\kappa(x,y)>0 \text{ and } \lim_n n^{1/3}\left(\kappa_n(x,y)-\kappa(x,y)\right)=a_{xy} \text{ for } x,y\in[K].$$

2 Convergence of the empirical measures: There exists a probability measure μ on [K] and a vector $\mathbf{b} = (b_1, \dots, b_K)^t$ such that

$$\min_{x \in [K]} \mu(x) > 0 \text{ and } \lim_{n} n^{1/3} \left(\mu_n(x) - \mu(x) \right) = b_x \text{ for } x \in [K].$$

3 Criticality of the model: The operator norm of T_{κ} in $L^2([K], \mu)$ equals one. Equivalent to: Matrix M having max-eigen value $\rho(M) = 1$ where $M = \mu(j)\kappa(i, j)$.

< □ > < □ > < □ > < □ > < □ > .

王

 $\checkmark Q (\land$

Assumptions

O Convergence of the kernels: There exists a kernel $\kappa(\cdot, \cdot) : [K] \times [K] \to \mathbb{R}^+$ and a matrix $A = ((a_{xy}))_{x,y \in [K]}$ such that

$$\min_{x,y\in[K]}\kappa(x,y)>0 \text{ and } \lim_n n^{1/3}\left(\kappa_n(x,y)-\kappa(x,y)\right)=a_{xy} \text{ for } x,y\in[K].$$

2 Convergence of the empirical measures: There exists a probability measure μ on [K] and a vector $\mathbf{b} = (b_1, \dots, b_K)^t$ such that

$$\min_{x \in [K]} \mu(x) > 0 \text{ and } \lim_{n} n^{1/3} \left(\mu_n(x) - \mu(x) \right) = b_x \text{ for } x \in [K].$$

3 Criticality of the model: The operator norm of T_{κ} in $L^2([K], \mu)$ equals one. Equivalent to: Matrix M having max-eigen value $\rho(M) = 1$ where $M = \mu(j)\kappa(i, j)$.

Parameters required for main result

1 u, **v**: right and left eigen-vectors of M; $D = \text{Diag}(\boldsymbol{\mu})$; $B = \text{Diag}(\mathbf{b})$.

2
$$\alpha = \frac{1}{(\mathbf{v}^t \mathbf{1}) \cdot (\boldsymbol{\mu}^t \mathbf{u})}, \ \beta = \frac{\sum_{i \in [K]} v_i u_i^2}{(\mathbf{v}^t \mathbf{1}) \cdot (\boldsymbol{\mu}^t \mathbf{u})^2} \text{ and } \zeta = \alpha \cdot \left[\mathbf{v}^t (AD + \kappa B) \mathbf{u} \right].$$

< □ > < □ > < □ > < □ > < □ > .

 $\checkmark Q (~$

Theorem: Continuum scaling limits of metric structure of critical IRG

Consider the critical IRG with assumptions as in previous slide. View it as a measured metric space with mass 1 to each vertex and usual graph metric. Then

$$\left(\operatorname{scl}\left(\frac{\beta^{2/3}}{\alpha n^{1/3}}, \frac{\beta^{1/3}}{n^{2/3}}\right) \mathcal{C}_i(\mathcal{G}_{\operatorname{IRG}}^{(n)}) : i \ge 1\right) \stackrel{\mathrm{w}}{\longrightarrow} \operatorname{\mathbf{Crit}}_{\infty}\left(\frac{\zeta}{\beta^{2/3}}\right)$$

Corollary: Sizes of components

We get scaling limits for component sizes as a by-product namely component sizes satisfy

$$\left(\frac{\beta^{1/3}}{n^{2/3}}|\mathcal{C}_i(\mathcal{G}_{\mathrm{IRG}}^{(n)})|:i\ge 1\right) \xrightarrow{\mathrm{w}} \boldsymbol{\xi}\left(\frac{\zeta}{\beta^{2/3}}\right)$$

< ∃ >

- ₹ ₹ ▶

I.

 Motivated by very interesting question of D. Achlioptas. Delay emergence of giant component using simple rules

王

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

<=

<b

▲□►

< □ ▶

- Motivated by very interesting question of D. Achlioptas. Delay emergence of giant component using simple rules
- Each step, two candidate edges (e_1, e_2) chosen uniformly among all $\binom{n}{2} \times \binom{n}{2}$ possible pairs of ordered edges. If e_1 connect two singletons (component of size 1), then add e_1 to the graph; otherwise, add e_2 .

E

 $\mathcal{A} \mathcal{A} \mathcal{A}$

- Motivated by very interesting question of D. Achlioptas. Delay emergence of giant component using simple rules
- Each step, two candidate edges (e_1, e_2) chosen uniformly among all $\binom{n}{2} \times \binom{n}{2}$ possible pairs of ordered edges. If e_1 connect two singletons (component of size 1), then add e_1 to the graph; otherwise, add e_2 .
- Shall consider continuous time version wherein between any ordered pair of edges, poisson process with rate $2/n^3$.

E

 $\mathcal{A} \mathcal{A} \mathcal{A}$

/□ ▶ ◀ 토 ▶ ◀ 토 ▶ |

- Motivated by very interesting question of D. Achlioptas. Delay emergence of giant component using simple rules
- Each step, two candidate edges (e_1, e_2) chosen uniformly among all $\binom{n}{2} \times \binom{n}{2}$ possible pairs of ordered edges. If e_1 connect two singletons (component of size 1), then add e_1 to the graph; otherwise, add e_2 .
- Shall consider continuous time version wherein between any ordered pair of edges, poisson process with rate $2/n^3$.

Shankar Bhamidi

[Bohman, Frieze 2001] The delay of phase transition

Consider the continuous time version $\mathcal{G}_n^{BF}(t)$, then there exists $\epsilon > 0$ such that at time $t_c^{ER} + \epsilon$,

 $\mathcal{C}_1(t_c^{ER} + \epsilon) = o(n)$

[Bohman, Frieze 2001] The delay of phase transition

Consider the continuous time version $\mathcal{G}_n^{BF}(t)$, then there exists $\epsilon > 0$ such that at time $t_c^{ER} + \epsilon$,

$$\mathcal{C}_1(t_c^{ER} + \epsilon) = o(n)$$

[Spencer, Wormald 2004] The critical time

- $t_c^{BF} \approx 1.1763 > t_c^{ER} = 1.$
- (super-critical) when $t > t_c$, $C_1 = \Theta(n)$, $C_2 = O(\log n)$.
- (sub-critical) when $t < t_c$, $C_1 = O(\log n)$, $C_2 = O(\log n)$.

▲□▶▲@▶▲≣▶▲≣▶ = ■

 $\checkmark Q ($

[Bohman, Frieze 2001] The delay of phase transition

Consider the continuous time version $\mathcal{G}_n^{BF}(t)$, then there exists $\epsilon > 0$ such that at time $t_c^{ER} + \epsilon$,

$$\mathcal{C}_1(t_c^{ER} + \epsilon) = o(n)$$

[Spencer, Wormald 2004] The critical time

- $t_c^{BF} \approx 1.1763 > t_c^{ER} = 1.$
- (super-critical) when $t > t_c$, $C_1 = \Theta(n)$, $C_2 = O(\log n)$.
- (sub-critical) when $t < t_c$, $C_1 = O(\log n)$, $C_2 = O(\log n)$.

Near Criticality

- Janson and Spencer (2011) analyzed how $s_2(\cdot), s_3(\cdot) \to \infty$ as $t \uparrow t_c$.
- Kang, Perkins and Spencer (2011) analyze the near subcritical $(t_c \epsilon)$ regime.

▲□▶▲圖▶▲필▶▲필▶ _ 필 _

 $\land \land \land \land$

- Fix $K \ge 1$
- Let $\Omega_K = \{1, 2, \dots, K, \omega\}$
- General bounded size rule: subset $F \subset \Omega_K^4$.
- Pick 4 vertices uniformly at random. If (c(v₁), c(v₂), c(v₃), c(v₄)) ∈ F then choose edge e₁ else e₂

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─

Ξ

 \mathcal{A}

- Fix $K \ge 1$
- Let $\Omega_K = \{1, 2, \dots, K, \omega\}$
- General bounded size rule: subset $F \subset \Omega_K^4$.
- Pick 4 vertices uniformly at random. If (c(v₁), c(v₂), c(v₃), c(v₄)) ∈ F then choose edge e₁ else e₂

BF model

 $K = 1, F = \{(1, 1, \alpha, \beta)\}.$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ─ 豆

 \mathcal{A}

Theorem (Bhamidi, Budhiraja, Wang, 2012)

Let $(\mathcal{C}_n^{(1)}(t), \mathcal{C}_n^{(2)}(t), ...)$ be the component sizes of $\mathcal{G}_n^{BSR}(t)$ in decreasing order. Define the rescaled size vector $\mathbf{C}_n(\lambda)$, $-\infty < \lambda < +\infty$ as the vector

$$\mathbf{C}_n(\lambda) := (\bar{\mathcal{C}}_i(\lambda) : i \ge 1) = \left(\frac{\beta^{1/3}}{n^{2/3}}\mathcal{C}_n^{(i)}(t_c + \frac{\beta^{2/3}\alpha\lambda}{n^{1/3}}) : i \ge 1\right)$$

where α, β are constants determined by the BSR process. Then

$$\{\mathbf{C}_n(\lambda): -\infty < \lambda < \infty\} \xrightarrow{d} \{\boldsymbol{\xi}(\lambda): -\infty < \lambda < \infty\}$$

- < ≡ > < ≡ >

王

BF constants

$$\begin{aligned} x'(t) &= -x^2(t) - (1 - x^2(t))x(t) & \text{for } t \in [0, \infty) \\ s'_2(t) &= x^2(t) + (1 - x^2(t))s_2^2(t) & \text{for } t \in [0, t_c), \\ s'_3(t) &= 3x^2(t) + 3(1 - x^2(t))s_2(t)s_3(t) & \text{for } t \in [0, t_c), \\ \end{aligned}$$

$$s_2(t) \sim \frac{\alpha}{t_c - t}, \qquad s_3(t) \sim \beta (s_2(t))^3 \sim \beta \frac{\alpha^3}{(t_c - t)^3} \qquad \text{as } t \uparrow t_c.$$

Final equation:

$$v'(t) := -2x^{2}(t)^{2}y(t)v(t) + \frac{x^{2}(t)y^{2}(t)}{2} + 1 - x^{2}(t), \qquad v(0) = 0$$

Easy to check

$$\lim_{t\uparrow t_c} v(t) := \varrho \approx .811.$$

Ē

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

<ロ > < 回 > < 回 > < 巨 > < 巨 > <

Theorem: Metric space asymptotics

For the Bohman Frieze process we have

$$\left(\operatorname{scl}\left(\frac{\beta^{2/3}}{\rho n^{1/3}},\frac{\beta^{1/3}}{n^{2/3}}\right)\mathcal{C}_{i}^{(n)}\left(t_{c}+\frac{\beta^{2/3}\alpha}{n^{1/3}}\lambda\right):i\geqslant1\right)\overset{\mathrm{w}}{\longrightarrow}\mathbf{Crit}_{\infty}(\lambda),$$

Theorem

Same is true for **any** bounded size rule with appropriate rule dependent constants α_F, β_F and ρ_F

▲ 글 ▶

Key principle 1: Dynamics and behavior after barely subcritical regime

- Other than as an artifact of the proof technique (Martingale FCLT) why do maximal components in the critical regime look like Erdos-Renyi?
- One reason: Dynamics after the barely subcritical regime.
- What do I mean?

王

 $\checkmark Q (\sim$

Assign independent Poisson processes rate 1/n on each of the ⁿ₂ possible edges {i, j}.
 When process corresponding to an edge fires, place that edge.

<! ■ > < ■ > !

王

 \mathcal{A}

- Assign independent Poisson processes rate 1/n on each of the ⁿ₂ possible edges {i, j}. When process corresponding to an edge fires, place that edge.
- Gives a continuous time version of the Erdos-Renyi evolving at rate n/2

토▶ ◀ 토▶

Ξ

 $\checkmark Q (\land$

- Assign independent Poisson processes rate 1/n on each of the ⁿ₂ possible edges {i, j}.
 When process corresponding to an edge fires, place that edge.
- Gives a continuous time version of the Erdos-Renyi evolving at rate n/2
- For fixed λ

 $\mathbf{C}_n(\lambda) := n^{-2/3}(|\mathcal{C}_i(1+\lambda/n^{1/3})| : i \ge 1,) \xrightarrow{d} \boldsymbol{\xi}(\lambda) := \text{ Excursion lengths }.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\checkmark Q (~$

- Assign independent Poisson processes rate 1/n on each of the ⁿ₂ possible edges {i, j}.
 When process corresponding to an edge fires, place that edge.
- Gives a continuous time version of the Erdos-Renyi evolving at rate n/2
- For fixed λ

$$\mathbf{C}_n(\lambda) := n^{-2/3}(|\mathcal{C}_i(1+\lambda/n^{1/3})| : i \ge 1,) \xrightarrow{d} \boldsymbol{\xi}(\lambda) := \text{ Excursion lengths}$$

Important question

What happens to $\{\mathbf{C}_n^*(\lambda) : -\infty < \lambda < \infty\}$ as a process in λ ?

- < ≡ > < ≡ >

王

 $\checkmark Q (\land$

• Recall we are looking at the new time scale $t = 1 + \lambda/n^{1/3}$

<ロ > < 団 > < 巨 > < 巨 > < 巨 > <

Ē

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

- Recall we are looking at the new time scale $t = 1 + \lambda/n^{1/3}$
- In this time scale, in time interval $[\lambda, \lambda + d\lambda)$, components a and b merge at rate

$$\frac{1}{n^{1/3}} \times \frac{\mathcal{C}_a(1+\lambda/n^{1/3})\mathcal{C}_b(1+\lambda/n^{1/3})}{n} = \bar{\mathcal{C}}_a(\lambda)\bar{\mathcal{C}}_a(\lambda)$$

• Aldous showed there exists an l^2_{\downarrow} valued Markov process $\{X(\lambda) : -\infty < \lambda < \infty\}$ called the **Standard multiplicative coalescent** such that

$$\{\mathbf{C}_n(\lambda): -\infty < \lambda < \infty\} \stackrel{d}{\Longrightarrow} \{\boldsymbol{\xi}(\lambda): -\infty < \lambda < \infty\}$$

▲ @ ▶ ▲ E ▶ ▲ E ▶ ...

Dynamics

• For each fixed λ , $\boldsymbol{\xi}(\lambda)$ has distribution given by excursion lengths

Ē

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

< □ > < □ > < □ > < □ > < □ > .

Dynamics

- For each fixed λ , $\boldsymbol{\xi}(\lambda)$ has distribution given by excursion lengths
- suppose $\mathbf{X}(\lambda) = (x_1, x_2, x_3, ...)$, each x_l is viewed as the size of a cluster.
- each pair of clusters of sizes (x_i, x_j) merges at rate $x_i x_j$ into a cluster of size $x_i + x_j$.
- if x_i, x_j is merging, then $(x_1, x_2, x_3, ...) \rightsquigarrow (x'_1, x'_2, x'_3, ...)$ where the latter is the re-ordering of $\{x_i + x_j, x_l : l \neq i, j\}$.

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ .

Ξ.

 $\checkmark Q (\land$

Dynamics

- For each fixed λ , $\boldsymbol{\xi}(\lambda)$ has distribution given by excursion lengths
- suppose $\mathbf{X}(\lambda) = (x_1, x_2, x_3, ...)$, each x_l is viewed as the size of a cluster.
- each pair of clusters of sizes (x_i, x_j) merges at rate $x_i x_j$ into a cluster of size $x_i + x_j$.
- if x_i, x_j is merging, then $(x_1, x_2, x_3, ...) \rightsquigarrow (x'_1, x'_2, x'_3, ...)$ where the latter is the re-ordering of $\{x_i + x_j, x_l : l \neq i, j\}$.
- If your initial starting configuration at time " $\lambda = -\infty$ " has good properties and follows the merging dynamics of the multiplicative coalescent then

$$\{\mathbf{C}_n(\lambda): -\infty < \lambda < \infty\} \stackrel{d}{\Longrightarrow} \{\boldsymbol{\xi}(\lambda): -\infty < \lambda < \infty\}$$

王

 $\checkmark Q (\land$

Recall CM_n : Related to Janson-Luczak dynamic construction

- Start with n vertices with d_i half-edges for $i \in [n]$. At time t = 0 start with n-isolated vertices.
- Each half-edge has exponential rate one clock. When clock rings, chooses one of the alive (active) half-edges, forms a full edge and both half-edges die (leave system).
- If you ran this process for $t = \infty$ then get full $CM_n(\infty)$.
- $\{CM_n(t) : t \ge 0\}$ dynamic graph valued process.
- Standard results imply critical time

$$t_c = \frac{1}{2} \log \frac{\nu}{\nu - 1}.$$

◀□▶◀圖▶◀壹▶◀壹▶

王

 $\checkmark Q (\land$

$$d_1 = 1, \quad d_2 = 2, \quad d_3 = 2, \quad d_4 = 1$$

Recall CM_n : Related to Janson-Luczak dynamic construction

- Start with n vertices with d_i half-edges for $i \in [n]$. At time t = 0 start with n-isolated vertices.
- Each half-edge has exponential rate one clock. When clock rings, chooses one of the alive (active) half-edges, forms a full edge and both half-edges die (leave system).
- If you ran this process for $t = \infty$ then get full $CM_n(\infty)$.
- $\{CM_n(t) : t \ge 0\}$ dynamic graph valued process.
- Standard results imply critical time

$$t_c = \frac{1}{2} \log \frac{\nu}{\nu - 1}.$$

Phase transition

- $t < t_c$: $\mathcal{C}_1(t) = O(\log n)$.
- $t > t_c$: $C_1(t) = f(t)n$. $f(t) \uparrow \rho(\nu)$.

 $\checkmark Q ($

By results of Fountanakis and Janson

$$\operatorname{Perc}_n(p(\lambda)) \approx \operatorname{CM}_n\left(t_c + \frac{\nu}{2(\nu-1)}\frac{\lambda}{n^{1/3}}\right)$$

So what?

 Have transferred a nice static problem (percolation) into something about a dynamic graph valued process.

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶

 $\checkmark Q (~$

Component at a given time t - represents used holf edges - represents still free/alive half edges

By results of Fountanakis and Janson

$$\operatorname{Perc}_n(p(\lambda)) \approx \operatorname{CM}_n\left(t_c + \frac{\nu}{2(\nu-1)}\frac{\lambda}{n^{1/3}}\right)$$

So what?

- Have transferred a nice static problem (percolation) into something about a dynamic graph valued process.
- Components do not merge at rate proportional to **size** of components
- Abusing notation, let $f_i(t)$ be the number of **alive edges** in $C_i(t)$ at time t. The $C_i(t)$ and $C_j(t)$ merge at rate

$$f_{i}(t)\frac{f_{j}(t)}{n\bar{s}_{1}(t)} + f_{j}(t)\frac{f_{i}(t)}{n\bar{s}_{1}(t)} = \frac{2f_{i}(t)f_{j}(t)}{n\bar{s}_{1}(t)}.$$

<ロ> <同> <同> < 三> < 三> < □> <

- New component has size $f_i(t) + f_j(t) 2$.
- However hard to control this graph-valued process all the way from t = 0.

Barely subcritical regime

- Recall that we are interested in times of the form $t_c + \lambda/n^{1/3}$.
- Fix $\delta \in (1/5, 1/6)$. Define

$$t_n := t_c - \frac{1}{n^\delta}.$$

• Call a component at time t_n a **Blob**.

Ē

 $\checkmark Q (~$

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶ →

Barely subcritical regime

- Recall that we are interested in times of the form $t_c + \lambda/n^{1/3}$.
- Fix $\delta \in (1/5, 1/6)$. Define

$$t_n := t_c - \frac{1}{n^{\delta}}$$

• Call a component at time t_n a **Blob**.

Figure: Blob: From http://blue-cat00.deviantart.com/art/Mr-Ice-Cream-Blob-366286224

Ē

 $\checkmark Q (~$

Switching to general methodology

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

I: Blob-level superstructure

 Random graphs: Viewing each blob as a single vertex this encapsulates connections between blobs formed in the interval

$$\left[t_c - \frac{1}{n^{\delta}}, t_c + \frac{\lambda}{n^{1/3}}\right]$$

Can hope that as we move from barely subcritical to critical scaling window, blobs merge like the multiplicative coalescent

-∢ ∃ ▶

I.

 $\checkmark Q (\land$

I: Blob-level superstructure

 Random graphs: Viewing each blob as a single vertex this encapsulates connections between blobs formed in the interval

$$\left[t_c - \frac{1}{n^{\delta}}, t_c + \frac{\lambda}{n^{1/3}}\right]$$

Can hope that as we move from barely subcritical to critical scaling window, blobs merge like the multiplicative coalescent (approximately at rate proportional $x_i x_j$ where x_i some appropriate functional of blob, e.g. free edges as in Aldous's multiplicative coalescent)

- ₹ ₹ ▶

 $\checkmark Q (\land$

I: Blob-level superstructure

 Random graphs: Viewing each blob as a single vertex this encapsulates connections between blobs formed in the interval

$$\left[t_c - \frac{1}{n^{\delta}}, t_c + \frac{\lambda}{n^{1/3}}\right]$$

Can hope that as we move from barely subcritical to critical scaling window, blobs merge like the multiplicative coalescent (approximately at rate proportional $x_i x_j$ where x_i some appropriate functional of blob, e.g. free edges as in Aldous's multiplicative coalescent) all the action happens here, so need delicate estimates but there is hope!.

▲ 글 ▶

- ₹ ₹ ▶

I: Blob-level superstructure

Random graphs: Viewing each blob as a single vertex this encapsulates connections between blobs formed in the interval

$$\left[t_c - \frac{1}{n^{\delta}}, t_c + \frac{\lambda}{n^{1/3}}\right]$$

Can hope that as we move from barely subcritical to critical scaling window, blobs merge like the multiplicative coalescent (approximately at rate proportional $x_i x_j$ where x_i some appropriate functional of blob, e.g. free edges as in Aldous's multiplicative coalescent) all the action happens here, so need delicate estimates but there is hope!.

• Abstract case: Collection of blobs $\mathcal{V}_{blob} := [m]$ with weights x and parameter q. $\mathcal{G}(\mathbf{x}, q)$ random graph formed using connection probability

$$p_{ij} = 1 - \exp(-qx_ix_j)$$

< ∃ ▶ < ∃ ▶

II: Blobs

• Random graphs: Components at time t_n . Note that when we connect two vertices in blobs we do **not** choose these vertices uniformly in CM_n but with probability proportional to **number of live edges at time** t_n .

II: Blobs

• Random graphs: Components at time t_n . Note that when we connect two vertices in blobs we do **not** choose these vertices uniformly in CM_n but with probability proportional to **number of live edges at time** t_n . Typical blobs: size n^{δ} . Maximal blob size: $n^{2\delta}$ with log correction.

- ₹ ►

 Ξ

Ξ

 $\checkmark Q (\sim$

Component at a given time t - represents used holf edges - represents still free/alive half edges

II: Blobs

- Random graphs: Components at time t_n . Note that when we connect two vertices in blobs we do **not** choose these vertices uniformly in CM_n but with probability proportional to **number of live edges at time** t_n . Typical blobs: size n^{δ} . Maximal blob size: $n^{2\delta}$ with log correction. Heavy tails!
- Abstract case: A family of compact connected measured metric spaces
 M := {(M_i, d_i, μ_i) : i ∈ V}, one for each blob in G(x, q). Further assume that for all i ∈ V, μ_i is a probability measure namely μ_i(M_i) = 1.

▲ 글 ▶ ◀ 글 ▶

II: Blobs

- Random graphs: Components at time t_n . Note that when we connect two vertices in blobs we do **not** choose these vertices uniformly in CM_n but with probability proportional to **number of live edges at time** t_n . Typical blobs: size n^{δ} . Maximal blob size: $n^{2\delta}$ with log correction. Heavy tails!
- Abstract case: A family of compact connected measured metric spaces
 M := {(M_i, d_i, μ_i) : i ∈ V}, one for each blob in G(x, q). Further assume that for all i ∈ V, μ_i is a probability measure namely μ_i(M_i) = 1.

III: Blob-blob junction points

- **Random graphs:** e.g. configuration model, choose vertices with probability proportional to number of live edges at time $t_n = t_c n^{-\delta}$.
- Abstract case: This is a collection of points $\mathbf{X} := (X_{i,j} : i \in \mathcal{V}, j \in \mathcal{V}_{blob})$ such that $X_{i,j} \sim \mu_i \in M_i$ iid for all i, j.

<ロ > < 同 > < 巨 > < 巨 > <

Ξ.

 $\checkmark Q (~$

- Given above 3 ingredients form metric space $\overline{M} := \bigsqcup_{i \in [n]} M_i$ in the obvious manner.
- For $x, y \in \bar{M}$

$$\bar{d}(x,y) = \inf_{k;i_0,\ldots,i_k} \left\{ k + d_{i_0}(x, X_{i_0,i_1}) + \sum_{\ell=1}^{k-1} d_{i_\ell}(X_{i_\ell,i_{\ell-1}}, X_{i_\ell,i_{\ell+1}}) + d_{i_k}(X_{i_k,i_{k-1}}, y) \right\},\$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ →

Ē

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Key principle 2: Blob-level picture and universality

Aim: study $\mathcal{G}(\mathbf{x}, q)$.

Negligibility Assumptions

• Aldous's assumptions for multiplicative coalescent. $\sigma_k = \sum_{i \in [m]} x_i^k$

$$\frac{\sigma_3}{(\sigma_2)^3} \to 1, \ q - \frac{1}{\sigma_2} \to \lambda, \ \frac{x_{\max}}{\sigma_2} \to 0,$$

• Additional assumptions: There exist $\eta_0 \in (0, 1/2)$ and $r_0 \in (0, \infty)$ as $n \to \infty$, we have

$$\frac{x_{\max}}{\sigma_2^{3/2+\eta_0}} \to 0, \quad \frac{\sigma_2^{r_0}}{x_{\min}} \to 0.$$

Theorem: Blob-level scaling

Treat $(C_i : i \ge 1)$ as measured metric spaces using graph distance and weighted measure where each blob $i \in [m]$ has weight x_i . Under above Assumptions, for maximal components in $\mathcal{G}(\mathbf{x}, q)$

(口)

Key principle 2: Blob-level picture and universality

Aim: study $\mathcal{G}(\mathbf{x},q)$.

Negligibility Assumptions

• Aldous's assumptions for multiplicative coalescent. $\sigma_k = \sum_{i \in [m]} x_i^k$

$$\frac{\sigma_3}{(\sigma_2)^3} \to 1, \ q - \frac{1}{\sigma_2} \to \lambda, \ \frac{x_{\max}}{\sigma_2} \to 0,$$

• Additional assumptions: There exist $\eta_0 \in (0, 1/2)$ and $r_0 \in (0, \infty)$ as $n \to \infty$, we have

$$\frac{x_{\max}}{\sigma_2^{3/2+\eta_0}} \to 0, \quad \frac{\sigma_2^{r_0}}{x_{\min}} \to 0.$$

Theorem: Blob-level scaling

Treat $(C_i : i \ge 1)$ as measured metric spaces using graph distance and weighted measure where each blob $i \in [m]$ has weight x_i . Under above Assumptions, for maximal components in $\mathcal{G}(\mathbf{x}, q)$ (here size of a component $\mathcal{C} \subseteq \mathcal{G}(\mathbf{x}, q)$ is $\sum_{i \in \mathcal{C}} x_i$)

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● □

Key principle 2: Blob-level picture and universality

Aim: study $\mathcal{G}(\mathbf{x},q)$.

Negligibility Assumptions

• Aldous's assumptions for multiplicative coalescent. $\sigma_k = \sum_{i \in [m]} x_i^k$

$$\frac{\sigma_3}{(\sigma_2)^3} \to 1, \ q - \frac{1}{\sigma_2} \to \lambda, \ \frac{x_{\max}}{\sigma_2} \to 0,$$

• Additional assumptions: There exist $\eta_0 \in (0, 1/2)$ and $r_0 \in (0, \infty)$ as $n \to \infty$, we have

$$\frac{x_{\max}}{\sigma_2^{3/2+\eta_0}} \to 0, \quad \frac{\sigma_2^{r_0}}{x_{\min}} \to 0.$$

Theorem: Blob-level scaling

Treat $(C_i : i \ge 1)$ as measured metric spaces using graph distance and weighted measure where each blob $i \in [m]$ has weight x_i . Under above Assumptions, for maximal components in $\mathcal{G}(\mathbf{x}, q)$ (here size of a component $\mathcal{C} \subseteq \mathcal{G}(\mathbf{x}, q)$ is $\sum_{i \in \mathcal{C}} x_i$) we have

$$(\operatorname{scl}(\sigma_2, 1)\mathcal{C}_i : i \ge 1) \xrightarrow{\mathrm{w}} \operatorname{\mathbf{Crit}}_{\infty}(\lambda)$$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● □

Intuitive calculation

 For wide variety of models (e.g. Janson, Janson+Riordan, Janson+Luczak, Janson + Spencer) one can show that susceptibility

$$s_2(t) = \frac{1}{n} \sum_i |\mathcal{C}_i(t)|^2 \sim \frac{\alpha}{t_c - t}$$

- Note $t_n = t_c n^{-\delta}$. Pick a vertex V_n at random, expect $\mathbb{E}(\mathcal{C}_{V_n}(t_n)) \sim \alpha n^{\delta}$.
- Our techniques imply that at $t_c + \lambda/n^{1/3}$, # of blobs in $C_1(\lambda)$ is $n^{2/3-\delta}$.
- So expect **Blob-level-superstructure** should scale like $\sqrt{n^{2/3-\delta}} = n^{1/3-\delta/2}$. Typical blob should look like a critical random tree of size n^{δ} so distance within blob $n^{\delta/2}$.
- Thus distances scale like $n^{1/3}$ Awesome!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Intuitive calculation

 For wide variety of models (e.g. Janson, Janson+Riordan, Janson+Luczak, Janson + Spencer) one can show that susceptibility

$$s_2(t) = \frac{1}{n} \sum_i |\mathcal{C}_i(t)|^2 \sim \frac{\alpha}{t_c - t}$$

- Note $t_n = t_c n^{-\delta}$. Pick a vertex V_n at random, expect $\mathbb{E}(\mathcal{C}_{V_n}(t_n)) \sim \alpha n^{\delta}$.
- Our techniques imply that at $t_c + \lambda/n^{1/3}$, # of blobs in $C_1(\lambda)$ is $n^{2/3-\delta}$.
- So expect **Blob-level-superstructure** should scale like $\sqrt{n^{2/3-\delta}} = n^{1/3-\delta/2}$. Typical blob should look like a critical random tree of size n^{δ} so distance within blob $n^{\delta/2}$.
- Thus distances scale like $n^{1/3}$ Awesome! Right answer, wrong intuition

Theorem

In critical random graphs, for the blob-level superstructure one has

$$\frac{1}{n^{1/3-\delta}}\tilde{\mathcal{C}}_1(\lambda) \xrightarrow{\mathrm{w}} \mathrm{Crit}_1(\lambda).$$

<ロ > < 回 > < 回 > < 回 > < 回 > <

I.

p-trees

Fix pmf $\mathbf{p} = \{p_1, p_2, \dots, p_m\}$. A rooted random planar tree $\mathcal{T}^{\mathbf{p}}$ with vertex set [m] is called a \mathbf{p} -tree if it has probability distribution

$$\mathbb{P}_{\mathrm{ord}}(\mathcal{T}^{\mathbf{p}} = \mathbf{t}) = \prod_{v \in [m]} \frac{p_v^{d_v(\mathbf{t})}}{(d_v(\mathbf{t}))!}, \qquad \mathbf{t} \in \mathbb{T}_m^{\mathrm{ord}}.$$

Tilted p-trees

- Any rooted planar tree t defines a natural depth first exploration. Start with root and use order associated t.
- P(t): collection of permitted edges (pairs of vertices both belong to stack of active vertices during exploration process).
- Define function $L: \mathbb{T}_m^{\mathrm{ord}} \to \mathbb{R}$

$$L(\mathbf{t}) := \prod_{(i,j)\in E(\mathbf{t})} \left[\frac{\exp(ap_i p_j) - 1}{ap_i p_j} \right] \exp\left(\sum_{(i,j)\in\mathscr{P}(\mathbf{t})} ap_i p_j\right), \quad \mathbf{t}\in\mathbb{T}_m^{\text{ord}}$$

p-trees

Fix pmf $\mathbf{p} = \{p_1, p_2, \dots, p_m\}$. A rooted random planar tree $\mathcal{T}^{\mathbf{p}}$ with vertex set [m] is called a \mathbf{p} -tree if it has probability distribution

$$\mathbb{P}_{\mathrm{ord}}(\mathcal{T}^{\mathbf{p}} = \mathbf{t}) = \prod_{v \in [m]} \frac{p_v^{d_v(\mathbf{t})}}{(d_v(\mathbf{t}))!}, \qquad \mathbf{t} \in \mathbb{T}_m^{\mathrm{ord}}.$$

Tilted p-trees

- Any rooted planar tree t defines a natural depth first exploration. Start with root and use order associated t.
- $\mathscr{P}(t)$: collection of permitted edges (pairs of vertices both belong to stack of active vertices during exploration process).
- Define function $L: \mathbb{T}_m^{\mathrm{ord}} \to \mathbb{R}$

$$L(\mathbf{t}) := \prod_{(i,j)\in E(\mathbf{t})} \left[\frac{\exp(ap_i p_j) - 1}{ap_i p_j} \right] \exp\left(\sum_{(i,j)\in\mathscr{P}(\mathbf{t})} ap_i p_j\right), \quad \mathbf{t}\in\mathbb{T}_m^{\text{ord}}.$$
$$\frac{d\tilde{\mathbb{P}}_{\text{ord}}}{d\mathbb{P}_{\text{ord}}}(\mathbf{t}) = \frac{L(\mathbf{t})}{\mathbb{E}_{\text{ord}}[L(\mathcal{T}^{\mathbf{p}})]}, \text{ for } \mathbf{t}\in\mathbb{T}_m,$$

- $q_{u,v} = 1 \exp(-ap_i p_j).$
- $\bullet\,$ Consider distribution on space of connected simple graphs with vertex set m

$$\mathbb{P}_{\operatorname{con}}(G;\mathbf{p},a) := \frac{1}{Z(\mathbf{p},a)} \prod_{(u,v)\in E(G)} q_{uv} \prod_{(u,v)\notin E(G)} (1-q_{uv}), \text{ for } G \in \mathbb{G}_{\mathcal{V}}^{\operatorname{con}},$$

Major technical tool in establishing universality:

Theorem (SB, Sanchayan Sen, Xuan Wang)

A random graph $\mathcal{G}_m \sim \mathbb{P}_{con}$ with distribution as above can be constructed as follows:

- **1** Generate tilted **p**-tree $\tilde{\mathcal{T}}$.
- 2 Conditional on $\tilde{\mathcal{T}}$ permitted edges $\{u, v\} \in \mathscr{P}(\tilde{\mathcal{T}})$ independently with probability q_{uv} .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □

- $q_{u,v} = 1 \exp(-ap_i p_j).$
- $\bullet\,$ Consider distribution on space of connected simple graphs with vertex set m

$$\mathbb{P}_{\operatorname{con}}(G;\mathbf{p},a) := \frac{1}{Z(\mathbf{p},a)} \prod_{(u,v)\in E(G)} q_{uv} \prod_{(u,v)\notin E(G)} (1-q_{uv}), \text{ for } G \in \mathbb{G}_{\mathcal{V}}^{\operatorname{con}},$$

Major technical tool in establishing universality:

Theorem (SB, Sanchayan Sen, Xuan Wang)

A random graph $\mathcal{G}_m \sim \mathbb{P}_{con}$ with distribution as above can be constructed as follows:

- **1** Generate tilted **p**-tree $\tilde{\mathcal{T}}$.
- 2 Conditional on $\tilde{\mathcal{T}}$ permitted edges $\{u, v\} \in \mathscr{P}(\tilde{\mathcal{T}})$ independently with probability q_{uv} .

Used to show continuum scaling limits of rank-one/Norros-Reittu/Britton-Deijfen/Chung-Lu model.

Setting and assumptions

- Recall $X_{i,1}$: junction point in M_i picked using measure μ_i . Let $u_{i,1} = \mathbb{E}(d_i(X_{i,1}, X_{i,2}))$.
- $d_{\max} = \max_i (\operatorname{diam}(M_i)).$
- Assumptions: In addition to previous assumptions, assume

$$\frac{x_{\max}}{\sigma_2^{3/2+\eta_0}} \to 0, \quad \frac{\sigma_2^{r_0}}{x_{\min}} \to 0, \quad \frac{d_{\max}\sigma_2^{3/2-\eta_0}}{\sum_{i=1}^{\infty} x_i^2 u_{i,1} + \sigma_2} \to 0, \quad \frac{\sigma_2 x_{\max} d_{\max}}{\sum_{i \in [n]} x_i^2 u_{i,1}} \to 0.$$

Ē

 $\checkmark Q (~$

Setting and assumptions

- Recall $X_{i,1}$: junction point in M_i picked using measure μ_i . Let $u_{i,1} = \mathbb{E}(d_i(X_{i,1}, X_{i,2}))$.
- $d_{\max} = \max_i (\operatorname{diam}(M_i)).$
- Assumptions: In addition to previous assumptions, assume

$$\frac{x_{\max}}{\sigma_2^{3/2+\eta_0}} \to 0, \quad \frac{\sigma_2^{r_0}}{x_{\min}} \to 0, \quad \frac{d_{\max}\sigma_2^{3/2-\eta_0}}{\sum_{i=1}^{\infty} x_i^2 u_{i,1} + \sigma_2} \to 0, \quad \frac{\sigma_2 x_{\max} d_{\max}}{\sum_{i\in[n]} x_i^2 u_{i,1}} \to 0.$$

Theorem: Complete metric space scaling

Under above assumptions

$$\left(\operatorname{scl}\left(\frac{(\sigma_2)^2}{\sigma_2 + \sum_{i \in [n]} x_i^2 u_{i,1}}, 1\right) \bar{\mathcal{C}}_i : i \ge 1\right) \xrightarrow{\mathrm{w}} \operatorname{Crit}_{\infty}(\lambda).$$

 \mathcal{A}

Case Study: Configuration model

Glimpse of how to carry out this program in a particular example. Assume $\lambda = 0$ for notational convenience.

What is needed?

• Show that mergers in $[t_c - n^{-\delta}, t_c]$ can be approximated via Multiplicative coalescent

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ →

Ē

 $\checkmark Q (~$

Case Study: Configuration model

Glimpse of how to carry out this program in a particular example. Assume $\lambda = 0$ for notational convenience.

What is needed?

• Show that mergers in $[t_c - n^{-\delta}, t_c]$ can be approximated via Multiplicative coalescent where size of blob is number of free edges $f_i = f_i(t_n)$.

<ロ> <同> <同> < 三> < 三> < □> <

 $\checkmark Q (~$

Glimpse of how to carry out this program in a particular example. Assume $\lambda = 0$ for notational convenience.

What is needed?

- Show that mergers in $[t_c n^{-\delta}, t_c]$ can be approximated via Multiplicative coalescent where size of blob is number of free edges $f_i = f_i(t_n)$.
- Show that blobs at time t_n have "good properties"

Merging dynamics

Recall components merge at rate

 $\frac{2f_i(t)f_j(t)}{n\bar{s}_1(t)}$

 $\checkmark Q (\land$

- < ≣ ▶ < ≣ ▶

Glimpse of how to carry out this program in a particular example. Assume $\lambda = 0$ for notational convenience.

What is needed?

- Show that mergers in $[t_c n^{-\delta}, t_c]$ can be approximated via Multiplicative coalescent where size of blob is number of free edges $f_i = f_i(t_n)$.
- Show that blobs at time t_n have "good properties"

Merging dynamics

Recall components merge at rate

$$\frac{2f_i(t)f_j(t)}{n\bar{s}_1(t)} \approx \frac{2\nu f_i(t)f_j(t)}{n(\mu(\nu-1))}, \qquad t \in \left[t_c - \frac{1}{n^{\delta}}, t_c\right].$$

• Modified process $\mathcal{G}_n^{\text{modi}}$: Start at time t_n with $CM_n(t_n)$. For all

$$\mathbf{e} = (u, v) \in FR(t_n) \times FR(t_n),$$

<ロ > < 回 > < 回 > < 回 > < 回 > <

王

 $\checkmark Q (\land$

 \mathcal{P}_{e} rate $\nu/(n\mu(\nu-1))$ Poisson process. When one of these ring, complete full edge but continue to consider (u, v) as "alive".

Case Study: Configuration model

• Natural coupling ensuring $CM_n \subseteq \mathcal{G}_n^{modi}$ (sampling without replacement and with replacement).

 $\mathcal{O} \mathcal{Q} \mathcal{O}$
Case Study: Configuration model

- Natural coupling ensuring $CM_n \subseteq \mathcal{G}_n^{modi}$ (sampling **without** replacement and **with** replacement). *Here* $\delta > 1/6$ *important.*
- Assume $CM_n(t_n)$ has good properties, apply main **universality theorem** to get that *maximal free-weight components* in $\mathcal{G}_n^{modi}(t_c)$ satisfy

$$\left(\frac{\beta^{2/3}}{\mu\nu}\frac{1}{n^{1/3}}\mathscr{C}_{i}^{\text{modi}}:i \ge 1\right) \stackrel{\text{w}}{\longrightarrow} \mathbf{Crit}_{\infty}\left(0\right)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\checkmark Q ($

Case Study: Configuration model

- Natural coupling ensuring $CM_n \subseteq \mathcal{G}_n^{modi}$ (sampling **without** replacement and **with** replacement). *Here* $\delta > 1/6$ *important.*
- Assume $CM_n(t_n)$ has good properties, apply main **universality theorem** to get that *maximal free-weight components* in $\mathcal{G}_n^{modi}(t_c)$ satisfy

$$\left(\frac{\beta^{2/3}}{\mu\nu}\frac{1}{n^{1/3}}\mathscr{C}_{i}^{\text{modi}}:i \ge 1\right) \stackrel{\text{w}}{\longrightarrow} \mathbf{Crit}_{\infty}\left(0\right)$$

• Technical argument 1: Showing that $n^{-2/3}$ free $(\mathcal{C}_i) \approx n^{-2/3}$ free $(\mathscr{C}_i^{\text{modi}})$. So $\mathcal{C}_i \subseteq \mathscr{C}_i^{\text{modi}}$ whp.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\checkmark Q (~$

Case Study: Configuration model

- Natural coupling ensuring $CM_n \subseteq \mathcal{G}_n^{modi}$ (sampling **without** replacement and **with** replacement). *Here* $\delta > 1/6$ *important.*
- Assume $CM_n(t_n)$ has good properties, apply main **universality theorem** to get that *maximal free-weight components* in $\mathcal{G}_n^{modi}(t_c)$ satisfy

$$\left(\frac{\beta^{2/3}}{\mu\nu}\frac{1}{n^{1/3}}\mathscr{C}_{i}^{\text{modi}}:i \ge 1\right) \stackrel{\text{w}}{\longrightarrow} \mathbf{Crit}_{\infty}\left(0\right)$$

• Technical argument 1: Showing that $n^{-2/3}$ free $(\mathcal{C}_i) \approx n^{-2/3}$ free $(\mathscr{C}_i^{\text{modi}})$. So $\mathcal{C}_i \subseteq \mathscr{C}_i^{\text{modi}}$ whp.

Tricky Technical argument 2 in picture form

Technical argument 2

- Show that $n^{-2/3}|\mathcal{C}_i| \approx n^{-2/3}|\mathscr{C}_i^{\text{modi}}|$.
- Properties of limit random metric space implies "white-space" vanishes in the limit.

Punchline

Assuming $CM_n(t_n)$ (barely subcritical regime) has good properties, using modified process allows us to prove asserted limit for maximal components.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem: Bounds on maximal component and diameter

Given $\delta < 1/4$ and $\alpha > 0$, there exists $C = C(\delta, \alpha) > 0$ such that

$$\mathbb{P}\left(\mathcal{C}_1(t_c-t) \leqslant \frac{C(\log n)^2}{(t_c-t)^2},\right.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─

Ξ

Theorem: Bounds on maximal component and diameter

Given $\delta < 1/4$ and $\alpha > 0$, there exists $C = C(\delta, \alpha) > 0$ such that

$$\mathbb{P}\left(\mathcal{C}_1(t_c-t) \leqslant \frac{C(\log n)^2}{(t_c-t)^2}, \operatorname{diam_{max}}(t_c-t) \leqslant \frac{C(\log n)^2}{(t_c-t)} \text{ for all } 0 \leqslant t < t_c - \frac{\alpha}{n^{\delta}}\right) \to 1,$$

as $n \to \infty$.

Ξ

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

▲□▶ ▲圖▶ ▲屋▶ ▲屋▶ ---

Theorem: Bounds on maximal component and diameter

Given $\delta < 1/4$ and $\alpha > 0$, there exists $C = C(\delta, \alpha) > 0$ such that

$$\mathbb{P}\left(\mathcal{C}_1(t_c-t) \leqslant \frac{C(\log n)^2}{(t_c-t)^2}, \operatorname{diam_{max}}(t_c-t) \leqslant \frac{C(\log n)^2}{(t_c-t)} \text{ for all } 0 \leqslant t < t_c - \frac{\alpha}{n^{\delta}}\right) \to 1,$$

as $n \to \infty$.

Why important

Recall universality result:

$$\left(\operatorname{scl}\left(\frac{(\sigma_2)^2}{\sigma_2 + \sum_{i \in [n]} x_i^2 u_{i,1}}, 1\right) \bar{\mathcal{C}}_i : i \ge 1\right) \xrightarrow{\mathrm{w}} \operatorname{Crit}_{\infty}(\lambda).$$

Ξ

 \mathcal{A}

<ロ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Barely subcritical $\{CM_n(t) : 0 \leq t \leq t_n\}$

Definitions

- Susceptibility functions: $s_l(t) := \frac{1}{n} \sum_i f_i^l(t), \quad g(t) := \frac{1}{n} \sum_i f_i(t) |\mathcal{C}_i(t)|.$
- Distance based susceptibility: $\mathcal{D}_1(\mathcal{C}(t)) = \sum_{e,f \in \mathcal{C}(t), e,f \text{ free }} d(e,f).$

$$\bar{\mathcal{D}}(t) := \frac{1}{n} \sum_{i} \mathcal{D}_1(\mathcal{C}_i(t)).$$

• Need to have refined estimates of above at $t = t_n$.

Barely subcritical $\{CM_n(t) : 0 \leq t \leq t_n\}$

Definitions

- Susceptibility functions: $s_l(t) := \frac{1}{n} \sum_i f_i^l(t), \quad g(t) := \frac{1}{n} \sum_i f_i(t) |\mathcal{C}_i(t)|.$
- Distance based susceptibility: $\mathcal{D}_1(\mathcal{C}(t)) = \sum_{e,f \in \mathcal{C}(t), e,f \text{ free }} d(e,f).$

$$\bar{\mathcal{D}}(t) := \frac{1}{n} \sum_{i} \mathcal{D}_1(\mathcal{C}_i(t)).$$

• Need to have refined estimates of above at $t = t_n$.

Theorem

Fix $\delta \in (1/6, 1/5)$ and $t_n = t_c - n^{-\delta}$. Then

$$\frac{n^{1/3}}{s_2(t_n)} - \frac{\nu^2 n^{1/3-\delta}}{\mu(\nu-1)^2} \bigg| \xrightarrow{\mathbf{P}} 0,$$
$$\frac{s_3(t_n)}{s_2^3(t_n)} \xrightarrow{\mathbf{P}} \frac{\beta}{\mu^3(\nu-1)^3}.$$

and further

$$\frac{D(t_n)}{n^{2\delta}}$$

Barely subcritical $\{ CM_n(t) : 0 \leq t \leq t_n \}$

Definitions

- Susceptibility functions: $s_l(t) := \frac{1}{n} \sum_i f_i^l(t), \quad g(t) := \frac{1}{n} \sum_i f_i(t) |\mathcal{C}_i(t)|.$
- Distance based susceptibility: $\mathcal{D}_1(\mathcal{C}(t)) = \sum_{e,f \in \mathcal{C}(t), e,f \text{ free }} d(e,f).$

$$\bar{\mathcal{D}}(t) := \frac{1}{n} \sum_{i} \mathcal{D}_1(\mathcal{C}_i(t)).$$

• Need to have refined estimates of above at $t = t_n$.

Theorem

Fix $\delta \in (1/6, 1/5)$ and $t_n = t_c - n^{-\delta}$. Then

$$\frac{n^{1/3}}{s_2(t_n)} - \frac{\nu^2 n^{1/3-\delta}}{\mu(\nu-1)^2} \bigg| \xrightarrow{\mathbf{P}} 0,$$
$$\frac{s_3(t_n)}{s_2^3(t_n)} \xrightarrow{\mathbf{P}} \frac{\beta}{\mu^3(\nu-1)^3}.$$

and further

$$\frac{\bar{\mathcal{D}}(t_n)}{n^{2\delta}} \xrightarrow{\mathrm{P}} \frac{\mu(\nu-1)^2}{\nu^3}, \qquad \frac{g(t_n)}{n^{\delta}} \xrightarrow{\mathrm{P}} \frac{(\nu-1)\mu}{\nu^2}.$$

Barely subcritical $\{CM_n(t) : 0 \leq t \leq t_n\}$: Proof idea

• Idea 1: Use couplings to barely subcritical branching processes. Used in our analysis of IRG.

- < 트 ≻ < 트 ≻

Ē

 \mathcal{A}

Barely subcritical $\{CM_n(t) : 0 \leq t \leq t_n\}$: Proof idea

- Idea 1: Use couplings to barely subcritical branching processes. Used in our analysis of IRG.
- Idea 2: Make dynamics work for us.
- **Example:** At rate $f_i(t)f_j(t)/n\bar{s}_1(t)$ components $C_i(t), C_j(t)$ merge. Assume this happens due to merging $e_0 \in C_i$ and $f_0 \in C_j$. Change

$$\begin{split} n(\Delta \bar{\mathcal{D}}(t)) &= 2 \sum_{\substack{e \in \mathcal{C}_i, \ f \in \mathcal{C}_j, \\ e \neq e_0 \ f \neq f_0}} \sum_{\substack{f \in \mathcal{C}_j, \\ e \neq e_0 \ f \neq f_0}} (d(e, e_0) + d(f, f_0) + 1) - 2 \sum_{e \in \mathcal{C}_i} d(e_0, e) - 2 \sum_{\substack{f \in \mathcal{C}_j, \\ e \in \mathcal{C}_j}} d(f_0, f) \\ &= 2 \left[\sum_{e \in \mathcal{C}_i} \sum_{\substack{f \in \mathcal{C}_j, \\ f \in \mathcal{C}_j}} (d(e_0, e) + d(f, f_0) + 1) - \sum_{e \in \mathcal{C}_i} (d(e, e_0) + 1) - \sum_{\substack{f \in \mathcal{C}_j, \\ e \in \mathcal{C}_j}} (d(f, f_0) + 1) + 1 \right] \\ &- 2 \mathcal{D}(u) - 2 \mathcal{D}(v) \\ &= 2 \left[\mathcal{D}(u) f_j + f_i \mathcal{D}(v) + f_i f_j - \mathcal{D}(u) - f_i - \mathcal{D}(v) - f_j + 1 \right] - 2 \mathcal{D}(u) - 2 \mathcal{D}(v). \end{split}$$

Suggests that $\overline{\mathcal{D}}(t) \to d(t)$ where limit function d satisfies differential equation:

$$d'(t) = \frac{1}{\mathfrak{S}_1} \left[4d\mathfrak{S}_2 + 2\mathfrak{S}_2^2 - 4d\mathfrak{S}_1 - 4\mathfrak{S}_2\mathfrak{S}_1 + 2\mathfrak{S}_1^2 - 4d\mathfrak{S}_1 \right],$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶

王

where $\mathfrak{S}_1, \mathfrak{S}_2$ limits of s_2, s_1 . Similar simpler analysis for s_2, s_3 .

$$\mathfrak{S}_2(t) = \frac{\mu e^{-2t} \left(-2\nu + (\nu - 1)e^{2t}\right)}{-\nu + e^{2t}(\nu - 1)}$$

Ē

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

▲□▶▲圖▶▲≧▶▲≧▶

$$\mathfrak{S}_{2}(t) = \frac{\mu e^{-2t} \left(-2\nu + (\nu - 1)e^{2t}\right)}{-\nu + e^{2t}(\nu - 1)}.$$
$$\mathfrak{S}_{3}(t) = \frac{-\beta + e_{3}(t)}{[-\nu + (\nu - 1)\exp(2t)]^{3}},$$

where

$$e_{3}(t) = -4\nu^{3}\mu - 9\nu^{2}\mu e^{2t} + 9\nu^{3}\mu e^{2t} - 6\nu\mu e^{4t} + 12\nu^{2}\mu e^{4t} - 6\nu^{3}\mu e^{4t} - \mu e^{6t} + 3\mu\nu e^{6t} - 3\nu^{2}\mu e^{6t} + \nu^{3}\mu e^{6t}.$$

Ē

$$\mathfrak{S}_{2}(t) = \frac{\mu e^{-2t} \left(-2\nu + (\nu - 1)e^{2t}\right)}{-\nu + e^{2t}(\nu - 1)}.$$
$$\mathfrak{S}_{3}(t) = \frac{-\beta + e_{3}(t)}{[-\nu + (\nu - 1)\exp(2t)]^{3}},$$

where

$$e_{3}(t) = -4\nu^{3}\mu - 9\nu^{2}\mu e^{2t} + 9\nu^{3}\mu e^{2t} - 6\nu\mu e^{4t} + 12\nu^{2}\mu e^{4t} - 6\nu^{3}\mu e^{4t} - \mu e^{6t} + 3\mu\nu e^{6t} - 3\nu^{2}\mu e^{6t} + \nu^{3}\mu e^{6t}.$$

and $e_3(t_c) = 0$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ē

$$\mathfrak{S}_{2}(t) = \frac{\mu e^{-2t} \left(-2\nu + (\nu - 1)e^{2t}\right)}{-\nu + e^{2t}(\nu - 1)}.$$
$$\mathfrak{S}_{3}(t) = \frac{-\beta + e_{3}(t)}{[-\nu + (\nu - 1)\exp(2t)]^{3}},$$

where

$$e_{3}(t) = -4\nu^{3}\mu - 9\nu^{2}\mu e^{2t} + 9\nu^{3}\mu e^{2t} - 6\nu\mu e^{4t} + 12\nu^{2}\mu e^{4t} - 6\nu^{3}\mu e^{4t} - \mu e^{6t} + 3\mu\nu e^{6t} - 3\nu^{2}\mu e^{6t} + \nu^{3}\mu e^{6t}.$$

and $e_3(t_c) = 0$.

$$d(t) := \frac{\nu^2 \mu (1 - e^{-2t})}{(\nu - (\nu - 1)e^{2t})^2}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ē

Differential equation method

- See nice work of Tom Kurtz and Nick Wormald's beautiful survey.
- Here: Limiting functions explode at t_c .
- Semi-martingale techniques: Developed in (SB, Budhiraja, Wang) to push approximation close to the barely subcritical regime.

· < Ē ▶ < Ē ▶

王

 $\checkmark Q (~$

Differential equation method

- See nice work of Tom Kurtz and Nick Wormald's beautiful survey.
- Here: Limiting functions explode at t_c .
- Semi-martingale techniques: Developed in (SB, Budhiraja, Wang) to push approximation close to the barely subcritical regime.

They work assuming one has good bounds on jumps of processes involved, in this case maximal component size and diameter. Which is what bound on maxima and diameter provides.

$$\mathbb{P}\left(\mathcal{C}_1(t_c-t)\leqslant \frac{C(\log n)^2}{(t_c-t)^2},\right.$$

I.

 $\checkmark Q (\land$

Differential equation method

- See nice work of Tom Kurtz and Nick Wormald's beautiful survey.
- Here: Limiting functions explode at t_c .
- Semi-martingale techniques: Developed in (SB, Budhiraja, Wang) to push approximation close to the barely subcritical regime.

They work assuming one has good bounds on jumps of processes involved, in this case maximal component size and diameter. Which is what bound on maxima and diameter provides.

$$\mathbb{P}\left(\mathcal{C}_1(t_c-t) \leqslant \frac{C(\log n)^2}{(t_c-t)^2}, \operatorname{diam}_{\max}(t_c-t) \leqslant \frac{C(\log n)^2}{(t_c-t)} \text{ for all } 0 \leqslant t < t_c - \frac{\alpha}{n^{\delta}}\right) \to 1,$$

as $n \to \infty$.

The differential equation approximation required $\delta < 1/5$

◀◻▶◀@▶◀≧▶◀≧▶

I.

- Described methodology to understand metric level structure of random graph models at criticality.
- One key point: dynamics.
- Works when (a) from the barely subcritical regime to the critical scaling window, components ("blobs") merge approximately like the multiplicative coalescent; (b) Good properties of the blobs at the entrance boundary.
- Intuition fails when naively thinking about superstructure and effect of averaging. Natural owing to heavy tails of blob sizes and size-biasing within connected components.
- Proof of concept in 3 classical families of random graphs

I.

 $\checkmark Q (\land$

- Described methodology to understand metric level structure of random graph models at criticality.
- One key point: dynamics.
- Works when (a) from the barely subcritical regime to the critical scaling window, components ("blobs") merge approximately like the multiplicative coalescent; (b) Good properties of the blobs at the entrance boundary.
- Intuition fails when naively thinking about superstructure and effect of averaging. Natural owing to heavy tails of blob sizes and size-biasing within connected components.
- Proof of concept in 3 classical families of random graphs

I.

 $\checkmark Q (\land$

Questions

- Other random graph models in the critical regime
- Have shown maximal components converge in the product topology on the space 𝟸^ℕ induced by d_{GHP}. Can think of the stronger l⁴ metric introduced by [AB-Br-Go]. Currently thinking of what one needs for this.

 $\checkmark Q ($

 \equiv

. ₹ 主 🕨

Questions

- Other random graph models in the critical regime
- Have shown maximal components converge in the **product** topology on the space $\mathscr{S}^{\mathbb{N}}$ induced by d_{GHP} . Can think of the stronger l^4 metric introduced by [AB-Br-Go]. Currently thinking of what one needs for this. For rank-one model have shown with Sanchayan and Xuan that for product topology convergence essential 6-th moments enough. For l^4 need higher moments.
- Currently think of how to now push this to understand MST scaling for general random graphs.

- ₹ ₹ ▶

I.

 $\checkmark Q ($

Questions

- Other random graph models in the critical regime
- Have shown maximal components converge in the **product** topology on the space $\mathscr{S}^{\mathbb{N}}$ induced by d_{GHP} . Can think of the stronger l^4 metric introduced by [AB-Br-Go]. Currently thinking of what one needs for this. For rank-one model have shown with Sanchayan and Xuan that for product topology convergence essential 6-th moments enough. For l^4 need higher moments.
- Currently think of how to now push this to understand MST scaling for general random graphs.

Extensions specific to models in talk

- **Configuration model:** Assumed exponential tails. Just a technical assumption to keep the paper to below 100 pages. Arises to get easy bounds in the subcritical regime. Can/should be easily reducible to finite moment conditions. *Finite third moment?*
- IRG: Again assume finite state space and strict positivity of the kernel κ to ignore issues such as reducibility of the associated multi-type BP. [BJR 05] derive conditions for general IRG when scaling exponents (barely supercritical regime) match those of Erdos-Renyi. *Extend results to this regime?*

▲□▶ ▲□▶ ▲□▶ ▲□▶

Ξ

Thank you for your attention!

Ē

 \mathcal{A}

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ →