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Motivation

Preferential attachment

Last few years: enormous interest in formulating models to “explain” real-world networks
(e.g. network of webpages, the Internet, social networks, gene regulatory networks etc).

One central model: preferential attachment. Amongst the first models for which explicit
power-law degree distribution derived.

Math world

Main thrust: asymptotic information on the degree distribution.

Largely based on recursions and concentration inequalities.

What if we wanted asymptotics for Global characteristics e.g. spectral distribution of
adjacency matrix?

How to analyze variants such as limited choice or non-local preferential attachment.
Analysis? Performance in practice?
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1 Preferential attachment model

2 Continuous time branching processes
3 Local weak convergence
4 Random adjacency matrices and Spectra (Arnab Sen, Steve Evans, SB)
5 Variants I: Superstar model (Mike Steel, Tauhid Zaman, SB)
6 Variants II: Preferential attachment with choice (Omer Angel, Robin Pemantle, SB)
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Continuous time construction

Local weak convergence

Basic model of growing trees

Setting

At time 2 start with two vertices labelled with [2] := {1,2} connected by single directed edge
1 2.

Let Tn = (Vn := [n],En ) be the tree at time n.

Attractiveness function: Assume we are given a (possibly random) function f (·,n) : Vn !R+.

Dynamics

At time n +1, new node labelled n +1 enters system.

Node n +1 attaches to node in Tn with probability proportional to f (·,n).

Most examples we consider: f (v,n) = f (D(v,n)) where f : {0,1, . . .} ! (0,1) is a fixed function.

D(v,n) = out-degree of node v at time n.
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Continuous time construction
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Examples of attractiveness functions

Attachment trees
1 YSBA (Yule-Simon-Barabasi-Albert) model: f (k) = k +1

2 Linear Preferential attachment model: f (k) = k +1+Æ, Æ> 0

3 Random fitness models Every new vertex v given a fitness fv ª ∫ (independent across
vertices).
(a) Multiplicative fitness: f (k) = fv (k +1).
(b) Additive fitness: f (k) = k +1+ fv .

4 Sublinear Pref Attachment: f (k) = (k +1)Æ, 0 <Æ< 1
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Conclusion

Continuous time construction

Local weak convergence

Main math idea

Simple idea [Karlin-Athreya]

Suppose we have vertex set {1,2, . . . ,m} with associated (strictly positive) weights
{d1,d2, . . .dm }.

Want to selected vertex i with probability proportional to di .

Elegant algorithm: Let Xi be independent rate di exponential random variables.

Let J be index
X J = min

1∑i∑m
Xi .

Then P(J = i ) / di .
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Outline

1 Preferential attachment: Base model
Continuous time construction
Local weak convergence

2 Twitter event networks and the superstar model
Retweet Graph and Superstar Model
Main Results
Comparison with Preferential Attachment Model
Superstar Model: Tools for Analysis
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Continuous time construction

Local weak convergence

Continuous time construction

Point process corresponding to attractiveness function f

P is Markov pure birth process with rate description

P(P (t , t +d t ] = 1|P (t ) = k) = f (k)d t .

For example, for f (k) = k +1 (usual preferential attachment model) we get the Yule process.

Continuous time branching process F (t )

1 Start with a single node at time 0 giving birth to children at times of P .
2 Each node born behaves in the same manner (has it’s own independent point process of

births).

Key connection

øn = inf{t : F (t ) = n} then F (øn )
d=T

f
n .
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Continuous time and discrete time in pictures

time
τ1

2 3

4

5

6

τ2 τ4τ3 τ15

 (1)

2 3 5

4
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Continuous time construction
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Branching process theory

Asymptotics
Conjectured by Euler. Developed by Jagers and Nerman.

Processes grow exponentially: |F (t )|ª e∏t

Here ∏ is a very important characteristic : called the Malthusian rate of growth

Given by the formula:
E(P (T∏)) = 1,

where T∏ ª exp(∏) independent of P .

Exact result
Under technical conditions (E(P (T∏), log+P (T∏)) <1):

|F (t )|e°∏t a.s.°!W.

In our settings: W > 0 a.s.

Bottom line:

øn ª 1
∏ logn ±OP (1)
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Case Study: Usual preferential attachment

f (k) = k +1

Offspring distribution: P (·) =Yule process

Malthusian rate of growth: ∏= 2.

Root degree asymptotics

Degree of the root = PΩ (øn )
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More refined analysis (Mori/Pekoz+Rollin+Ross) gives
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n
a.s.! Z Z has explicit recursive construction.
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Preferential attachment: Base model

Twitter event networks and the superstar model

Power of choice and random trees

Conclusion

Continuous time construction

Local weak convergence

Maximal degree

Basic heuristics for models with “heavy tails”

Due to exponential growth of the models in the natural “time scale”, maximal degree occurs
in a finite neighborhood of the root.

For usual preferential attachment model, using explicit distributional properties of Yule
process easy to conclude, for any given ≤> 0 9 K≤,

limsup
n!1

P

µ
maxdegnp

n
> K≤

∂
< ≤

With a bit more work, possible to deduce distributional convergence for the maximal degree.

Example of interesting results: Sublinear pref attachment f (k) = (k +1)Æ

degn (Ω)

(logn)
1

1°Æ

P!
≥

1
µ(Æ)

¥ 1
1°Æ
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Preferential attachment: Base model

Twitter event networks and the superstar model

Power of choice and random trees

Conclusion

Continuous time construction

Local weak convergence

Height asymptotics

hn = Furthest distance of a vertex from the root Ω in Tn .

Kingman’s result and Pittel’s “proof from the book”

Let Bk := first time that an individual in the kth generation (namely an individual at graph
distance k from the root) is born.

[Kingman]: There exists a (model dependent) limit constant ∞ such that:

Bk

k
a.s.°! ∞

model

For us we have
Bhn ∑ Tn ∑ Bhn+1

Thus
Bhn

hn
∑ øn

hn
∑

Bhn+1

hn

Now use the fact [Pittel’s argument] that

øn
1
∏ logn

a.s.°! 1 ) hn

logn
P! C

model
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Preferential attachment: Base model

Twitter event networks and the superstar model

Power of choice and random trees

Conclusion

Continuous time construction

Local weak convergence

Local asymptotics (Jagers+Nerman/Aldous)

Conceptual point

Construction of infinite (locally finite) rooted trees with a single infinite path. (Trees with
one end).

Local neighborhood of a random node asymptotically looks like neighborhood of the root of
appropriately constructed sin-tree.

Infinite path represents the “path to the root ” .

Immediately gives degree distribution asymptotics but gives much much more.

Starting point: Age of an individual

P(Age(Vt ) > 10|F (t )) = |F (t °10)|
|F (t )| ª We∏(t°10)

We∏t
= e°10∏ =P(T∏ > 10)

Suggests tree “below” random node looks like F (T∏) i.e. branching process run for random
exponential amount of time.
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Sin-tree

0

T0

1

T1

2

T2

3

sin-tree

f2(0, sin-tree)
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Sin-tree

0

T0

1

T1

2

T2

3

sin-tree

f2(0, sin-tree)

Can think of random sin-trees
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Convergence in probability fringe sense

T is a tree with root r. Given a vertex v, there exists a unique path
v0 = v, v1, ..., vh = r from v to the root.

v = v0

T0(v)

v1

T1

v2

T2

r = Vh

Th
tree T
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t0 t1 t2



Convergence in probability fringe sense

Decompose tree into a sequence of finite rooted subtrees or fringes
(T0(v), T1(v), T2(v), . . .). For each k ≥ 1,

1

n

∑

v∈T

1(fk(v, T ) = (t0, t1, ..., tk))
P
→ Pµ(fk(0,T ) = (t0, t1, ..., tk)).

v = v0

T0

v1

T1

v2

T2

r = Vh

Th

f2(v, T )

tree T
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Preferential attachment: Base model

Twitter event networks and the superstar model

Power of choice and random trees

Conclusion

Continuous time construction

Local weak convergence

sin-trees [Jagers+Nerman/Aldous]

Construction
T sin

Æ,µ,P : Random tree with single infinite path.

X0 ª exp(Æ) and for i ∏ 1, Xi ªµ. Sn =Pn
0 Xi .

Conditional on the sequence (Sn )n∏0,
1 FX0 : continuous time branching process driven by P observed up to time X0.
2 For n ∏ 1 let FSn ,Sn°1 : continuous time branching process observed up to time Sn ;

only difference being that the distribution of the points of birth of founding ancestor is
P conditioned to have a birth Xn time units after the birth of the founding ancestor.

sin-tree construction: Infinite path is Z+ = 0,1,2, . . ..
0 designated as the root. FX0 to be rooted at 0 and for n ∏ 1 consider FSn ,Sn°1 to be
rooted at n.

fk (T sin

Æ,µ,P ) = (FX0 ,FS1,S0 ,FS2,S3 , . . . ,FSk ,Sk°1 ).
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Preferential attachment: Base model

Twitter event networks and the superstar model

Power of choice and random trees

Conclusion

Continuous time construction

Local weak convergence

Case study: degree distribution in preferential attachment

Recall ∏= 2. Offspring distribution: Yule process P (·).

From above discussion: expect degree of a randomly selected vertex to converge to:
1+P (T2) := 1+C say.

Let
©
Ei : i ∏ 0

™
be independent exponential random variables (independent of T2) with

Ei ª exp(i +1) .

Fix k ∏ 0. Then

p̄k :=P(C ∏ k) =P(E0 +E1 +·· ·Ek°1 ∑ T2) = E(exp(°2(E0 +E1 +·· ·+Ek°1))).

p̄k :=
k°1Y

i=0

µ
i +1

i +1+2

∂

pk :=P(C = k) = 2
k +3

k°1Y

i=0

µ
i +1

i +1+2

∂
= 2

(k +3)(k +2)(k +1)
ª C

k3

Power law degree distribution!
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Preferential attachment: Base model

Twitter event networks and the superstar model

Power of choice and random trees

Conclusion

Continuous time construction

Local weak convergence

Random matrices

What more can one do with this machinery?

Notation

An adjacency matrix of tree Tn .

∏1 ∏∏2 ∏ · · ·∏∏n are the n eigen values.

Fn = 1
n

Pn
1 ±∏i

spectral distribution.

Setting

For the convergence of spectral distribution can take general families of trees satisfying
sin-tree convergence.

For maximal eigen value convergence talking about preferential attachment with
f (v,n) =Deg(v,n)+a.
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Preferential attachment: Base model

Twitter event networks and the superstar model

Power of choice and random trees

Conclusion

Continuous time construction

Local weak convergence

Main result

Theorem (SB, Evans, Sen 08)
(a) Consider a sequence of trees converging in fringe since to a random infinite sin-tree. Then
there exists a model dependent probability distribution function F such that

d(Fn ,F )
P! 0, as n !1.

(b) Let ∞Æ =Æ+2. Then for the linear preferential attachment model
µ

∏1

n1/2∞Æ
,

∏2

n1/2∞Æ
, . . . ,

∏k

n1/2∞Æ

∂
d°! ∫k

Spectral distribution turns out to be a local property of random node, maximal eigen values, local
property about the root.
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Preferential attachment: Base model

Twitter event networks and the superstar model

Power of choice and random trees

Conclusion

Continuous time construction

Local weak convergence

Spectral distribution: Method of proof

Stieltjes transform

s(z) =
Z

R

1
x ° z

dFn (x)

For eigen value distribution

s(z) = 1
n

Tr(A° zI )°1

= 1
n

nX

v=1
Rv v (z)

Rv v (z) = 1

°z +PN (v)
1 Rvi vi (z)+R

big

A(v)(z)
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Preferential attachment: Base model

Twitter event networks and the superstar model

Power of choice and random trees

Conclusion

Continuous time construction

Local weak convergence

Spectral distribution contd

Fix Im(z) > 1. Iterate the above expansion d times. Get a continued fraction upto d terms
and some error term.

Not hard to see that for Im(z) > 1, this implies that sn (z) “depends” on the first K terms.

Fringe convergence of the random trees tells you what happens upto distance K for any
fixed K .

So not hard to show that there exists a fixed Stieltjes transform s(z) such that,

sn (z)
P°! s(z).
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Preferential attachment: Base model

Twitter event networks and the superstar model

Power of choice and random trees

Conclusion

Continuous time construction

Local weak convergence

Properties and questions

Open question

We have established sufficient conditions for a point a 2R to be an atom of limiting F

Implies that for most standard models, limiting F has dense set of atoms

Open Question: Does limiting F have absolutely continuous part?

Connections to areas such as Random Schrodinger operators?

At this point

If one can embed things in a continuous time all good things happen.

How far can one push such embeddings? Can these continuous time branching processes
arise in the limit even when no such embeddings exist?
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Conclusion

Retweet Graph and Superstar Model

Main Results

Comparison with Preferential Attachment Model

Superstar Model: Tools for Analysis

From the Retweet Graph to the Superstar Model

Joint work with J Michael Steele (Wharton) and Tauhid Zaman (MIT).

Retweet graph: Given a topic and a time frame — form all the (undirected) retweet

arcs and look at the graph you get.
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Conclusion
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Superstar Model: Tools for Analysis

Some Empirical Retweet Graphs

Retweet graphs were constructed for 13 different public events 1

œ Sports, breaking news stories, and entertainment events
œ Time range for each topic was between 4-6 hours

Graphs are very tree-like (few
cycles)

Graphs each have one giant
component which we want to
study

We treat the graph as
undirected

1
Data courtesy of Microsoft Research, Cambridge, MA
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Power of choice and random trees

Conclusion

Retweet Graph and Superstar Model

Main Results

Comparison with Preferential Attachment Model

Superstar Model: Tools for Analysis

The superstar model

Max degree in retweet graph is on the order of graph size (i.e. MG ª pn)

Preferential attachment predicts sub-linear max degree
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Superstar Model: Tools for Analysis

The Superstar Model

G2

v0 (superstar)

v1

v2

p

(1°p)deg(v1,G2)

Attach to superstar with probability p

Else with probability 1°p attach to one of the
non-superstar vertices.

Non-SS Attachment Rule: probability proportional to
its degree (preferential attachment rule)

The only model parameter is p: The superstar parameter

This is a very simple model: But (1) it has empirical benefits and (2) it is tractable —
though not particularly easy.
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Superstar Model: Tools for Analysis

Superstar Degree

Theorem
Let deg(v0,Gn ) be the superstar degree. Then we have that

deg(v0,Gn )
n

! p with probability 1 as n !1

Empirically the Superstar degree is £(n) and the Superstar Model “Bakes this into
the Cake"

But that is ALL that is baked in...

The value of p determines other features of the graph — the Superstar Model is
testable.
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Non-Superstar Degree

Theorem
Let degmax(Gn ) be the maximal non-superstar degree:

degmax(Gn ) = max
1∑i∑n

deg(vi ,Gn )

and let

∞= 1°p

2°p
.

Then there exists a non-degenerate, strictly positive random variable ¢§
such that

n°∞degmax(Gn )) !¢§
with probability 1 as n !1

Maximal non-superstar degree = £(n∞)
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Realized Degree Distribution in the Superstar Model

Theorem
Let f (k,Gn ) be the realized degree distribution of Gn under the Superstar model,

f (k,Gn ) = n°1
ØØØ{1 ∑ j ∑ n : deg(v j ,Gn ) = k}

ØØØ

and introduce the superstar model scaling constant

fSM (k, p) = 2°p

1°p
(k °1)!

kY

i=1

µ
i + 2°p

1°p

∂°1
.

We then have

f (k,Gn ) ! fSM (k, p) with probability 1 as n !1

The degree distribution scales like k°Ø, where Ø= 3+p/(1°p)

This contrasts with the preferential attachment model which scales like k°3
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Height result

Theorem
Let W (·) be the Lambert special function with W (1/e) º 0.2784. Then with probability

one we have

lim
n!1

1
logn

H (Gn ) = 1°p

W (1/e)(2°p)
.
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Superstar Model: Tools for Analysis

Superstar Model Predictions

Use actual data to fit the superstar degree and predict the degree distribution

Consider the observed degree distribution for each empirical retweet graph:

f (k,Gn ) = n°1
ØØØ{1 ∑ j ∑ n : deg(v j ,Gn ) = k}

ØØØ

Consider the theoretical asymptotic degree distribution under the Superstar Model

fSM (k, p) = 2°p

1°p
(k °1)!

kY

i=1

µ
i + 2°p

1°p

∂°1
.

Bottom Line: We get a nice fit “observed vs predicted"

f (k,Gn ) º fSM (k, p̂) where p̂ = observed superstar degree
n

Comparison: Preferential Attachment always predicts...

fPA(k) = 4
k(k +1)(k +2)
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Superstar Model: Tools for Analysis

The Superstar Model and the Realized Degree Distribution: Bottom Line

The Superstar Model implies a mathematical link between the superstar degree and
the degree distribution of the non-superstars.

When we look at Twitter data for actual events, we see (1) a superstar and (2) a
degree distribution of non-superstars that is more compatible with the superstar
model than with the preferential attachment model.

The first property was “baked" into our model, but the second was not. It’s an
honest discovery.

Next: How Can one Analyze the Superstar Model?
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Conclusion
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Comparison with Preferential Attachment Model

Superstar Model: Tools for Analysis

Basic Link: Branching Processes

Proto-Idea: Branching processes have a natural role almost anytime one considers a
stochastically evolving tree.

More Concrete Observation: If the birth rates depend on the number of children, the
arithmetic of the Poisson process relates nicely to the arithmetic of preferential
attachment.

Creating the Superstar: Yule processes don’t come with a superstar. Still, not
terribly hard to move to multi-type branching processes. In a world with multiple
types, you have the possibility of doing some surgery that let you build a super star.

Realistic Expectations: The paper is a dense 29 pages.

News You Can Use? One can see the benefits of using multi-type branching
processes. One can see that the connection between the Yule process and
preferential attachment is natural.
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terribly hard to move to multi-type branching processes. In a world with multiple
types, you have the possibility of doing some surgery that let you build a super star.

Realistic Expectations: The paper is a dense 29 pages.

News You Can Use? One can see the benefits of using multi-type branching
processes. One can see that the connection between the Yule process and
preferential attachment is natural.
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Superstar Model: Tools for Analysis

Introduction of a Special Branching Process

Two types of vertices: red and blue

Each vertex gives birth to vertices according to a non-homogeneous Poisson process
that has rate proportional to (1+ number of blue children)

cB (v, t ) = number of blue children of v at t time units after the birth of v

At birth vertex is painted red with probability p and painted blue with probability
1°p

v1

v4

v6

v2 v3

v5

cB (v1, t ) = 1

cB (v3, t °ø3) = 0
F (t ) = Branching process at time t

øn = inf{t : |F (t )| = n}
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Superstar Model: Tools for Analysis

Surgery: From BP Model to Superstar Model

Add an exogenous superstar vertex v0 to the vertex set

For each red vertex remove the edge from parent and create an undirected edge to
the superstar vertex v0

With the surgery done, all edges are made undirected and all colors are erased

v0 (superstar)

v1F (ø6)

v4

v6

v2 v3

v5

v1S(ø6)

v4

v6

v2 v3

v5
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Conclusion

Retweet Graph and Superstar Model

Main Results

Comparison with Preferential Attachment Model

Superstar Model: Tools for Analysis

Relating the BP Construction with the Superstar Model

Claim: S(øn ) is “probabilistically the same" as Gn+1

Base case: S(ø1) =G2

v0 v1

Need to show that S(øn ) and Gn+1 have same probabilistic evolution
Superstar: probability of joining superstar = probability of red vertex being born = p
Same probability for S and G
Non-superstars: degree of vertex = number of blue children + 1

deg(vk ,Gn+1) = cB (vk ,øn °øk )+1

v1F (ø6) cB (v1,ø6 °ø1)+1 = 2

G7

v1deg(v1,G7) = 2
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Preferential attachment: Base model

Twitter event networks and the superstar model

Power of choice and random trees

Conclusion

Power of choice in random trees [D’Souza, Mitzenmacher]

Model: Motivation and construction

Usual pref. attachment: Basic assumption: every new vertex has knowledge of entire
network

Each stage new vertex chooses 2 vertices uniformly at random

Connect to vertex with maximal degree amongst the ones chosen (breaking ties with
probability 1/2)

Model which incorporates randomness as well as limited choice

Let Tn denote the tree on n vertices

Theorem (Angel, Pemantle, SB)
There exists a rooted limiting random tree T1, described by Jagers-Nerman stable age
distribution theory such that such that Tn converges locally T1.
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Preferential attachment: Base model

Twitter event networks and the superstar model

Power of choice and random trees

Conclusion

Main idea

Pick a vertex uniformly at random: Chance it is a leaf in Tn?

Assume stabilizes to some p0

Number of times queried: Poisson with mean
nX

i=N+1

2
i
ª°2log

N

n
º 2exp(1)

So have interval [0,T ] with T ª exp(1/2) where queries come at uniform times

If still a leaf, for each query, no connection made which happens with probability
1°p0 +p0/2 = 1°p0/2.

Rate one poisson process, marking each with probability p0/2, time of first point:
X0 ª exp(p0/2)

So probability not a leaf: 1°p0 =P(T > X0)
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Preferential attachment: Base model

Twitter event networks and the superstar model

Power of choice and random trees

Conclusion

Description of the limit tree

Recursive construction of the degree

Let p0 limiting fraction of leaves

Define q0 = p0/2

Then p0 obtained by doing the following: Let T ª exp(1/2) and X0 ª exp(q0). Then

1°p0 =P(T > X0)

p0 =
p

5°1
2

General, having obtained pk , get pk+1 by solving

1° (p0 +·· ·+pk+1) =P(X0 +·· ·Xk+1 > T )

where
Xk+1 ª exp(p0 +·· ·+pk + pk+1

2
)
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Preferential attachment: Base model

Twitter event networks and the superstar model

Power of choice and random trees

Conclusion

Description of T1

After having obtained pi , let Li =
Pi

j=0 X j

Consider the point process Pmax = (L0,L1, . . .)

Define
µmax(0, t ) = E(#i : Li < t )

∫max(d x) = exp(° x

2
)µ(d x)

Theorem

Then T1 is the Jagers-Nerman stable age distribution tree with offspring distribution Pmax,
age distribution exp(1/2) and time to nearest ancestor ∫max

Implies convergence of global functionals as well such as the spectral distribution of
adjacency matrix
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Preferential attachment: Base model

Twitter event networks and the superstar model

Power of choice and random trees

Conclusion

Dynamic random graphs

Lots of interesting questions
Understanding what happens for general unbounded size rules such as product rule
(explosive percolation).
Small variants of standard models turn out to be technically much more challenging,
requiring the development of new machinery.
For the superstar model, a simple tweak gave much better fit to the data (one
parameter p).

Next lecture
Back to critical random graphs: suppose we were interested in the metric structure of
maximal components. What can we say? Why should one care.
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