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Motivation

Dynamic network models

Last few years enormous amount of interest in formulating models to “explain” real-world
networks such as network of webpages, the Internet, etc.

One of the things I have been obsessing about: dynamic network models.

Lots of interesting questions; connections to fundamental notions in modern probability.

Show up in an enormous number of areas: real world networks (Twitter/Facebook);
statistical physics; combinatorial optimization (e.g. Minimal spanning tree algorithms) etc.
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Course contents

Lecture 1: Dynamic network models at criticality and the multiplicative coalescent.

Lecture 2: Preferential attachment models and continuous time branching processes.

Lecture 3: Advanced topics including scaling limits of the metric structure of
maximal components, the leader problem etc. Closely related to Lecture 1.

Brief discussion of the order of topics.
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Main motivation

This talk

What if you had n vertices, new edges entering the system at random (say 2 at a time).

You could decide which edges to use based on the current configuration.

Phase transition? Emergence of the giant?

Next talk

Dynamic networks models where new vertices enter the system.

Preferential attachment type models.

Shall see the power of continuous time branching processes and local weak convergence.
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Teaching goals/outcomes of this Lecture

1 Provide introduction to critical random graphs and proof techniques.

2 Give some hints to the importance of this object in application areas such as
colloidal chemistry and computer science.

3 Introduce fundamental probabilistic proof techniques in the area including random
walks and exploration processes, differential equations technique etc.
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Some notation

Gn = (Vn ,En ) graph on n vertices with vertex set Vn and edge set En . Typically
Vn = [n] := {1,2, . . . ,n}.

C ⊆G := connected component. |C | := size (number of vertices) in a component.

Main functionals of interest for this talk: maximal components. C (k)
n := is the k-th

largest component.

C (1)
n : maximal component.
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Erdos-Renyi random graph

Figure: Paul Erdos. By Topsy Kretts - Own work,

CC BY 3.0,

https://commons.wikimedia.org/w/index.php?curid=2874719

Figure: Alfred Renyi. Taken from

https://alchetron.com/Alfred-Renyi-738936-W.
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Phase transition

Setting

Start with n isolated vertices

Edge connection probability t/n (independent across the
(n

2

)
edges).

Phase transition at t = 1
# of edges∼ n/2

t < 1, C (1)
n (t ) ∼ logn

t > 1, C (1)
n (t ) ∼ f (t )n

t = 1+ λ

n1/3

Beautiful math theory. Limits depend on λ.
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Bounded size rules

Dynamic version of Erdős-Rényi

Gn (0) = 0n the graph with n vertices but no edges

Discrete time: Each step, choose one edge e uniformly among all
(n

2

)
possible edges, and

add it to the graph.

Continuous time: Gn (t ) :=G ER
n (t ): add edges at rate n/2. Main object of Interest.
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The Erdős-Rényi random graph process

The phase transition of G ER
n (t )

The giant component: the component contains Θ(n) vertices.

Let C (k)
n (t ) be the size of the k th largest component

tc = t ER
c = 1 is the critical time.

(super-critical) when t > 1, C (1)
n (t ) =Θ(n), C (2)

n (t ) =O(logn).

(sub-critical) when t < 1, C (1)
n (t ) =O(logn), C (2)

n (t ) =O(logn).

(critical) when t = 1, C (1)
n (t ) ∼ n2/3, C (2)

n (t ) ∼ n2/3.
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Bounded size rules: Effect of limited choice

[Bohman, Frieze 2001]The Bohman-Frieze random graph

Motivated by very interesting question of D. Achlioptas. Delay emergence of giant
component using simple rules

Each step, two candidate edges (e1,e2) chosen uniformly among all
(n

2

)× (n
2

)
possible pairs of

ordered edges. If e1 connect two singletons (component of size 1), then add e1 to the
graph; otherwise, add e2.

Shall consider continuous time version wherein between any ordered pair of edges, poisson
process with rate 2/n3.
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Erdos-Renyi random graph at criticality

History

after initial work by Erdos-Renyi[60], Bollobas[84], Luczak[90],Janson-Luczak-Knuth-Pittel
[94], finally proved by Aldous[97].

Formal existence of multiplicative coalescent.

Problem statement

Connection probability pn := 1
n + λ

n4/3 .

C (i )
n (λ) size of the i -th largest component.

Surplus (Complexity) of a component

ξ(i )
n (λ) = E(C (i )

n (λ))− (C (i )
n (λ)−1)

l 2
↓ =

{
(xi )i≥1 : x1 ≥ x2 ≥ ·· · ≥ 0,

∑
i x2

i <∞
}

Shankar Bhamidi Lecture 1



Introduction
Problem formulation

Erdos-Renyi random graph: Static regime
Aside: Inhomogeneous random graphs

Erdos-Renyi: Dynamic regime
Bounded size rules

Erdos-Renyi random graph at criticality

History

after initial work by Erdos-Renyi[60], Bollobas[84], Luczak[90],Janson-Luczak-Knuth-Pittel
[94], finally proved by Aldous[97].

Formal existence of multiplicative coalescent.

Problem statement

Connection probability pn := 1
n + λ

n4/3 .

C (i )
n (λ) size of the i -th largest component.

Surplus (Complexity) of a component

ξ(i )
n (λ) = E(C (i )

n (λ))− (C (i )
n (λ)−1)

l 2
↓ =

{
(xi )i≥1 : x1 ≥ x2 ≥ ·· · ≥ 0,

∑
i x2

i <∞
}
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Erdos-Renyi random graph: Static regime
Aside: Inhomogeneous random graphs

Erdos-Renyi: Dynamic regime
Bounded size rules

C∗
n (λ) := n−2/3(C (1)

n (λ),C (2)
n (λ), . . .)

Wλ(t ) =W (t )+λt − t 2

2
,

W̄λ(·) is the above process reflected at 0.

Let X (λ) be lengths of excursions away from 0 of W̄ (·) arranged in decreasing order

Aldous (97)

As n →∞, in l 2
↓ one has

C∗
n (λ)

d−→ X (λ)
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In pictures

Figure: Reflected process
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Introduction
Problem formulation

Erdos-Renyi random graph: Static regime
Aside: Inhomogeneous random graphs

Erdos-Renyi: Dynamic regime
Bounded size rules

Proof techniques

Outline

Branching process methods: Great tool above and below criticality.

Exploration walks: Very refined results in the presence of lots of “independence” . Can
be strengthened to understand structure of components.

Differential equation method: Technical, standard workhorse for dynamic network models.
Last part of the talk. Estimates can be pushed all the way to the critical window.

Exploration process

Start with a vertex.

Explore component of vertex keeping track of various functionals whilst exploring.

Move to next component.
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Introduction
Problem formulation

Erdos-Renyi random graph: Static regime
Aside: Inhomogeneous random graphs

Erdos-Renyi: Dynamic regime
Bounded size rules

Proof: Deterministic Lemma

Exploration of the graph
1 Explore the components of the graph one by one.

2 Choose a vertex v(1). c(1) = number of children (friends) of this vertex.
3 Choose one of the children of v(1), let c(2) be number of children of this vertex.
4 Continue, when one component completed move onto another component (choosing next

vertex whichever way you want).

Functional

Define Zn (0) = 0, Zn (i ) = Zn (i −1)+ c(i )−1.

Amazing fact:Z (·) =−1 for the first time when we finish exploring component 1. Walk then
hits −2 for first time when exploring component 2 and so on.
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Introduction
Problem formulation

Erdos-Renyi random graph: Static regime
Aside: Inhomogeneous random graphs

Erdos-Renyi: Dynamic regime
Bounded size rules

Proof: What we need to show

Thus length of excursions of this walk to go past last minima encodes the size of
components.

Thus “enough” to show

{
1

n1/3
Zn (n2/3t ) : t ≥ 0} →d {W λ(t ) : t ≥ 0}

Here d−→ is weak convergence on D([0,∞)) equipped with Skorohod metric.

Implies sizes of largest components of size n2/3.

Lengths of excursions beyond past minima of W λ encode limiting sizes (after proper
normalization) of component sizes.

Same as lengths of excursions from zero of the reflected process. This is Aldous’s result.
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Problem formulation

Erdos-Renyi random graph: Static regime
Aside: Inhomogeneous random graphs

Erdos-Renyi: Dynamic regime
Bounded size rules

Showing process convergence

Infinitesimal mean

Fi what we know till time i in the exploration process. So
{
Fi : i ≥ 0

}
natural filtration.

Exploring number of children of v(i ) at time i −1.

Number of free vertices = n − (i +Zn (i )).

Conditional on Fi−1,

c(i ) ∼Bin
(
n − (i +Zn (i )),

1

n
+ λ

n4/3

)

E(∆Zn (i )|Fi−1) = E(c(i )−1|Fi−1) = λ

n1/3
− (i +Zn (i ))

(
1

n
+ λ

n4/3

)

Thus if Z̄n (s) = n−1/3 Zn (sn2/3) then

E(Z̄n (s)|Fsn2/3 ) = n2/3n−1/3E(∆Zn (sn2/3)|Fsn2/3 ) ≈λ− s
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Introduction
Problem formulation

Erdos-Renyi random graph: Static regime
Aside: Inhomogeneous random graphs

Erdos-Renyi: Dynamic regime
Bounded size rules

Martingale CLT

Thus Z̄n (t )−∫ t
0 (λ− s)d s = Z̄n (t )− (λt − t 2/2) is basically a martingale.

Show infinitesimal variance Var(∆Z̄n (s)|Fsn2/3 ) ≈ 1.

This implies by Martingale CLT that

Z̄n (t )− (λt − t 2/2) ≈W (t )

or Zn (t ) ≈W (t )+λt − t 2/2.

Proof completed!
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Introduction
Problem formulation

Erdos-Renyi random graph: Static regime
Aside: Inhomogeneous random graphs

Erdos-Renyi: Dynamic regime
Bounded size rules

Rank-1 inhomogeneous random graphs/Norros-Reittu/Chung-Lu

Vertex set [n] with each vertex having weight wi (“popularity or affinity”). Let ln =∑
i wi .

Simplest example: wi ∼i i d F with finite third moments.

Connect vertex i , j with probability

pi j := 1−exp(−wi w j /ln ) ∼
wi w j

ln

Known: Phase transition at ν= E(W 2)/E(W ) = 1.

ν> 1: C (1)
n ∼ f (ν)n. ν< 1: C (1)

n = oP (n). What happens at ν= 1?

Turns out one can use previous exploration process.

Now have to be careful of the order in which vertices are seen {v(1), v(2), . . . , v(n)}.

In calculating infinitesimal means, variances, have terms like
∑i

j=1 wv( j )/ln and∑i
j=1 w2

v( j )/ln .
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n = oP (n). What happens at ν= 1?

Turns out one can use previous exploration process.

Now have to be careful of the order in which vertices are seen {v(1), v(2), . . . , v(n)}.

In calculating infinitesimal means, variances, have terms like
∑i

j=1 wv( j )/ln and∑i
j=1 w2

v( j )/ln .
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Problem formulation

Erdos-Renyi random graph: Static regime
Aside: Inhomogeneous random graphs

Erdos-Renyi: Dynamic regime
Bounded size rules

Exploration

Select vertex v(1) with probability proportional to weights. Construct ξ j ,v(1) ∼ exp(w j ).

Children of v(1) are those with ξi ,v(1) < wv(1)/ln . Label these as v(2), . . . v(c(1)+1) according
to increasing order of their ξi ,v(1) values.

Now explore vertex v(2).

Every time you finish a component chose new vertex with probability proportional to the
weight of the left vertices.

Size biased reordering

(v(1), v(2), . . . v(n)) is a size biased random re-ordering of [n]..

P(v(1) = i ) ∝ wi , P(v(2) = i |v(1)) ∝ wi , i 6= v(1) etc.

Allows us to understand asymptotics of
∑i

j=1 wv( j )/ln etc.
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Erdos-Renyi: Dynamic regime

The Erdős-Rényi random graph of G ER
n

Gn (0) = 0n the graph with n vertices but no edges

Each step, choose one edge e uniformly among all
(n

2

)
possible edges, and add it to

the graph.

Gn (t ): add edges at rate n/2.
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Problem formulation

Erdos-Renyi random graph: Static regime
Aside: Inhomogeneous random graphs

Erdos-Renyi: Dynamic regime
Bounded size rules

Back to Erdos-Renyi processes

Assign independent Poisson processes rate 1/n on each of the
(n

2

)
possible edges {i , j }.

When process corresponding to an edge fires, place that edge.

Gives a continuous time version of the Erdos-Renyi random graph process evolving at rate
n/2

Last part told us about component sizes when we have
(n

2

)
(1/n +λ/n4/3) ≈ n/2+λn2/3/2

edges.

At time t = 1+λ/n1/3, system has ≈ n/2+λn2/3/2.

Not hard to believe that for fixed λ

C∗
n (λ) := n−2/3(C (1)

n (1+λ/n1/3),C (2)
n (1+λ/n1/3), . . .)

d−→ X (λ) := Excursion lengths .

Important question
What happens to {C∗

n (λ) : −∞<λ<∞} as a a process in λ?
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Rate of mergers

Recall we are looking at the new time scale t = 1+λ/n1/3

In this time scale, in time interval [λ,λ+dλ), components a and b merge at rate

1

n1/3
× Ca (1+λ/n1/3)Cb (1+λ/n1/3)

n
= C̄a (λ)C̄a (λ)

Aldous showed there exists an l 2
↓ valued Markov process {X (λ) : −∞<λ<∞} called the

Standard multiplicative coalescent such that

{C∗
n (λ) : −∞<λ<∞}

d=⇒ {X (λ) : −∞<λ<∞}
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Standard Multiplicative coalescent

Dynamics

For each fixed λ, X (λ) has distribution given by excursion lengths.

Suppose X(λ) = (x1, x2, x3, ...), each xl is viewed as the size of a cluster.

Each pair of clusters of sizes (xi , x j ) merges at rate xi ·x j into a cluster of size xi +x j .

If xi , x j merge, then (x1, x2, x3, ...) (x′1, x′2, x′3, ...) where the latter is the re-ordering of
{xi +x j , xl : l 6= i , j }.

If initial configuration at time “λ=−∞” has good properties and follows the merging
dynamics of the multiplicative coalescent then,

{C∗
n (λ) : −∞<λ<∞}

d=⇒ {X (λ) : −∞<λ<∞}
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Bounded size rules

Bounded size rules: Effect of limited choice

[Bohman, Frieze 2001]The Bohman-Frieze random graph

Motivated by very interesting question of D. Achlioptas. Delay emergence of giant
component using simple rules

Each step, two candidate edges (e1,e2) chosen uniformly among all
(n

2

)× (n
2

)
possible pairs of

ordered edges. If e1 connect two singletons (component of size 1), then add e1 to the
graph; otherwise, add e2.

Shall consider continuous time version wherein between any ordered pair of edges, poisson
process with rate 2/n3.
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The Bohman-Frieze process

[Bohman, Frieze 2001] Delay in phase transition

Consider the continuous time version G BF
n (t ), then there exists ε> 0 such that at time

t ER
c +ε,

C (1)
n (t ER

c +ε) = o(n)

[Spencer, Wormald 2004] Critical time

t BF
c ≈ 1.1763 > t ER

c = 1.

(super-critical) when t > tc , C (1)
n (t ) =Θ(n), C (2)

n (t ) =O(logn).

(sub-critical) when t < tc , C (1)
n (t ) =O(logn), C (2)

n (t ) =O(logn).

Near Criticality: Susceptibility functions
Janson and Spencer (2011) analyzed how s2(·), s3(·) →∞ (defined below) as t ↑ tc .

Kang, Perkins and Spencer (2011) analyze the near subcritical (tc −ε) regime.
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General bounded size rules

Fix K ≥ 1

Let ΩK = {1,2, . . . ,K ,ω}

General bounded size rule: subset F ⊂Ω4
K .

Pick 4 vertices uniformly at random. If (c(v1),c(v2),c(v3),c(v4)) ∈ F then choose edge e1 else
e2

BF model
K = 1, F = {

(1,1,α,β)
}
.
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e2

BF model
K = 1, F = {

(1,1,α,β)
}
.
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Introduction
Problem formulation

Erdos-Renyi random graph: Static regime
Aside: Inhomogeneous random graphs

Erdos-Renyi: Dynamic regime
Bounded size rules

Main questions for bounded size rules

Question: when t = tc , do we have C (1)
n (tc ) ∼ n2/3? How do components merge?

scaling
window?

What about the surplus of the largest components in the scaling window?

Who cares?!?!

Who cares?!
Turns out: even if you don’t care about the model, the proof technique has far reaching
consequences. Stay tuned for Lecture 3.
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Bounded size rules

Theorem (Bhamidi, Budhiraja, Wang, 2012)

Let (C (1)
n (t ),C (2)

n (t ), ...) be the component sizes of G BSR
n (t ) in decreasing order. Define the

rescaled size vector Cn (λ), −∞<λ<+∞ as the vector

Cn (λ) := (C̄i (λ) : i ≥ 1) =
(
β1/3

n2/3
C (i )

n (tc + β2/3αλ

n1/3
) : i ≥ 1

)

where α,β are constants determined by the BSR process. Then

{Cn (λ) : −∞<λ<∞}
d−→ {X (λ) : −∞<λ<∞}

where (X(λ),−∞<λ<+∞) is the standard multiplicative coalescent and convergence
happens in l 2

↓ with metric d .
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Proof Technique: Differential equations

Figure: From Memegenerator.net

Hard to think about exploration process especially at criticality.

Turns out: Easier to analyze the entire process!
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Proof idea: The Bohman-Frieze process

Question: Where does tc come from ?

Define
Xn (t ) =# of singletons, S2(t ) =∑

i
(C (i )

n (t ))2, S3(t ) =∑
i

(C (i )
n )3.

Let x̄n (t ) = Xn (t )/n, s̄2(t ) = S2/n, s̄3(t ) = S3/n.

Spencer, Wormald [04]: For any fixed t > 0,

x̄n (t )
P−→ x(t ), s̄2(t )

P−→ s2(t ), s̄3(t )
P−→ s3(t )
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Why?

Behavior of xn(t )

In small time interval [t , t +∆(t )), xn (t ) → xn (t )−1/n at rate

2

n3

((
n

2

)
−

(
Xn (t )

2

))
Xn (t )(n −Xn (t )) ∼ n(1−x2

n (t ))xn (t )(1−xn (t ))

[t , t +∆(t )), xn (t ) → xn (t )−2/n at rate

2

n3

[(
Xn (t )

2

)(
n

2

)
+

((
n

2

)
−

(
Xn (t )

2

))(
Xn (t )

2

)]
∼ n

[
1

2
(x2

n (t )+ (1−x2
n (t )x2

n (t )))

]

Suggests that xn (t ) → x(t ) where

x′(t ) =−x2(t )− (1−x2(t ))x(t ) for t ∈ [0,∞, ) x(0) = 1.
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Susceptibility functions

Limit functions
Similar analysis suggests that for the susceptibility functions, the limits should
satisfy, s̄2(t ), s̄3(t )

s′2(t ) = x2(t )+ (1−x2(t ))s2
2(t ) for t ∈ [0, tc ), s2(0) = 1

s′3(t ) = 3x2(t )+3(1−x2(t ))s2(t )s3(t ) for t ∈ [0, tc ), s3(0) = 1.

Analysis of the ODEs gives the picture on the previous page.
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The Bohman-Frieze process

Scaling exponents of s2 and s3 (Janson, Spencer 11)

Functions x(t ), s2(t ), s3(t ) are determined by some differential equations

Differential equations imply ∃ constants α,β such that t ↑ tc

s2(t ) ∼ α

tc − t

s3(t ) ∼β(s2(t ))3 ∼β α3

(tc − t )3

Now we enter the analysis carried out in Bhamidi, Budhiraja and Wang (2012).
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I: Regularity conditions of the component sizes at “−∞”

Let C̄(λ) = n−2/3C
(
tc +β2/3αλ/n1/3

)
.

For δ ∈ (1/6,1/5) let tn = tc −n−δ = tc +β2/3α
λn

n1/3 , then λn =−β2/3αn1/3−δ.

Need to verify the three conditions∑
i
(
C̄i (λn )

)3[∑
i
(
C̄i (λn )

)2
]3

P−→ 1 ⇔ n2S3(tn )

S3
2(tn )

P−→β

1∑
i
(
C̄i (λn )

)2
+λn

P−→ 0 ⇔ n4/3

S2(tn )
− n−δ+1/3

α

P−→ 0

C̄1(λn )∑
i
(
C̄i (λn )

)2
P−→ 0 ⇔ n2/3C (1)

n (tn )

S2(tn )
P−→ 0
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II: Dynamics of merging in the critical window

The dynamic of merging

In any small time interval [t , t +d t ), two components i and j merge at rate

2

n3

[(
n

2

)
−

(
Xn (t )

2

)]
Ci (t )C j (t )

∼ 1

n
(1− x̄2(t ))Ci (t )C j (t )

Let λ= (t − tc )n1/3/αβ2/3 be rescaled time paramter, rate at which two components merge

γi j (λ) ∼
(1−x2(tc +β2/3α λ

n1/3 ))

n

β2/3α

n1/3
Ci

(
tc + β2/3αλ

n1/3

)
C j

(
tc + β2/3αλ

n1/3

)

=α
(
1−x2

(
tc +β2/3α

λ

n1/3

))
C̄i (λ)C̄ j (λ)

= C̄i (λ)C̄ j (λ) since α(1−x2(tc )) = 1
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How to check regularity conditions

Analysis of C (1)
n (t )

Key point: need to get refined bounds on maximal component in barely subcritical regime.

known result: for fixed t < tc , C (1)
n (t ) =O(logn).

not enough, since we want a sharp upper bound when t ↑ tc .

Lemma (Bounds on the largest component)

Let δ ∈ (0,1/5), tc be the critical time for the BF process, C (1)
n (t ) be the size of the largest

component. Then there exists a constant B = B(δ) such that as n →+∞,

P{C (1)
n (t ) ≤ B log4 n

(tc − t )2
for all t < tc −n−δ} → 1

Proof strategy: Coupling with a near critical multi-type branching process on an infinite
dimensional type space. delicate analysis of the maximal eigenvalue.
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Random graph with Immigrating doubletons
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Sketch of the proof

Regularity condition at time λ=−∞
Check the following properties for the un-scaled component sizes. For δ ∈ (1/6,1/5), and
tn = tc −n−δ, n2S3(tn )

S3
2(tn )

P−→β (6.1)

n4/3

S2(tn )
− n−δ+1/3

α

P−→ 0 (6.2)

n2/3C (1)
n (tn )

S2(tn )
P−→ 0 (6.3)

Analysis of S2(t ), S3(t )

above relations hold for limiting functions s2, s3 for tn .

Delicate stochastic analytic argument combined with result on C (1)
n (t ) to show this holds for

S2,S3 near criticality.
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Where do go from here? Work in progress

Explosive percolation
In 2009, Achlioptas,D’Souza and Spencer considered “product rule”. Conjectured that
this process exhibits Explosive percolation
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Truncated product rule

Fix K

Choose 2 edges e1 = (v1, v2) and e2 = (v3, v4) at random

If max{C (v1),C (v2)C (v3),C (v4)} ≤ K , then use the edge which minimizes of
min{C (v1)C (v2),C (v3)C (v4)}.

Else use e2.

Work in progress

Consider the rescaled and re-centered component sizes

CK (λ) =
(

1

n2/3
C (i )

K

(
tc (K )+γ(K )

λ

n1/3

)
: i ≥ 1

)
λ ∈R

Then we have (CK (λ) :λ ∈R)
d−→ (X (λ) :λ ∈R) as n →∞.

tc (K ) → tc ; γ(K ) → 0
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(

1

n2/3
C (i )

K

(
tc (K )+γ(K )

λ

n1/3

)
: i ≥ 1

)
λ ∈R

Then we have (CK (λ) :λ ∈R)
d−→ (X (λ) :λ ∈R) as n →∞.

tc (K ) → tc ; γ(K ) → 0
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Other questions

“Natural questions”

What happens if we start with a configuration other than the empty graph?

Related to the entrance boundary of the multiplicative coalescent.

Unnatural next questions

Scaling limits?

Conjecture: Rescale each edge by n−1/3

Largest components converge to random fractals (Gromov-Hausdorff sense), the same limits
as for Erdos-Renyii
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Minimal spanning tree

Figure: Minimal spanning tree on the complete graph on n = 100,000 vertices. Generated by
Nicolas Broutin.
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Minimal spanning tree

Connected Graph, put distinct positive edge lengths (road network)

Want to get a spanning graph,

minimal total weight

Choose spanning tree with minimal total weight: MST

Enormous literature in applied sciences

Deep connections to statistical physics models of disorder
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Statistical physics models of disorder

Weak disorder (First passage percolation)

Weight of a path = sum of weight on edges

Choose optimal path

Strong disorder (Minimal spanning tree)

Weight of path = max edge on the path

Choose optimal path
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Adario-Berry, Broutin, Goldschmidt + Miermont

Minimal spanning tree

Consider complete graph, each edge given iid continuous edge length

Mn minimal spanning tree

Asymptotics?

For the Erdos-Renyi, the largest components at criticality rescaled by n−1/3 converge to
limiting random fractals [BBG]

This implies that n−1/3Mn converges to a limiting random fractal [BBGM]

Open Problem: Show that for these models, have same limiting structure

More in Lecture 3.
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