Exercise 1. Consider the given single commodity network

with the demand $d = 1$.

Compute the directed Wardrop Equilibrium flow, the socially optimal flow as well as the social cost of both flows and the Price of Anarchy.

Solution. Let $P_1 = (s, 1, t)$ be the upper path, $P_2 = (s, 1, 2, t)$ the middle path, and $P_3 = (s, 2, t)$ the lower path. Then the Wardrop Equilibrium is

$$f_{P_1} = \frac{1}{5}, f_{P_2} = \frac{2}{5}, f_{P_3} = \frac{2}{5}.$$

The edge flows and latencies (in blue) are:

The social cost of the Wardrop Equilibrium f is

$$C(f) = \sum_{e \in E} f_e c_e(f_e) = \frac{3}{5} \cdot \frac{3}{5} + \frac{1}{5} \cdot 2 + \frac{2}{5} \cdot \frac{2}{5} + \frac{2}{5} \cdot 1 + \frac{4}{5} \cdot \frac{8}{5} = 1 \cdot \frac{13}{5} = \frac{13}{5}$$

The optimal flow g is

$$g_{P_1} = \frac{1}{2}, g_{P_2} = 0, g_{P_3} = \frac{1}{2}.$$

The edge flows and latencies (in blue) are:

The social cost of the optimal flow g is

$$C(g) = \sum_{e \in E} g_e c_e(g_e) = \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot 2 + 0 + \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1 = 9/4.$$
So the price of anarchy is

$$\text{PoA} = \frac{C(f)}{C(g)} = \frac{52}{45} \approx 1.156.$$
Exercise 2. For the class of quadratic cost functions with offsets and non-negative coefficients
\[C = \{ c(x) = ax^2 + b : a, b \geq 0 \} \]
compute the Price of Anarchy by computing the anarchy value
\[\beta = \sup_{c \in C} \sup_{f, g \geq 0} \frac{(c(f) - c(g))g}{c(f)f}. \]

Give an example network that proves that this Price of Anarchy bound is tight.

Solution. We know that the price of anarchy can be computed as
\[\text{PoA} = \frac{1}{1 - \beta}. \]
We compute
\[\beta = \sup_{c \in C} \sup_{f, g \geq 0} \frac{(c(f) - c(g))g}{c(f)f} \]
\[= \sup_{a, b \geq 0} \sup_{f, g \geq 0} \frac{(af^2 + b - (ag^2 + b)) \cdot g}{(af^2 + b) \cdot f} \]
\[= \sup_{a, b \geq 0} \sup_{f, g \geq 0} \frac{a \cdot g \cdot (f^2 - g^2)}{(af^2 + b) \cdot f} \]
\[= \sup_{a \geq 0} \sup_{f, g \geq 0} \frac{a \cdot g \cdot (f^2 - g^2)}{af^2 \cdot f} \]
\[= \sup_{f \geq g \geq 0} \frac{\alpha f \cdot (f^2 - g^2)}{f^3} \]
\[= \sup_{f \geq 0, \alpha \in [0, 1]} \frac{\alpha f \cdot (f^2 - (\alpha f)^2)}{f^3} \]
\[= \sup_{\alpha \in [0, 1]} (1 - \alpha^2)\alpha = \frac{2}{3\sqrt{3}} \]

Thus the Price of Anarchy is
\[\text{PoA} = \frac{1}{1 - \frac{2}{3\sqrt{3}}} = \frac{9}{9 - 2\sqrt{3}} \approx 1.625. \]

The worst-case network with demand \(d = 1 \) is:

```
      x^2
     / \  \\
    S --- t
     \  /  \\
      1
```

The Wardrop Equilibrium is obviously \(f = (f_1, f_2) = (1, 0) \) with cost \(C(f) = 1 \). Let \(g = (g_1, g_2) \) be the optimal flow. Then we know that the flow over the upper edge of the optimal flow \(g_i \) must solve
\[\min_{x \geq 0} x^2 \cdot x + 1 \cdot (1 - x) = \min_{x \geq 0} x^3 - x + 1 \]
and thus obtain $g = (\frac{1}{\sqrt{3}}, 1 - \frac{1}{\sqrt{3}})$ with cost $C(g) = 1 - \frac{2}{3\sqrt{3}}$. □
Exercise 3. For some class of cost functions C, let β be the anarchy value as in the exercise above. Let f be the Wardrop Equilibrium in some network and for some demands $(d_i)_{i \in I}$ and let furthermore be g a optimal flow in the same network for the demands $((1+\beta)d_i)_{i \in I}$. Show that
\[C(f) \leq C(g). \]

Solution. Define $x := \frac{1}{1+\beta} \cdot g$. Then g is also a flow for demand d. Then we have by the variational inequality (first inequality) and the definition of β (second inequality) that
\[
C(f) = \sum_{e \in E} f_e \cdot c_e(f_e) \\
\leq \sum_{e \in E} x_e \cdot c_e(f_e) \\
= \frac{1}{1+\beta} \sum_{e \in E} g_e \cdot c_e(f_e) \\
= \sum_{e \in E} g_e \cdot c_e(f_e) - g_e \cdot c_e(g_e) + g_e \cdot c_e(g_e) \\
\leq \frac{1}{1+\beta} \sum_{e \in E} (\beta f_e c_e(f_e) + g_e c_e(f_e)) \\
= \frac{\beta}{1+\beta} C(f) + \frac{1}{1+\beta} C(g).
\]
This proves the claim. □
Exercise 4. Consider a graph $G = (V, E)$ with constant edge cost $k_e > 0$ for every edge $e \in E$ and n players. A strategy for every player is to choose a path between some designated nodes $u_i, v_i \in V$. The edge costs are equally distributed between players that use an edge and the private cost of every player is the sum of all shares of the costs, i.e.

$$\pi_i(s) = \sum_{e \in s_i} \frac{k_e}{x_e(s)}$$

where $x_e(s) := |\{i : e \in s_i\}|$. Let

$$C(s) = \sum_{i \in N} \pi_i(s)$$
denote the social cost of some strategy profile.

Prove that there is a Nash Equilibrium s^* such that

$$C(s^*) \leq H_n \cdot \min_{s \in S} C(s)$$

where

$$H_n := \sum_{k=1}^{n} \frac{1}{k}$$

is the n-th harmonic number.

Solution. At first, we observe

$$C(s) = \sum_{i \in N} \pi_i(s) = \sum_{e \in E} k_e.$$

We then define the potential function

$$P(s) := \sum_{e \in E} \sum_{k=1}^{x_e(s)} \frac{k_e}{k}$$

and obtain

$$P(s) = \sum_{e \in E} k_e H_{x_e(s)} \leq H_n \sum_{e \in E, x_e(s) > 0} k_e = H_n \cdot C(s)$$

and observe that this is actually a potential function since

$$\pi_i(t_i, s_{-i}) - \pi_i(s) = \sum_{e \in t_i \setminus s_i} \frac{k_e}{x_e(t_i, s_{-i})} - \sum_{e \in s_i \setminus t_i} \frac{k_e}{x_e(s)}$$

$$= P(t_i, s_{-i}) - P(s).$$

Then the strategy profile s^* that minimizes $P(s)$ must be a Nash Equilibrium since there can not be any profitable deviation of any player.
We then compute

\[C(s^*) = \sum_{i \in N} \pi_i = \sum_{i \in N} \sum_{e \in s^*_i} \frac{k_e}{x_e(s^*)} \]

\[= \sum_{e \in E : x_e(s^*) > 0} k_e \leq \sum_{e \in E : x_e(s^*) > 0} k_e \cdot H_{x_e(s^*)} \]

\[= P(s^*) \leq P(s) \leq H_n \sum_{e \in E : x_e(s) > 0} k_e = H_n C(s). \]

Since this holds true for every strategy profile \(s \), this in particular holds for the social optimal strategy profile \(s \). \qed
Exercise 5. Prove that every weighted congestion game with affine linear costs \(c_e(x) = a_e x + b_e \) has a pure Nash Equilibrium by defining a suitable potential function.

Solution. We define the potential function \(P : S \to \mathbb{R} \) with

\[
P(s) = \sum_{e \in E} \sum_{i \in N \subseteq S_i} d_i c_e \left(\sum_{j \in \{1, \ldots, i\} \cap S_j} d_j \right).
\]

Then \(P \) is *independent* of the ordering of the players, see the graph below:

![Graph](image)

We thus can assume without loss of generality that \(i = n \).

\[
\pi_i(t_i, s_{-i}) - \pi_i(s) = \pi_n(t_n, s_{-n}) - \pi_n(s)
\]

\[
= d_n \sum_{t_n \setminus s_n} c_e(x_e(t_n, s_{-n})) - d_n \sum_{s_n \setminus t_n} c_e(x_e(s))
\]

\[
= P(t_n, s_{-n}) - P(s).
\]

So if we observe a sequence of strategy profiles where there are unilateral improvements, i.e.

\[
\pi_i(t_i, s_{-i}) - \pi_i(s) < 0
\]

the potential function decreases along this sequence. Since there are only finitely many possible strategy profiles, we have to reach a minimum. This minimum must be a Nash equilibrium since there are no more profitable deviations for any player. \(\square\)
Exercise 6. A congestion game is called singleton if $|s_i| = 1$ for all $i \in N$. Show that a singleton weighted congestion game has a pure Nash Equilibrium by showing that the vector containing the player’s private costs sorted in non-increasing order decreases lexicographically along of any sequence of unilateral improvement.

Solution. We say some vector $x \in \mathbb{R}^n$ is lexicographically smaller than $y \in \mathbb{R}^n$, denoted by $x \prec_L y$, if

$$x_j < y_j \text{ for } j = \min\{i : x_i \neq y_i\}.$$

Let

$$x = (\pi_1(s), \pi_2(s), \ldots, \pi_n(s))$$

be the sorted vector of private cost, i.e. the players are sorted such that $\pi_1(s) \leq \pi_2(s) \leq \cdots \leq \pi_n(s)$. So assume, some player i changes to another resource and this deviation is profitable, i.e $\pi_i(t_i, s_{-i}) < \pi_i(s)$ and call the new vector of sorted private cost y. Then he must have chosen a resource that is used by either only players $j > i$ or no player. All players $j < i$ have higher cost, so this would not be a profitable deviation.

This in particular means, that the private cost of every player $j < i$ can not increase, meaning that $y_j \leq x_j$ for all $j < i$. In particular, no player $j > i$ will get higher cost then player i because the only way that j’s cost change is that i now uses his resource. So in particular no player $j > i$ will be before i in the ordering and thus we know $y_i = \pi_i(t_i, s_{-i}) < \pi_i(s) = x_i$ and thus $y \prec_L x$.

Since there are only finitely many strategy profiles s, there has to be a lexicographically minimal vector $x(s)$. The associated strategy profile has to be a nash equilibrium. □