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Exercise 1. Consider the given single commodity network

with the demand d = 1.
Compute the directed Wardrop Equilibrium flow, the socially optimal flow as well as
the social cost of both flows and the Price of Anarchy.

Solution. Let Py = (s,1,t) be the upper path, P, = (s,1,2,t) the middle path, and
P; = (s,2,t) the lower path. Then the Wardrop Equilibrium is

fP] = 1/5) sz = 2/5) fP3 = 2/5‘

The edge flows and latencies (in blue) are:

The social cost of the Wardrop Equilibrium f is
C(f) =) feCelfe) =3/5-3/5+ 152435254251 4+4/5-8/5=1-13/5=13/5
eckt

The optimal flow g is
gr, = 1/2, gr, = 0, gr; = 1/2.

The edge flows and latencies (in blue) are:

The social cost of the optimal flow g is

C(Q) = dece(ge) =12-12412-240+12-1+12-1=7/a.

eckE



So the price of anarchy is

C(f) 52
POA = —— == ~1.156.
(g) 45



Exercise 2. For the class of quadratic cost functions with offsets and non-negative
coefficients
C={c(x)=ax’*+b:a,b>0}

compute the Price of Anarchy by computing the anarchy value

f
[} = sup sup (c(f)
ceC f,g>0 C(f)f

Give an example network that proves that this Price of Anarchy bound is tight.

Solution. We know that the price of anarchy can be computed as

1
POA = ——.
0 -
We compute
(c(f) —clg))g
= supsu
B CEIC) f,gp C(f)f
= sup sup (af?+b—(ag’+b))-g
a,b>0 ,g>0 (af?+b)-f
a-g-(f"—g*)
= sup su
cos0rgm0 (aff +b)-f
a-g-(fF—g%)
= sup su
az%)) f,gpo af? - f
B of - (f2 — g?)
= sup — g
>¢>0 f
f - (2 — («f)?)
= sup .
£>0,0€(0,1] f

= sup (1 —o?)ax = —=

acl0,1] 3v3

Thus the Price of Anarchy is

PoA = 1 = ? ~ 1.625.

2
1-% 9-2V3

The worst-case network with demand d =1 is:

O O

1

The Wardrop Equilibrium is obviously f = (f;,f;) = (1,0) with cost C(f) = 1. Let
g = (9g1,92) be the optimal flow. Then we know that the flow over the upper edge of
the optimal flow g; must solve

minx?> - x+1-(1—x) =minx® —x+1

x>0 x>0



and thus obtain g = (1/v3,1 — 1/v3) with cost C(g) =1 — ﬁg



exercise above.

Show that

Solution. Define x := 1/1+p - g. Then g is also a flow for demand d. Then we have by
the variational inequality (first inequality) and the definition of 3 (second inequality)

that

Exercise 3. For some class of cost functions €, let 3 be the anarchy value as in the

Let f be the Wardrop Equilibrium in some network and for some demands (d;);c; and
let furthermore be g a optimal flow in the same network for the demands ((1+£)d;)icr-

C(f) < C(g).

C(f) = Zfe : Ce(fe)

This proves the claim.

<

IA

ecE

Z Xe - Ce(fe)

eckE



Exercise 4. Consider a graph G = (V,E) with constant edge cost k. > 0 for every
edge e € E and n players. A strategy for every player is to choose a path between
some designated nodes w;,v; € V. The edge costs are equally distributed between
players that use an edge and the private cost of every player is the sum of all shares

Ke
Ti(s) = Z T(S)

ecs;

of the costs, i.e.

where x.(s) :=[{i: e € si}|. Let

Cls) =) mils)

ieN

denote the social cost of some strategy profile.
Prove that there is a Nash Equilibrium s* such that C(s*) < H,, - minscs C(s) where

H, = i 1
k=1

=1

1s the n-th harmonic number.

Solution. At first, we observe

Cls) =) m(s)=) ke

ieN eckE

We then define the potential function

and obtain

P(s) =) keHys) SHn ) ke=Hy-C(s)

eckE eck:
Xe(s)>0

and observe that this is actually a potential function since

Ke Ke
ﬂi(ti)sfi)_ﬂi(s): Z m_ Z Xe(s)

eEti\s-l eesi\ti

= P(ti,s_i) — P(s).

Then the strategy profile s* that minimizes P(s) must be a Nash Equilibrium since
there can not be any profitable deviation of any player.



We then compute

* k'e
Ce=2 m=) D %

ieN ieN ees?
- Z ke < Z k'e : er(s*)
eck: eck:
Xe(s*)>0 Xe(s*)>0

= P(s") < P(s)
<Hn ) ke =HyC(s).

eck:
Xe(s)>0

Since this holds true for every strategy profile s, this in particular holds for the social
optimal strategy profile s. U



Exercise 5. Prove that every weighted congestion game with affine linear costs
Ce(x) = aex + b, has a pure Nash Equilibrium by defining a suitable potential func-
tion.

Solution. We define the potential function P: S — R with
-3 ¥ ac| ¥ a
ecE ieN:ecs; je{l,..ike€s;

Then P is independent of the ordering of the players, see the graph below:

We thus can assume without loss of generality that i =n.

7Ti(t1> Sfi) - 7'(1(3) = ﬂn(tm an) - 7Tn(s)
=d, Z Ce(Xe(tnysn)) —dn Z Ce(xe(s))
tn\Sn sn\tn

= P(tn,s_n) — P(s).

So if we observe a sequence of strategy profiles where there are unilateral improvements,
ie.

T (t, s 1) —m(s) <0
the potential function decreases along this sequence. Since there are only finitely many

possible strategy profiles, we have to reach a minimum. This minimum must be a Nash
equilibrium since there are no more profitable deviations for any player. O



Exercise 6. A congestion game is called singleton if |s;] = 1 for all i € N. Show
that a singleton weighted congestion game has a pure Nash Equilibrium by showing
that the vector containing the player’s private costs sorted in non-increasing order
decreases lexicographically along of any sequence of unilateral improvement.

Solution. We say some vector x € R" is lezicographically smaller than y € R",
denoted by x < vy, if
X; < y; for j = min{i : x; # yi}.
Let
X = (Tﬁ (S)) 7-[2(3)> LERS) ﬂn(s))

be the sorted vector of private cost, i.e. the players are sorted such that 711(s) < m(s) <
-+ < 7y(s). So assume, some player i changes to another resource and this deviation is
profitable, i.e m;(ti, s_i) < 7i(s) and call the new vector of sorted private cost y. Then
he must have chosen a resource that is used by either only players j > 1 or no player.
All players j < i have higher cost, so this would not be a profitable deviation.

This in particular means, that the private cost of every player j < i can not increase,
meaning that y; < x; for all j < i. In particular, no player j > i will get higher cost
then player 1 because the only way that j’s cost change is that 1 now uses his resource.
So in particular no player j > i will be before i in the ordering and thus we know
Yy = mi(ty, s—1) < m(s) = x; and thus y < x.

Since there are only finitely many strategy profiles s, there has to be a lexicographically
minimal vector x(s). The associated strategy profile has to be a nash equilibrium. [J



