Selfish routing in networks
Max Klimm

special thanks to Philipp Warode



— Main questions

» users of these networks make uncoordinated and selfish decisions

» Description:

What kind of usage pattern emerges?

» Computation:

Can the pattern be computed efficiently?

» Efficiency:

How efficient is this usage compared to the optimum?
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Equilibrium flows

Introduction



— Introduction to selfish flows

» two unit size populations of drivers
> blue: going from s; to t,
> red: going from s, to t,

» each driver has two path choices

> blue: s;—=t, or s;—ou—v—t;

> red: s,—t,or s, mu—v—t, 3/2 5/2
» travel time along an edge depends
on the total traffic on that edge

» each driver is interested in

minimizing its own travel time
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— Formal model

» directed or undirected graph G=(V,E)
> finite set of vertices V
> set of edges E C VxV
» cost functionc,: R, - R, foreckE
> non-decreasing
> continuous
> (convex)
» finite set K of commodities (s;,t;,d.)
> origin vertex s;€V
> destination vertex t; € V

> demand d;e R,

_31

1/2 Y 0

3/2
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— Flows

» P. = set of paths from s; to t;

Definition — Flow (Path formulation)
Collection of functions f;: P.e R,

with 2_pcy. fi(P) = d; for all i€ K.
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— Flows

» P. = set of paths from s, to t; ]
Definition — Flow (Path formulation)
Collection of functions f;: P.e R,
with ZPE?i f.(P) = d, for all ie K. 1/2
3/2
Definition — Flow (Edge formulation)
Collection of functions f, : E—5R
satisfying flow conservation Iaws
Zeeéﬂv) fi(e) — Zeeé ( \V/\) S V\{Svt }
Zeeéﬂsi) fi(e) - Zeeé—(si)f (e) 1
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— Flows

» P. = set of paths from s; to t.

Definition — Flow (Path formulation)
Collection of functions f;: P.e R,

with ZPG?i f.(P) = d, for all ie K.

Definition — Flow (Edge formulation)

Collection of functions f, : E—- R,
satisfying flow conservation laws:
Ze€5+(v) f.(e) = Zegé—(\)) f.(e) Yve V\{s,t.}
Zeeéﬂsi) fi(e) - Zeeé—(si)fi(e) = d;

w

\/4

|-

1/2 1/4
{
L g(w)J

— p—

57 (w) |
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— Flows

» P. = set of paths from s; to t;

Definition — Flow (Path formulation)
Collection of functions f;: P.e R,

with 2_pcy. fi(P) = d; for all i€ K.

not unique

unique

Definition — Flow (Edge formulation)

Collection of functions f, : E—- R,
satisfying flow conservation laws:
Zegéﬂv) fi(e) = Zeeé—(\)) f.(e) Yve V\{s,t}
Zeeéﬂsi) file) - Zeeé—(si)fi(e) = d;
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— Equilibrium flows

» “The journey times on all the routes ﬂ‘ 1

actually used are equal, and less than > 4

those which would be experienced U 0 0
by a single vehicle on any unused / \

route.” [Wardrop '52]

3/2 5/2

» fle) = 2 file)

Definition — Wardrop equilibrium:
Path flow f = (f,), ¢ with
ccr Celf(€)) < Lecq celfle))

for all i€ K, and P,Q € P, with f,(P) >0. i
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— Notable cost functions

Ce
A
>
linear function
c.(x)=ax
Ce
A
i £
L

MM1 function
Ce(x) = 1/(p—x)

Ce C, [US Bur. Pub.Roads '64]
» T . ¢
affine function BPR function
Ce(X):aX—I—b Ce(x):t(1+0.15(x/u)4)

» expected response time of single server
» service time exponentially distributed with
parameter u

» arrivals according to Poisson process at rate x
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Equilibrium flows

Existence and uniqueness



— Characterization of Wardrop equilibria

Theorem [Beckman et al. '56]

The following are equivalent:
1. fis a Wardrop equilibrium.

2. f satisfies the variational inequality
> e c.(f(e))(gle) —f(e)) >0 Vflowsg:E—R, .

3. fis an optimal solutlon to
g(e) :
minimize ZQEEJ c.(t)dt st. g:E—R,isaflow .

» 3. yields an efficient algorithm as the minimization problem can be

solved with convex optimization techniques
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— Proof of characterization
f WE & f satisfies (VI) 2_..¢ c.(f(e))(g(e) — f(e))

=
> let i€ K, and paths P,Q € P,
with A=f.(P) >0 be arbitrary
> consider new flow f’

with £(Q)=f(Q)+f(P) and f'(P) =0
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— Proof of characterization
f WE & f satisfies (VI) 2_..¢ c.(f(e))(g(e) — f(e))

y 1"
> let i€ K, and paths P,Q € P,
with A=f.(P) >0 be arbitrary
> consider new flow f
with £(Q)=f(Q)+f(P) and f'(P) =0
> by (V1)
0 < 2Lce celf(e))(Pe) - fle))

> fisa WE
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— Proof of characterization
f WE & f satisfies (VI) 2_..¢ c.(f(e))(g(e) — f(e))

» ="

> fora WE f, and i€k,
there are constants k; € R with
> .op C.(f(e)) =k, for all Pe P, with £(P) >0

b 2ecr Colf(e))f(e)
— ZieK ki d;
— ZieK Zpeﬂ k; gi(P)
< ZieK Zpeﬂ g;(P) ZeeP c.(f(e))
= 2.t c(f(e))gle)
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— Proof of characterization

» here only “"<"
leth(g) = X [2 (1) at \
» the optimization problem

min. h(g) s.t. g is a flow

is convex on a convex domain
» first-order Taylor approximation in f gives
To(g; f) = h(f) + (g—f)' Vh(f)
» = h(f) + Lece celf(e))(gle) - fle))
» so, when f satisfies (VI)

h(g) = T.(g; f) (by convexity) /
T.(g; f) = h(f) (by (V)
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— Uniqueness of equilibria

Corollary [Beckman et al. '56]

If cost functions are non-constant everywhere, the total edge flows
f,=2_.. f.(e) of all Wardrop equilibria f are unique.

. e . .
» for non-constant functions, h(g) = ZeeE fog( )ce(t) dt is strictly convex

» unique minimum f

» path flow may not be unique though

1» §1 X X X t »1

uw jus

/ ~_ X\Atzlh
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L 1\ o 13
/ v

/
I 52 ° \tz B
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/ v
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— Uniqueness of equilibria

Corollary [Beckman et al. '56]

If cost functions are non-constant everywhere, the total edge flows
f,=2_.. f.(e) of all Wardrop equilibria f are unique.

» for non-constant functions, h(g) = 2_,.¢ fg ) dt is strictly convex

» unique minimum f

» path flow may not be unlqu1e/;clhough

3
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Equilibrium flows

Undirected single-commodity networks



— Characterization of edge flows
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Characterization of edge flows
I 1/2 S 1/2

x 1/2
1/2 AV #vz
/ no WE \1/2
1 (s ] 0 t wpl
0 ]N /]
X X
V3" 1/2

1/2
» for a fixed flow f, let t(v) be the length of a shortest path from s to v

(in terms of c.(f(e)))
» t(w) — mt(v) < ¢ (f(v,w)) for every edge (v,w) € E.

Lemma
f WE & nt(w) — nt(v) = c.(f(v,w)) for all edges with f(v,w) > 0.
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Characterization of edge flows
I 1/3 S i 2/3

WE f

2/3
» for a fixed flow f, let t(v) be the length of a shortest path from s to v

(in terms of c.(f(e)))

» t(w) — mt(v) < ¢ (f(v,w)) for every edge (v,w) € E.

Lemma
f WE & nt(w) — nt(v) = c.(f(v,w)) for all edges with f(v,w) > 0.
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— Characterization of edge flows

» for a fixed flow f, let t(v) be the length of a shortest path from s to v
(in terms of c.(f(e)))
» t(w) — 7t(v) < ¢, (f(v,w)) for every edge (v,w) € E.

Lemma
f WE & nt(w) — nt(v) = c.(f(v,w)) for all edges with f(v,w) > 0.
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— Characterization of edge flows

3/7 2/7 5/7
3/7 v, - WE f
1» s
4\ /1/7
4/7

» for a fixed flow f, let t(v) be the length of a shortest path from s to v

(in terms of c.(f(e)))
» t(w) — mt(v) < ¢ (f(v,w)) for every edge (v,w) € E.

Lemma
f WE & nt(w) — nt(v) = c.(f(v,w)) for all edges with f(v,w) > 0.
If c.(0) = 0O for all e:
f WE & nt(w) — it(v) = c.(f(v,w)) for all edges.
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Characterization of edge flows
I 3/7 S 5/7

PR /7
¥ "—-22"2
P 4

—+

8/7 Volt

+ |

» Claim:
the Wardrop equilibrium describes the electric current in a resistor
network with a voltage of 8/7.

(here: resistors with unit resistance) |
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— Characterization of edge flows

2/7 2

25

‘‘‘‘‘‘‘

Kirchhoff's law v
At any node, inflow of current equals
outflow of current.
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Characterization of edge flows
I 3/7 S 5/7

7 i
l /7N

1/7

Ohm’'s law vV

J( Current equals difference of voltage at
LB end points over resistance.

bf:I
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— Notable characteristic curves

AU AU AU
A A A
> | > | > I
ohmic resistance high-temperature low-temperature
conductor conductor

» for these conductors, electric current is given by a WE
AU
A

/
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» there are other elements, e.g. diodes

> |




— Resistance networks

Au l v \
R-f S \-/‘/ t
W
> | L
) T Volt
ohmic resistance
R = resistance é I
» Goal:

easy computation of the electric current in the network

(without computing a Wardrop equilibrium)
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— Easy computation of electric current

» (we allow here negative flows f(v,w) corresponding to positive flows

in the opposite direction) .
conductivity

» equilibrium condition: f(v,w) = o, (7t(W) - 7t(V)) o, =1/R
» flow conservation: 0= ZW@M flv,w)

g 0 = Zweé(v) “v,w(ﬂ(w) B W(V))

) 7T(\)) Zweé(v) va,w — Zweé(v) (xv,w W(W)

) 7T(\)) Av — Zweé(v) Xy w W(W)

g 7-[(\)) — Zweé(\)) o 7T(W)

» Dirichlet problem with boundary conditions 7t(s) = 0 and 7t(t) = T.

» Fact: Solutions to Dirichlet problems are unique.
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— Interpretation as Markov chain

» Markov chain X on V mi(v) = ZWE&M %& mt(w)
with transition probabilities «, ,, / A, Y

» s and t are absorbing ni(s) =0, n(t) =T

with payoffs g(s)=0 and g(t)=T Dirichlet problem

Rk v

» @(v)=E|[g(u) | stop in ue{s,t}, start in v] $

Lemma

The expected payoffs ¢(v) are the
unigque solution of the Dirichlet problem.

Proof
<P( ) = Elg(u) | XO:\;]
— Zweé W) | Xo=V, X, =W Ty
Xy w AV
— ZWEZS ) ) t
A

v J
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— Simulation
% _

[Doyle, Snell ‘06]

1 Volt 1 Volt

~0.6316

estimated currents
(10,000 random walks)
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— Consequences

» Thompson'’s Principle: [Thompson, Tait, 1879]
Electric flow minimizes energy dissipation /22_,.¢ R, f(e)’
> Proof: Electric flow is WE with cost functions c,.(x) = R, x,
thus minimizes ZeeEfoge c.(t) dt =1/22_..¢ R, g(e)* .
» Effective resistance:
A network behaves like a single resistor with resistance R.;..
> Proof: Flows and potentials are scale-invariant .
» Rayleigh’s Monotonicity Law:
Increasing single resistances cannot decrease effective resistance.
> Proof: R = 1/22_..¢ R, f(e)?, and the latter cannot be decreased
when increasing resistances.

» Rayleigh’s Monotonicity Law, in turn, implies similar statements for

random walks.
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Equilibrium flows

Relationship with system optimum



— System-optimal flows

» total travel time
C(f) :ZiEKZPETifi(P)ZeEP c.(f(e))
=2 _.cpc(f(e))f(e)
» C(g)=3/2+1=5/2




— System-optimal flows

» total travel time
C(f) :ZiEKZPE‘Pifi(P)ZeeP c.(f(e))
=2 c.(f(e))f(e)
» C(g)=3/2+1=5/2
» C(f) =3/4+9/4 =3

» Wardrop equilibrium need not

minimize the total travel time
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— Characterization of system-optimal flows

Theorem [Beckman et al. '56]

Flow f is system-optimal if and only if it is a Wardrop equilibrium for
the modified cost functions ¢(x) = c(x) + ¢’(x)x.

1 1 1 1

S1 1
NS
u

Sz S] 1 SZ

A

] ]
3/2 I ) 5/2 3/2 I s 5/2
V
t t t
“v WE for e(x) : ‘ WE for &(x 2
1 or €ix 1 1 —OPTforc( ) 1
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— Braess’ Paradox

[Braess '68]
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— Braess’ Paradox

[Braess '68]

— 4y

|

WE f
C(f) = 3/2

ol

|

WE f
C(f) =2
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— Braess’ Paradox

[Braess '68]

» no Rayleigh Law for transportation networks!
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Equilibrium flows

Efficiency



— Price of anarchy

[Koutsoupias, Papadimitriou ‘99; Papadimitriou ‘01]
» price of anarchy measures the efficiency due to lack of coordination

> PoA]: C(f) / C(g), wher]e f WE and ¢ OP1T ]

S ]
AN
u

3/2 VZIL 5/2

/\

WE ¢
Clg) =3

Sy

\4

tz
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— Price of anarchy of affine costs

Theorem [Roughgarden, Tardos ‘02]
PoA < 4/3 for all networks with affine costs c(x)=ax+b; a,beR,.

» this bound is tight [Pigou 1920]
]
> <

51

1/2 1/2

] X 1 X

WE f t OPT g
¥  C(f) =1 ¥ Clg)=3/4

]
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— Proof of the upper bound

[Correa et al. '08]
» C(f) = 2k c.(fle)) f(e)
< 2ecr c(fle)) gle) (for OPT g, by VI)
< 2ecr colgle)) gle) + 2 e (co(f(e)) - colgle))) gle)

gle) f(e)
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— Proof of the upper bound

[Correa et al. '08]
b C(F) = 2eg c(fle)) fle)
< 2.t Co(f(e)) gle) (for OPT g, by VI)
< 2ot Colgle)) gle) + 2o (ce(fle)) - c.lgle))) gle)

gle) f(e)
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— Proof of the upper bound

[Correa et al. '08]

» C(f) = 2 g c.(fle)) fle)
< 2ecr c(fle)) gle) (for OPT g, by VI)
< 2ece Colgle)) gle) + 2ecp (colfle)) — culgle))) gle)

| — X | —— x

gle) fle) gle)  f(e) ]
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— Proof of the upper bound

[Correa et al. '08]

(for OPT g, by VI)

| — X | —— x

gle) fle) gle)  f(e) ]
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— Bound for arbitrary costs

» for an arbitrary set C of cost functions let

(c(x) = c(y))y
c(x)x

6(6) — SUPcee SUPx yer.,

Theorem [Roughgarden ‘03]
PoA < (1-B(@)) for all networks with costs from the set C.

» gives 4/3 tor affine functions, quadratic functions —Exercise session

» closed formula for polynomials, BPR functions, and MM1 functions

M. Klimm: Selfish routing in networks | 59 —I

» unbounded for general functions



Unsplittable flows

Introduction



— Critique of non-atomic models

» non-atomic models assume that each commodity consists of a large
population of infinitesimally small players, each with negligible impact

» population of a commodity may split arbitrarily between the paths in
a network

» unrealistic in telecommunication applications where all data is send
along a single path under current TCP/IP protocol

(to ensure that packets arrive in order)
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— Atomic vs. non-atomic games

A

o 1 X e |
» commodities do not split » commodities split arbitrarily

» every commodity corresponds to » every flow particle corresponds

an individual player to an individual player

_
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— Atomic games as strategic games

29, 29
24, 24

» Atomic congestion games are finite strategic games
> finite set of players

> each player has a finite set of strategies
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— Formal model

» directed or undirected graph G = (V,E)& 1

> finite set of vertices V
> set of edges E C VxV

» cost functionc,: R, — R, foreckE
> continuous

» set N={1,...,n} of players, each with
> origin vertex s;€V 3/2
> destination vertex t, € V
> demand d;e R,
> strategy set P, = {P : Pis (s,t,)-path}
> private cost for P=(P,,...,P.); P.€ P,

7 (P) = ZeePi Ce(Z]’EN . ecP; d)

/

\

N
A

t

o

Sy

5/2

<

tz

f.(P) &1 NEP lﬁﬂ
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— Formal model

» directed directed hG=(V,E
irected or undirected grap ( )& 1 & 1

> finite set of vertices V 3 3
> set of edges E C VxV S S5

» cost functionc,: R, — R, foreckE 0 0
> continuous
u

» set N={1,...,n} of players, each with

> origin vertex s; €V 3/2 5/2

X
> destination vertex t, € V

Vv
> demand d; R,
> strategy set P, = {P : Pis (s,t,)-path} 0 0

> private cost for P=(P;,...,P.); P,c P, (%, t,

ﬂi(P) — ZeEPi Ce(ZjEN eeP; d)) ;
& |

no NE Q

3
.(P) pan g
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— Equilibria
Definition — (pure) Nash equilibrium
path profile P such that S 1

m(Qy P) = m(Py, Py) VieN, Qe . 3
(x41)

» mixed strategy x; of player i > s
is a probability distribution over P, = 1
Xi = (Xi,Pp Xi,Pzr--) e A(P) 1 3 B

> ted privat t
?xpec ed private costs 'y e 1/,
T(xy X4) = Bl m(Py, Py) | — >
. \ [ ] o

y T(Xgy X 4) = ZPe?i Xip * 1 — —

ZeEP [E[Ce(dl—l—fe)_l(])_l)], £ o . 24) 24 29) 29
where f,_(P_) = 2jcny: ecr, 45 1, 1< 7] 29,29 | 24, 24

Definition — mixed Nash equilibrium
prob. dist. profile x such that mixed equilibrium

(Y X)) = (Y X)) VIEN, y; € AP |
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Unsplittable flows

Existence of equilibria



— Congestion Games

Theorem

Every finite game has a mixed NE.

» proof via Brouwer's fixed point theorem

» pure NE need not exist:

1/3

mixed equilibrium /3

1/3

Theorem

[Nash "52]
1/3 1/3 1/3
W | 0,0 |-1,1 | 1,-1
i 1-1 | 0,0 |-1,1
P11 -1 ] 0,0

[Rosenthal *73

Every unweighted congestion game (d,=1 Vi) has a pure Nash

equilibrium.

» proof via potential functions
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— The potential function argument

» let ®(P) = D¢ ®(P), where ®(P) = 2, p) co(K)

\/x\

<\ /\/

SZ’ 83

82183
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— The potential function argument

» let ®(P) = D¢ ®(P), where ®(P) = 2, p) co(K)

\4\\

<\ /\/

SZ’ 83

82,83
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— The potential function argument

» let ®(P) = D¢ ®(P), where ®(P) = 2, p) co(K)
t

\/\\ \7\

SZ, 83

82,83
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— The potential function argument

» let ®(P) = D¢ ®(P), where ®(P) = 2, p) co(K)
t

sz\ KA

A K

SZ, 83

82,83
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— The potential function argument

» let ®(P) = D¢ ®(P), where ®(P) = 2, p) co(K)
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— The potential function argument

» let ®(P) = D¢ ®(P), where ®(P) =2, p) co(k)

Ce(x)

Observation: Potential function independent of ordering of the players
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— The potential function argument

Theorem [Rosenthal 73]
Every unweighted congestion game
has a pure Nash equilibrium.

Proof

» consider profitable deviation of n
from P=(P,P_)to Q=(Q,P_.)

(P)
= ZeeQn fe(Q)) — Zecp, Celfe(P))
-, (P) <O

» every sequence of profitable

deviations is finite

» reaches pure Nash equilibrium
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— Computation of equilibria

» every sequence of profitable deviations is finite

» but: convergence may take exponential time
> computation of a pure Nash equilibrium is PLS-complete
(as hard as any local search problem) [Fabrikant et al. ‘03], [Ackermann et al. ‘08]

» convergence is quick for special strategy spaces

N\ /

— E : N I spanning
S \s/ S t t t trees

1 2,°3 1 2 3
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— Computation of equilibria

» for a single source and destination and non-decreasing costs
the potential function can be minimized efficiently by min-cost flow

computations [Fabrikant et al. ‘03]

yvx\xt=1 1# S&(Q ]
/ | |

I ¢ Q&

min-cost flow problem
(all edges have unit capacity)

original instance
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— Computation of equilibria

» for a single source and destination and non-decreasing costs
the potential function can be minimized efficiently by min-cost flow

computations [Fabrikant et al. ‘03]

yvx\xt=1 1# S&(Q ]
/ | |

1\W X » 1&\W /

min-cost flow problem
(all edges have unit capacity)

original instance
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— Computation of equilibria

» for a single source and destination and non-decreasing costs

the potential function can be minimized efficiently by min-cost flow

computations [Fabrikant et al. ‘03]
2x+1 Y 3/‘ Y \1
X X
30 [ e, 3e( e
™ X N W 1

min-cost flow problem

original instance (all edges have unit capacity)

» no positive result for more sources and destinations known

(also no result for mixed equilibria)
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— Conclusion for unweighted games

» for unweighted games with unsplittable
flow, i.e, d, = 1 VieN
a pure Nash equilibrium always exists

» any sequence of unilateral (single-player)

improvements converges to a pure Nash
equilibrium

» Nash equilibria are not unique

» computation is in general hard

(even two players and affine costs)

| el >
] 3

cases: (x+1)

» efficient algorithms only known for specia

> single source or single sink
> Matroids
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— Existence of Nash equilibria
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— Existence of Nash equilibria
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— Further counterexamples

10(12(14 [Fotakis et al. ‘05]
dy =1 12/8 1140(79 1140(79
S > > » t
dz — 2
16|18|20
12|120|228
X+33 [Goemans et al. '05]
di =1 m 13x
d=2 (S > > > T
x2+44
47x
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— Positive results

» Restrictions on the strategy space: A Nash equilibrium exists, if costs
are non-decreasing and all strategy spaces P; are...
> singletons, i.e. |P|=1forall P € P, i€ N. [leong et al. ‘05]

> the basis of a matroid. [Ackermann et al. ‘09]

» Restrictions on the cost functions: A Nash equilibrium exists, if all
cost functions are...
> affine. —Exercise session [Fotakis et al. ‘05]
> of type c.(x) = exp(x). [Panagopoulou, Spirakis '06]
> of type c.(x) = k./ xwith b, e R,
(for 2-player games). [Anshelevich et al. ‘08]
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— Consistent cost functions

Definition — Consistent cost functions
Set of cost functions €, such that all weighted congestion games with

costs in & have a Nash equilibrium.

» C ={c:c(x) = ax+b; a,beR} is consistent. [Fotakis et al. '05]
» C ={c:c(x) = exp(x)} is consistent. [Panagopoulou, Spirakis '06]

» C={c:c(x) =k./ x, k.eR,} is consistent for 2-player games.
[Anshelevich et al. ‘08]

Which are the maximal sets of consistent cost functions?
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— Characterization for 2-player games

Theorem [Harks, K., “12]

@ is consistent for weighted congestion games with 2 players
if and only if

1. € contains only monotonic functions, and

2.tor all ¢, c,€C there are a,b € R with ¢;(x) = ac,(x)+Db.

» Assumption: & contains only continuous functions

» Sufficiency by potential function [Harks, K., Méhring, *11]
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— Proof "="

» let € be a set of consistent cost functions.

1. Step: Every c € € is monotonic.
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— Proof "="

2. Step: a; ¢;(x) — a, ¢,(x) monotonic for all a;, a,€Z, ¢,, c,€C.

a;¢(z) —a,c,(z)

X y x+y

z 051%5)
&5 —+@

d1=x

a;¢q(x) —aycy(x) < aycqi(x+y) —ac(x+y) <aycq(y) —azc,(y)
= a1C1(X) +azc(x+y) < ajci(x+y) + acy(x)

= a;¢1(y) -

- a,CH(x-

-y) > ajcq(x+y) + azcr(y)
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— Proof "="

3. Step: a,¢; — a,¢, monotonicV a;,a,€Z = da,beR : c;=ac,+Db.

» Intuition for twice differentiable functions c,,c, € € with ¢}, ¢}, ¢,¢c) >0
> For a contradiction, assume
AabeR :c(x) =acy(x)+b forall x>0
> I %, €>0:ci(x)/cj(x) # 0 torall x € (x,-¢, x+¢)

Ci(x) Cylx

> det ix) - ealx) #+ 0 for all x e (x,—¢, xo+¢€)
cP(x) €2(x)

>Jay, a,: -

a; ci(x) —a; ci(x) =0
a; ¢ (x) —az ¢y (x) #0
for some x € (xy—¢€, Xy+€)

» a;C; — Q,C, has strict extremum in (x,— ¢, X,+ ¢€).
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— Characterization for n players

Theorem [Harks, K. “12]

€ is consistent for weighted congestion games if and only if

1. € only contains affine functions of type ax + b, or

2. € only contains exponential functions of type aexp(@x)+Db,

where a,b € R may depend on ¢, while ¢ is independent of c.

» Assumption: & only contains continuous functions

» Sufficiency of conditions follows from [Harks, K., Méhring, "11]
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— Proof ="

1. Step: c€C = a,c¢(x) - a,c(x+6) monotonic for all a;,a,€2Z, 6>0.

a; C? (z) — a,¢,y(z)

X

Y x+y

d, =y

§—>a1 - — 55
C @O

d]:X

a,c
52 @ -0 &
A A

é_»chc ~®

A 4

@
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— Proof "="

1. Step: c€C = a,c¢(x) - a,c(x+6) monotonic for all a;,a,€2Z, 6>0.

d, =y
a,;c(z) — a,c(z+9) ‘

§—>a1c — 55

| | | » CI,ZC b4

X Yy Xx+y 51 @
d] — X d3 — 6

» for all 6>0 there are a,b € R, with c(x+08) = ac(x)+Db.
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— Proof "="

» for all 6 >0 there are a,b € R with ¢c(x+6) = ac(x) + b, i.e,
c( 158) =ac 06)+ b
c| 28) =ac 18)+ b

c( (k+1)8) =a cf kd)+ b
c((k+2)8) =ac( (k+1)8)+ b

» 0 = c((k+2)d) - (a+1) ¢((k+1)8) + a c(kd) for all ke N.
» solution of the linear recurrence relation
pifa#1: c(kd) =B + ¢ ak = x exp(k In |a]) + PB.
>ifa=1: ¢(kd) =B + «x k.
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Further characterizations

Uniform, variable demands
y il(s) = Uildi) - X, erxils)),

y x/(8) = ZiEN:resi di, S; c 2RxR

[Harks, K. ‘15]

homogeneously exponential functions

Uniform, res.-dep. demands [Harks, K. "12]
y T(s) = X, ;. crx:s)),
} xr(S) = ZieNireSi di,?’
contant functions
Uniform, weighted [Harks, K. "12]

» mis) = X, crxi(s)),
4 xr(s) = ZiEN:resi di
affine functions

or
exponential functions

Unweighted
» mis) = X, crxr(s)),

» x,(s) =| ieN : resi

Variable demands
» Tils) = Uildi) - X2, . di cr(xi(s)),
y x(8) = ZieN:resi d;, S; c 2RxR

affine functions
or
homogeneously exponential functions

[Harks, K. ‘15]

Resource-dep. demands [Harks, K. "12]
y Tls) =X, dir crx:(s)),
} xr(S) = ZleI\] L res; di,?'
affine functions
Weighted [Harks, K. "12]

mi(s) =Y., di crxi(s)),
x”(S) - ZieN:resl- di
affine functions

or
exponential functions

[Rosenthal ‘73]

all functions

M. Klimm: Selfish routing in networks | 95 —I



M Conclusion

» existence:
> equilibria exist for non-atomic players
> equilibria exist for unweighted atomic players

> equilibria may not exist for weighted atomic players
(only for affine or exponential cost functions)
» computation:
> convex programming for non-atomic players
> efficient only for special cases (single source, Matroid) for
unweighted players
> open for weighted atomic players
» efficiency:
> Wardrop equilibria generalize electric networks which minimize
energy dissipation
> general road networks are not efficient wrt total travel time
> inefficiency can be bounded in terms of the price of anarchy
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