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Main questions

▸ users of these networks make uncoordinated and selfish decisions 

▸ Description: 
What kind of usage pattern emerges? 

▸ Computation:  
Can the pattern be computed efficiently? 

▸ Efficiency:  
How efficient is this usage compared to  the optimum?
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Equilibrium flows

Introduction
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Introduction to selfish flows

▸ two unit size populations of drivers 
▹ blue: going from s1 to t1 
▹ red:   going from s2 to t2 

▸ each driver has two path choices 
▹ blue: s1 → t1 or s1 → u → v → t1 
▹ red:   s2 → t2 or s2 → u → v → t2 

▸ travel time along an edge depends 
on the total traffic on that edge 

▸ each driver is interested in 
minimizing its own travel time
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Formal model

▸ directed or undirected graph G = (V,E) 
▹ finite set of vertices V  
▹ set of edges E ⊆ V×V 

▸ cost function ce : ℝ+ → ℝ+ for e ∈ E 
▹ non-decreasing 
▹ continuous 
▹ (convex) 

▸ finite set K of commodities (si,ti,di) 
▹ origin vertex si ∈ V 
▹ destination vertex ti ∈ V 
▹ demand di ∈ ℝ+
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Flows
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Definition — Flow (Path formulation) 
Collection of functions fi : @i ∈ ℝ+ 
with ∑P∈@i fi(P) = di for all i ∈ K.

▸ @i = set of paths from si to ti

1
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Flows
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Definition — Flow (Path formulation) 
Collection of functions fi : @i ∈ ℝ+ 
with ∑P∈@i fi(P) = di for all i ∈ K.

▸ @i = set of paths from si to ti

Definition — Flow (Edge formulation) 
Collection of functions fi : E → ℝ+ 
satisfying flow conservation laws: ∑e∈δ+(v) fi(e) = ∑e∈δ−(v) fi(e) ∀v ∈ V\{si,ti} ∑e∈δ+(si) fi(e)  - ∑e∈δ−(si) fi(e) = di 1
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Flows
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Flows
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Equilibrium flows
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▸ “The journey times on all the routes 
actually used are equal, and less than 
those which would be experienced 
by a single vehicle on any unused 
route.” [Wardrop ’52] 

▸ f(e) = ∑i∈K fi(e)
Definition — Wardrop equilibrium: 
Path flow N = (fi)i∈K with ∑e∈P ce(f(e)) ≤ ∑e∈Q ce(f(e)) 
for all i ∈ K, and P,Q ∈ @i with fi(P) > 0.
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Notable cost functions
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ce

f
linear function ce(x) = ax

ce

f
affine function ce(x) = ax + bce

fµ
MM1 function ce(x) = 1/(µ-x)

▸ expected response time of single server 
▸ service time exponentially distributed with 

parameter µ  
▸ arrivals according to Poisson process at rate x

ce

f
BPR function ce(x) = t(1+0.15(x/u)4)

[US Bur. Pub. Roads ’64]



Equilibrium flows

Existence and uniqueness
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Characterization of Wardrop equilibria
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Theorem [Beckman et al. ’56]

The following are equivalent: 
1. N is a Wardrop equilibrium.
2. N satisfies the variational inequality ∑e∈E ce(f(e))(g(e) - f(e)) ≥ 0    ∀ flows g : E → ℝ+ .
3. N is an optimal solution to 

minimize ∑e∈E ∫    ce(t) dt   s.t.    g : E → ℝ+ is a flow  .0g(e)

▸ 3. yields an efficient algorithm as the minimization problem can be 
solved with convex optimization techniques
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Proof of characterization

▸ “⇐” 
▹ let i ∈ K, and paths P,Q ∈ @i 

with λ = fi(P) > 0 be arbitrary 
▹ consider new flow N’ 

with f’(Q) = f(Q) + f(P) and f’(P) = 0

19

N WE ⇔ N satisfies (VI)  ∑e∈E ce(f(e))(g(e) - f(e)) ≥ 0
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with f’(Q) = f(Q) + f(P) and f’(P) = 0 
▹ by (VI), 0 ≤ ∑e∈E ce(f(e))(f’(e) - f(e)) 0 = λ (∑e∈Q ce(f(e)) - ∑e∈P ce(f(e))) 
▹ f is a WE
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Proof of characterization

▸ “⇒” 
▹ for a WE N, and i ∈ K, 

there are constants ki ∈ ℝ+ with ∑e∈P ce(f(e)) = ki for all P ∈ @i with f(P) > 0 
▹ = ∑e∈E ce(f(e))f(e) 
▹ = ∑i∈K ki di 
▹ = ∑i∈K ∑P∈@i ki gi(P) 
▹ ≤ ∑i∈K ∑P∈@i gi(P) ∑e∈P ce(f(e)) 
▹ = ∑e∈E ce(f(e))g(e)
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Proof of characterization

▸ here only “⇐” 
▸ let h(_) = ∑e∈E ∫    ce(t) dt 
▸ the optimization problem  

min. h(_) s.t. _ is a flow 
is convex on a convex domain 

▸ first-order Taylor approximation in N gives Th(_; N) = h(N) + (_-N)T ∇h(N) 
▸ Th(_; N) = h(N) + ∑e∈E ce(f(e))(g(e) - f(e)) 
▸ so, when N satisfies (VI)  h(_) ≥ Th(_; N)   (by convexity)  Th(_; N) ≥ h(N)   (by (VI))

22

N min. ∑e∈E∫   ce(t) dt ⇔ N satisfies (VI)  ∑e∈E ce(f(e))(g(e) - f(e)) ≥ 00ge

0g(e)

flows _

h
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Uniqueness of equilibria

▸ for non-constant functions, h(_) = ∑e∈E ∫    ce(t) dt is strictly convex 
▸ unique minimum N 

▸ path flow may not be unique though

23

Corollary [Beckman et al. ’56]

If cost functions are non-constant everywhere, the total edge flows  fe = ∑i∈K fi(e) of all Wardrop equilibria N are unique.
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Equilibrium flows

Undirected single-commodity networks
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Characterization of edge flows

28
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Characterization of edge flows

29

▸ for a fixed flow N, let π(v) be the length of a shortest path from s to v  
(in terms of ce(f(e))) 

▸ π(w) - π(v) ≤ ce(f(v,w)) for every edge (v,w) ∈ E.
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Characterization of edge flows
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▸ for a fixed flow N, let π(v) be the length of a shortest path from s to v  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Characterization of edge flows
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Characterization of edge flows

32

▸ for a fixed flow N, let π(v) be the length of a shortest path from s to v  
(in terms of ce(f(e))) 

▸ π(w) - π(v) ≤ ce(f(v,w)) for every edge (v,w) ∈ E.
LemmaN WE ⇔ π(w) - π(v) = ce(f(v,w)) for all edges with f(v,w) > 0.
If ce(0) = 0 for all e: N WE ⇔ π(w) - π(v) = ce(f(v,w)) for all edges.
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Characterization of edge flows

33
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0

▸ Claim: 
the Wardrop equilibrium describes the electric current in a resistor 
network with a voltage of 8/7. 
(here: resistors with unit resistance)
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Kirchhoff’s law 
At any node, inflow of current equals 
outflow of current. 

w

Characterization of edge flows

34
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Characterization of edge flows
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Ohm’s law 
Current equals difference of voltage at 
end points over resistance.

∆π = ∆U = c(f)

f = I
✔
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Notable characteristic curves
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∆U

I
high-temperature 

conductor

∆U

I
low-temperature 

conductor
▸ for these conductors, electric current is given by a WE 

▸ there are other elements, e.g. diodes ∆U
I

∆U

I
ohmic resistance 



 M. Klimm: Selfish routing in networks | 

Resistance networks∆U

I
ohmic resistance R = resistance

▸ Goal: 
easy computation of the electric current in the network 
(without computing a Wardrop equilibrium)

s t
w

v

-+T Volt

Rs,w

Rv,t
Rw,t

Rs,v R v,wR·f
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▸ (we allow here negative flows f(v,w) corresponding to positive flows 
in the opposite direction) 

▸ equilibrium condition: f(v,w) = αv,w(π(w) - π(v)) 
▸ flow conservation:                0 = ∑w∈δ(v) f(v,w) 
▸ flow conservation:                0 = ∑w∈δ(v) αv,w(π(w) - π(v)) 
▸                  π(v) ∑w∈δ(v) αv,w = ∑w∈δ(v) αv,w π(w) 
▸                  π(v)        Av         = ∑w∈δ(v) αv,w π(w) 
▸                                 π(v)  = ∑w∈δ(v) αv,w  π(w) 
▸ Dirichlet problem with boundary conditions π(s) = 0 and π(t) = T. 
▸ Fact: Solutions to Dirichlet problems are unique.

Easy computation of electric current

38
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Interpretation as Markov chain

39

Avπ(v) = ∑w∈δ(v) αv,w  π(w) 
π(s) = 0, π(t) = T

Lemma
The expected payoffs φ(v) are the 
unique solution of the Dirichlet problem.

Dirichlet problem

s

t

w v

Rs,w
Rv,tRw,t

Rs,v

Rv,w

▸ Markov chain X on V 
with transition probabilities αv,w / Av 

▸ s and t are absorbing  
with payoffs g(s) = 0 and g(t) = T 

▸ φ(v) = "[g(u) | stop in u ∈ {s,t}, start in v]

Proof 
▸ φ(v) = "[g(u) | X0 = v] 
▸ φ(v) = ∑w∈δ(v) "[g(w) | X0 = v, X1 = w] αv,w  
▸ φ(v) = ∑w∈δ(v) φ(w) αv,w AvAv
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Simulation

40

s

t

w v

calculated currents

1 Volt

1 1
2

2 112/19 ≈ 0.6316
7/19 ≈ 0.3684

9/19 ≈ 0.4737
2/19 ≈ 0.1053

10/19 ≈ 0.5263
s

t

w v

estimated currents 
(10,000 random walks)

1 Volt

1 1

2 1
2

0.6328 0.3672

0.4754

0.1082

0.5246
[Doyle, Snell ’06]
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Consequences

▸ Thompson’s Principle: [Thompson, Tait, 1879]  
Electric flow minimizes energy dissipation 1/2∑e∈E Re f(e)2   
▹ Proof: Electric flow is WE with cost functions ce(x) = Re x, 

thus minimizes ∑e∈E∫   ce(t) dt = 1/2∑e∈E Re g(e)2   . 
▸ Effective resistance: 

A network behaves like a single resistor with resistance Reff. 
▹ Proof: Flows and potentials are scale-invariant  . 

▸ Rayleigh’s Monotonicity Law: 
Increasing single resistances cannot decrease effective resistance. 
▹ Proof: Reff = 1/2∑e∈E Re f(e)2 , and the latter cannot be decreased 

when increasing resistances. 
▸ Rayleigh’s Monotonicity Law, in turn, implies similar statements for 

random walks.
41

0ge



Equilibrium flows

Relationship with system optimum
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System-optimal flows

43
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▸ total travel time  C(N) = ∑i∈K∑P∈@i fi(P)∑e∈P ce(f(e)) C(N) = ∑e∈P ce(f(e))f(e) 
▸ C(_) = 3/2 + 1 = 5/2

_
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System-optimal flows

▸ total travel time  C(N) = ∑i∈K∑P∈@i fi(P)∑e∈P ce(f(e)) C(N) = ∑e∈E ce(f(e))f(e) 
▸ C(_) = 3/2 + 1 = 5/2 
▸ C(N) = 3/4 + 9/4 = 3 
▸ Wardrop equilibrium need not 

minimize the total travel time

44
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Characterization of system-optimal flows

45

Theorem [Beckman et al. ’56]

Flow N is system-optimal if and only if it is a Wardrop equilibrium for 
the modified cost functions c(̅x) = c(x) + c’(x)x.
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s1 s2

t1 t2

u
v

0 0
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0 0

1

1

1

1

1
1

1
1

WE for c(x) WE for c(̅x) = OPT for c(x)
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Braess’ Paradox

46
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[Braess ’68]
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Braess’ Paradox

47

s t1 1

x 1

1 x

1/2
1/2

WE N C(N) = 3/2

s t1 1

x 1

1 x
0

WE N C(N) = 2

[Braess ’68]
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Braess’ Paradox

48

s t1 1

x 1

1 x

1/2
1/2

WE N C(N) = 3/2

s t1 1

x 1

1 x
01 1

1
WE N C(N) = 2

▸ no Rayleigh Law for transportation networks!

[Braess ’68]



Equilibrium flows

Efficiency
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Price of anarchy

53

s1 s2
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x 5/23/2

0 0
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1

1

1

1
1

1
1

OPT N C(N) = 5/2

▸ price of anarchy measures the efficiency due to lack of coordination 
▸ PoA = C(N) / C(_), where f WE and g OPT

s1 s2

t1 t2

u
v

0 0

x 5/23/2

0 0

1

1

1

1

1/2
1

1/2
1
1

WE _ C(_) = 3

[Koutsoupias, Papadimitriou ’99; Papadimitriou ’01]

▸ PoA = 6/5 = 1.2
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Price of anarchy of affine costs

▸ this bound is tight

54

Theorem [Roughgarden, Tardos ’02]PoA ≤ 4/3 for all networks with affine costs c(x) = ax + b; a,b ∈ ℝ+.

s1

t1

1 x

1

1
WE N C(N) = 1

1 s1

t1

1 x

1

1

1/21/2

OPT _ C(_) = 3/4

[Pigou 1920]
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▸ C(N) = ∑e∈E ce(f(e)) f(e) 
▸ C(N) ≤ ∑e∈E ce(f(e))  g(e) (for OPT _, by VI) 

▸ C(N) ≤ ∑e∈E ce(g(e)) g(e) + ∑e∈E (ce(f(e)) - ce(g(e))) g(e)

Proof of the upper bound

55

[Correa et al. ’08]

ce(x)

xf(e)g(e)

ce(g(e))ce(f(e))
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▸ C(N) = ∑e∈E ce(f(e)) f(e) 
▸ C(N) ≤ ∑e∈E ce(f(e))  g(e) (for OPT _, by VI) 

▸ C(N) ≤ ∑e∈E ce(g(e)) g(e) + ∑e∈E (ce(f(e)) - ce(g(e))) g(e)

Proof of the upper bound

56

[Correa et al. ’08]
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▸ C(N) = ∑e∈E ce(f(e)) f(e) 
▸ C(N) ≤ ∑e∈E ce(f(e))  g(e) (for OPT _, by VI) 

▸ C(N) ≤ ∑e∈E ce(g(e)) g(e) + ∑e∈E (ce(f(e)) - ce(g(e))) g(e)

Proof of the upper bound

57

[Correa et al. ’08]

ce(x)

xf(e)g(e)

ce(g(e))ce(f(e))
≤

ce(x)

xf(e)g(e)

ce(g(e))
ce(f(e))
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▸ C(N) = ∑e∈E ce(f(e)) f(e) 
▸ C(N) ≤ ∑e∈E ce(f(e))  g(e) (for OPT _, by VI) 

▸ C(N) ≤ ∑e∈E ce(g(e)) g(e) + ∑e∈E (ce(f(e)) - ce(g(e))) g(e) 
▸ C(N) ≤ ∑e∈E ce(g(e)) g(e) + 1/4 ∑e∈E ce(f(e)) f(e)

Proof of the upper bound

58

[Correa et al. ’08]

ce(x)

xf(e)g(e)

ce(g(e))ce(f(e))
≤

ce(x)

xf(e)g(e)

ce(g(e))
ce(f(e))

▸ = C(_) + 1/4 C(N)
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▸ gives 4/3 for affine functions 
▸ closed formula for polynomials, BPR functions, and MM1 functions 
▸ unbounded for general functions

, quadratic functions →Exercise session

Bound for arbitrary costs
▸ for an arbitrary set v of cost functions let 

β(v) = supc∈v supx,y∈ℝ+ 

59

Theorem [Roughgarden ’03]PoA ≤ (1-β(v))-1 for all networks with costs from the set v.

(c(x) - c(y))yc(x)x
ce

xy
ce(y)

ce(x)



Unsplittable flows

Introduction
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Critique of non-atomic models

▸ non-atomic models assume that each commodity consists of a large 
population of infinitesimally small players, each with negligible impact 

▸ population of a commodity may split arbitrarily between the paths in 
a network 

▸ unrealistic in telecommunication applications where all data is send 
along a single path under current TCP/IP protocol  
(to ensure that packets arrive in order)

61
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Atomic vs. non-atomic games

62

x3
x3

(x+1)3

x3

 x3
 (x+1)3

x3
x3

(x+1)3

x3

 x3
 (x+1)3

Atomic Non-atomic

1 1 1 1
1

1

1

1

1/21/2
1/2

1/2

▸ commodities split arbitrarily 
▸ every flow particle corresponds 

to an individual player

▸ commodities do not split 
▸ every commodity corresponds to 

an individual player

Limit when number of players increase and their weight decreases
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Atomic games as strategic games

63

x3
x3

(x+1)3

x3

 x3
 (x+1)3

Atomic

1 1
1

1

▸ Atomic congestion games are finite strategic games 
▹ finite set of players 
▹ each player has a finite set of strategies

24, 24 29, 29
29, 29 24, 24

1

1
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Formal model
▸ directed or undirected graph G = (V,E) 
▹ finite set of vertices V  
▹ set of edges E ⊆ V×V 

▸ cost function ce : ℝ+ → ℝ+ for e ∈ E 
▹ continuous 

▸ set N = {1,…,n} of players, each with 
▹ origin vertex si ∈ V 
▹ destination vertex ti ∈ V 
▹ demand di ∈ ℝ+ 
▹ strategy set @i = {P : P is (si,ti)-path} 
▹ private cost for z = (P1,…,Pn); Pi ∈ @i πi(z) = ∑e∈Pi ce(∑j∈N : e ∈ Pj dj)

64

s1 s2
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Formal model
▸ directed or undirected graph G = (V,E) 
▹ finite set of vertices V  
▹ set of edges E ⊆ V×V 

▸ cost function ce : ℝ+ → ℝ+ for e ∈ E 
▹ continuous 
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▹ origin vertex si ∈ V 
▹ destination vertex ti ∈ V 
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Equilibria

66

Definition — (pure) Nash equilibrium 
path profile z such that πi(Qi, z-i) ≥ πi(Pi, z-i)   ∀i ∈ N, Qi ∈ @i x3 x3

(x+1)3

x3
 x3

 (x+1)31 1
1

1
▸ mixed strategy xi of player i  

is a probability distribution over @i xi = (xi,P1, xi,P2,…) ∈ ∆(@i) 
▸ expected private costs  π̅i(xi, }-i) = "}[ πi(Pi, z-i) ] 
▸ π̅i(xi, }-i) = ∑P∈@i  xi,P  · 

                               ∑e∈P   "[ ce(di+fe,-i(z-i) ], 
where fe,-i(z-i)  = ∑j∈N\{i} : e∈Pj  dj

24, 24 29, 29
29, 29 24, 24

Definition — mixed Nash equilibrium 
prob. dist. profile } such that  πi(yi, }-i) ≥ πi(yi, }-i)   ∀i ∈ N, yi ∈ ∆(@i) 

1/2
1/2

1/2 1/2

mixed equilibrium



Unsplittable flows

Existence of equilibria
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Congestion Games

68

Theorem [Rosenthal `73]

Every unweighted congestion game (di = 1 ∀i) has a pure Nash 
equilibrium.

Theorem [Nash `52]

Every finite game has a mixed NE.

▸ proof via Brouwer’s fixed point theorem 
▸ pure NE need not exist:

0, 0 -1, 11 1,-1
1,-1 0, 0 -1, 11
-1, 11 1,-1 0, 0

2

1/3
1/3
1/3

1/3 1/3 1/3

mixed equilibrium

▸ proof via potential functions
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▸ let Φ(z) = ∑e∈E Φe(z), where Φe(z) = ∑k=1,…,fe(z) ce(k) 
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The potential function argument
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The potential function argument
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The potential function argument
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The potential function argument

74

ce(x)

x

Observation: Potential function independent of ordering of the players
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s4

▸ let Φ(z) = ∑e∈E Φe(z), where Φe(z) = ∑k=1,…,fe(z) ce(k) 
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The potential function argument

Proof 
▸ consider profitable deviation of n 

from z = (Pn,z-n) to | = (Qn,z-n)
▸ Φ(|) - Φ(z) 
▸ = ∑e∈Qn ce(fe(|)) - ∑e∈Pn ce(fe(z)) 
▸ = πn(|) - πn(z) < 0 
▸ every sequence of profitable 

deviations is finite 
▸ reaches pure Nash equilibrium

75

s1
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s4

Theorem [Rosenthal `73]

Every unweighted congestion game  
has a pure Nash equilibrium.
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▸ every sequence of profitable deviations is finite 
▸ but: convergence may take exponential time 
▹ computation of a pure Nash equilibrium is PLS-complete 

(as hard as any local search problem) [Fabrikant et al. ’03], [Ackermann et al. ’08] 

▸ convergence is quick for special strategy spaces 
▹ singletons, i.e. |P|= 1 for all P ∈ @i, i ∈ N. [Ieong et al. ’05] 

▹ the basis of a matroid. [Ackermann et al. ’09]

Computation of equilibria

76

s1 t1 e1 e2
e3

e4 e5 2

…s1 s2,s3 t1 t2 t3
spanning 

trees
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Computation of equilibria
▸ for a single source and destination and non-decreasing costs 

the potential function can be minimized efficiently by min-cost flow 
computations [Fabrikant et al. ’03]

77
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min-cost flow problem 

(all edges have unit capacity)
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Computation of equilibria
▸ for a single source and destination and non-decreasing costs 

the potential function can be minimized efficiently by min-cost flow 
computations [Fabrikant et al. ’03]
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Computation of equilibria
▸ for a single source and destination and non-decreasing costs 

the potential function can be minimized efficiently by min-cost flow 
computations [Fabrikant et al. ’03]

79

s t
w

v2x+1 x
x

x21
11 11 s t

w

v3 1
1

11
11 115 221 4

original instance
min-cost flow problem 

(all edges have unit capacity)

▸ no positive result for more sources and destinations known 
(also no result for mixed equilibria)



 M. Klimm: Selfish routing in networks | 

Conclusion for unweighted games

▸ for unweighted games with unsplittable 
flow, i.e, di = 1 ∀i ∈ N 
a pure Nash equilibrium always exists 

▸ any sequence of unilateral (single-player) 
improvements converges to a pure Nash 
equilibrium 

▸ Nash equilibria are not unique 
▸ computation is in general hard  

(even two players and affine costs) 
▸ efficient algorithms only known for special 

cases: 
▹ single source or single sink 
▹ Matroids

80
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Existence of Nash equilibria

24, 24 29, 29
29, 29 24, 24

x3
x3

(x+1)3

x3

 x3

 (x+1)3

82
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62, 162 66, 160
66, 160 62, 162

Existence of Nash equilibria

x3
x3

(x+1)3

x3

 x3

 (x+1)3
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d2 = 2

d1 = 1
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Further counterexamples

84

d1 = 1d2 = 2 s t
10|12|14

1|2|8 1|40|79
16|18|20

12|120|228
1|40|79

[Fotakis et al. ’05]

d2 = 2d1 = 1 s t
x+33

3x2 13x
x2+44

47x
6x2

[Goemans et al. ’05]
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Positive results

85

85

▸ Restrictions on the strategy space: A Nash equilibrium exists, if costs 
are non-decreasing and all strategy spaces @i are… 
▹ singletons, i.e. |P|= 1 for all P ∈ @i, i ∈ N. [Ieong et al. ’05] 
▹ the basis of a matroid. [Ackermann et al. ’09] 

▸ Restrictions on the cost functions:  A Nash equilibrium exists, if all 
cost functions are… 
▹ affine. [Fotakis et al. ’05] 
▹ of type ce(x) = exp(x). [Panagopoulou, Spirakis ’06] 

▹ of type ce(x) = ke / x with be ∈ ℝ+ 
(for 2-player games). [Anshelevich et al. ’08]

→Exercise session
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Consistent cost functions

86

▸ v = {c : c(x) = ax + b; a,b ∈ ℝ} is consistent.  [Fotakis et al. ’05] 

▸ v = {c : c(x) = exp(x)} is consistent. [Panagopoulou, Spirakis  ’06] 

▸ v = {c : c(x) = ke / x, ke ∈ ℝ+} is consistent for 2-player games. 
 [Anshelevich et al. ’08]

Definition — Consistent cost functions 
Set of cost functions #, such that all weighted congestion games with 
costs in # have a Nash equilibrium.

Which are the maximal sets of consistent cost functions?
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Characterization for 2-player games

87

▸ Assumption: # contains only continuous functions 

▸ Sufficiency by potential function        [Harks, K., Möhring, `11]

Theorem [Harks, K., ‘12]

# is consistent for weighted congestion games with 2 players 
if and only if 
1. # contains only monotonic functions, and 
2. for all c1, c2 ∈ v there are a,b ∈ ℝ with c1(x) = a c2(x) + b.
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1. Step:  Every c ∈ # is monotonic.

Proof “⇒”

88

3.3 Necessary Conditions for the Existence of a Pure Nash Equilibrium 41

x yy−x

•

• •

c(ℓ)

ℓ

(a)

y−x x y

•

• •

c(ℓ)

ℓ

(b)

Figure 3.1: For every continuous non-monotonic function there are x,y ∈ >0 with x< y such that one of the
following cases holds: (a) c(y− x)< c(y)< c(x); (b) c(y− x)> c(y)> c(x); see Lemma 3.2.

Proof. (1)⇒ (3): Trivial.
(3) ⇒ (2): Let (a,b) be an open interval with c(x) ̸= c(0) for all x ∈ (a,b). The intermediate

value theorem for continuous functions implies that either c(x)> c(0) for all x∈ (a,b) or c(x)< c(0)
for all x ∈ (a,b). We prove the result only for the first case because the second follows by the same
arguments.

Let c(x) > c(0) for all x ∈ (a,b). We claim that c is non-decreasing on (a,b). Assume not,
for a contradiction. Then, there are p1, p2 ∈ (a,b) with p1 < p2 and c(p1) > c(p2). We define
p′1 = max{x ∈ [p1, p2] : c(x) ≥ c(p1)}. Note that the set {x ∈ [p1, p2] : c(x) ≥ c(p1)} is nonempty
because it contains p1 and closed because c is continuous. Using (3a), there is ε = ε(p′1) > 0 such
that c(y)≥ c(p′1)≥ c(p1) for all y ∈ (p′1, p

′
1+ ε), contradicting the maximality of p′1.

(2)⇒ (1): If c is constant, we are done. Otherwise, let a = inf{x > 0 : c(x) ̸= c(0)}. Roughly
speaking, a is the largest element in ≥0 such that c(x) = c(0) for all x ∈ [0,a]. We claim that
c(x) ̸= c(0) for all x > a. For a contradiction, assume that there is x > a with c(x) = 0 and let
b = min{x > a : c(x) = c(0)}. By construction, c(x) ̸= c(0) for all x ∈ (a,b). Using (2), we derive
that c is monotonic on (a,b). The continuity of c implies that c is monotonic on [a,b]. This is a
contradiction to c(a) = c(b) = 0 and c(a+b2 ) ̸= 0. We conclude that c(x) ̸= c(0) for all x> a. Using
(2), this however implies that c is monotonic on (a,b′) for all b′ ≥ b. The fact that c(x) = c(0) for
all x ∈ [0,a] gives the claimed result.

The following existence result for continuous, non-monotonic functions can be derived directly
from Lemma 3.1 and will be very useful in the remainder of this chapter. It states that for each
continuous, non-monotonic function c there are x,y ∈ >0 with x < y such that either c(y− x) <
c(y)< c(x) or c(y− x)> c(y)> c(x), see Figure 3.1 for an illustration.

Lemma 3.2. For a continuous and non-monotonic function c : ≥0 → there are x,y ∈ >0 with
x< y such that either c(y− x)< c(y) < c(x) or c(y− x)> c(y) > c(x).

Proof. Using the characterization of monotonic functions of Lemma 3.1, for every continuous non-
monotonic function c, there is x> 0 such that one of the following holds: c(x) > c(0) and for every

c(z) 

zx y x+y
sd1 = xd2 = y t

c(z)

c(z)

▸ let # be a set of consistent cost functions.
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2. Step: a1 c1(x) - a2 c2(x) monotonic for all a1, a2 ∈ ℤ, c1, c2 ∈ v.

89
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Proof. (1)⇒ (3): Trivial.
(3) ⇒ (2): Let (a,b) be an open interval with c(x) ̸= c(0) for all x ∈ (a,b). The intermediate

value theorem for continuous functions implies that either c(x)> c(0) for all x∈ (a,b) or c(x)< c(0)
for all x ∈ (a,b). We prove the result only for the first case because the second follows by the same
arguments.

Let c(x) > c(0) for all x ∈ (a,b). We claim that c is non-decreasing on (a,b). Assume not,
for a contradiction. Then, there are p1, p2 ∈ (a,b) with p1 < p2 and c(p1) > c(p2). We define
p′1 = max{x ∈ [p1, p2] : c(x) ≥ c(p1)}. Note that the set {x ∈ [p1, p2] : c(x) ≥ c(p1)} is nonempty
because it contains p1 and closed because c is continuous. Using (3a), there is ε = ε(p′1) > 0 such
that c(y)≥ c(p′1)≥ c(p1) for all y ∈ (p′1, p

′
1+ ε), contradicting the maximality of p′1.

(2)⇒ (1): If c is constant, we are done. Otherwise, let a = inf{x > 0 : c(x) ̸= c(0)}. Roughly
speaking, a is the largest element in ≥0 such that c(x) = c(0) for all x ∈ [0,a]. We claim that
c(x) ̸= c(0) for all x > a. For a contradiction, assume that there is x > a with c(x) = 0 and let
b = min{x > a : c(x) = c(0)}. By construction, c(x) ̸= c(0) for all x ∈ (a,b). Using (2), we derive
that c is monotonic on (a,b). The continuity of c implies that c is monotonic on [a,b]. This is a
contradiction to c(a) = c(b) = 0 and c(a+b2 ) ̸= 0. We conclude that c(x) ̸= c(0) for all x> a. Using
(2), this however implies that c is monotonic on (a,b′) for all b′ ≥ b. The fact that c(x) = c(0) for
all x ∈ [0,a] gives the claimed result.

The following existence result for continuous, non-monotonic functions can be derived directly
from Lemma 3.1 and will be very useful in the remainder of this chapter. It states that for each
continuous, non-monotonic function c there are x,y ∈ >0 with x < y such that either c(y− x) <
c(y)< c(x) or c(y− x)> c(y)> c(x), see Figure 3.1 for an illustration.

Lemma 3.2. For a continuous and non-monotonic function c : ≥0 → there are x,y ∈ >0 with
x< y such that either c(y− x)< c(y) < c(x) or c(y− x)> c(y) > c(x).

Proof. Using the characterization of monotonic functions of Lemma 3.1, for every continuous non-
monotonic function c, there is x> 0 such that one of the following holds: c(x) > c(0) and for every

a1 c1(z) - a2 c2(z)

zx y x+y s1

a1 c1

d1 = x

t1s2

t2

a1 c1

a2 c2

a2 c2d2 = y

Proof “⇒”

⇒ a1 c1(x)  + a2 c2(x+y) <  a1 c1(x+y) +  a2 c2(x)⇒ a1 c1(y) + a2 c2(x+y) > a1 c1(x+y) +  a2 c2(y)
a1 c1(x) - a2 c2(x) < a1 c1(x+y) - a2 c2(x+y) < a1 c1(y) - a2 c2(y)
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▸ Intuition for twice differentiable functions c1,c2 ∈ v with c1’, c2’, c1’’, c2’’ > 0 
▹ For a contradiction, assume  ∄ a,b ∈ ℝ : c1(x) = a c2(x) + b  for all x ≥ 0 
▹ ∃ x0, ε > 0 : c1’(x)/c2’(x) ≠ 0 for all x ∈ (x0 - ε, x0 + ε) 
▹ det                      ≠ 0 for all x ∈ (x0 - ε, x0 + ε) 
▹ ∃ a1, a2 : a1 c1’(x)  - a2 c2’(x) = 0 a1 c1’’(x) - a2 c2’’ (x) ≠ 0  

for some x ∈ (x0 - ε, x0 + ε) 
▸ a1 c1 - a2 c2 has strict extremum in (x0 - ε, x0 + ε).

90

c1’(x) c2’(x)
c1’’(x) c2’’(x)

3. Step: a1 c1 - a2 c2 monotonic ∀ a1,a2 ∈ ℤ ⇒ ∃ a,b ∈ ℝ : c1 = a c2 + b.

Proof “⇒”
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Characterization for n players

91

Theorem [Harks, K. ‘12]

# is consistent for weighted congestion games if and only if 
1. # only contains affine functions of type ax + b, or 
2. # only contains exponential functions of type a exp(φx) + b, 

where a,b ∈ ℝ may depend on c, while φ is independent of c.

▸ Assumption: # only contains continuous functions 
▸ Sufficiency of conditions follows from [Harks, K., Möhring, ’11]
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3.3 Necessary Conditions for the Existence of a Pure Nash Equilibrium 41

x yy−x

•

• •

c(ℓ)

ℓ

(a)
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•

• •

c(ℓ)

ℓ

(b)

Figure 3.1: For every continuous non-monotonic function there are x,y ∈ >0 with x< y such that one of the
following cases holds: (a) c(y− x)< c(y)< c(x); (b) c(y− x)> c(y)> c(x); see Lemma 3.2.

Proof. (1)⇒ (3): Trivial.
(3) ⇒ (2): Let (a,b) be an open interval with c(x) ̸= c(0) for all x ∈ (a,b). The intermediate

value theorem for continuous functions implies that either c(x)> c(0) for all x∈ (a,b) or c(x)< c(0)
for all x ∈ (a,b). We prove the result only for the first case because the second follows by the same
arguments.

Let c(x) > c(0) for all x ∈ (a,b). We claim that c is non-decreasing on (a,b). Assume not,
for a contradiction. Then, there are p1, p2 ∈ (a,b) with p1 < p2 and c(p1) > c(p2). We define
p′1 = max{x ∈ [p1, p2] : c(x) ≥ c(p1)}. Note that the set {x ∈ [p1, p2] : c(x) ≥ c(p1)} is nonempty
because it contains p1 and closed because c is continuous. Using (3a), there is ε = ε(p′1) > 0 such
that c(y)≥ c(p′1)≥ c(p1) for all y ∈ (p′1, p

′
1+ ε), contradicting the maximality of p′1.

(2)⇒ (1): If c is constant, we are done. Otherwise, let a = inf{x > 0 : c(x) ̸= c(0)}. Roughly
speaking, a is the largest element in ≥0 such that c(x) = c(0) for all x ∈ [0,a]. We claim that
c(x) ̸= c(0) for all x > a. For a contradiction, assume that there is x > a with c(x) = 0 and let
b = min{x > a : c(x) = c(0)}. By construction, c(x) ̸= c(0) for all x ∈ (a,b). Using (2), we derive
that c is monotonic on (a,b). The continuity of c implies that c is monotonic on [a,b]. This is a
contradiction to c(a) = c(b) = 0 and c(a+b2 ) ̸= 0. We conclude that c(x) ̸= c(0) for all x> a. Using
(2), this however implies that c is monotonic on (a,b′) for all b′ ≥ b. The fact that c(x) = c(0) for
all x ∈ [0,a] gives the claimed result.

The following existence result for continuous, non-monotonic functions can be derived directly
from Lemma 3.1 and will be very useful in the remainder of this chapter. It states that for each
continuous, non-monotonic function c there are x,y ∈ >0 with x < y such that either c(y− x) <
c(y)< c(x) or c(y− x)> c(y)> c(x), see Figure 3.1 for an illustration.

Lemma 3.2. For a continuous and non-monotonic function c : ≥0 → there are x,y ∈ >0 with
x< y such that either c(y− x)< c(y) < c(x) or c(y− x)> c(y) > c(x).

Proof. Using the characterization of monotonic functions of Lemma 3.1, for every continuous non-
monotonic function c, there is x> 0 such that one of the following holds: c(x) > c(0) and for every

a1 c1(z) - a2 c2(z)

zx y x+y s1

a1 c

d1 = x

t1s2

t2

a1 c

a2 c

a2 cd2 = y
1. Step: c ∈ v ⇒ a1 c(x) - a2 c(x+δ) monotonic for all a1, a2 ∈ ℤ, δ > 0.

Proof “⇒”
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Figure 3.1: For every continuous non-monotonic function there are x,y ∈ >0 with x< y such that one of the
following cases holds: (a) c(y− x)< c(y)< c(x); (b) c(y− x)> c(y)> c(x); see Lemma 3.2.

Proof. (1)⇒ (3): Trivial.
(3) ⇒ (2): Let (a,b) be an open interval with c(x) ̸= c(0) for all x ∈ (a,b). The intermediate

value theorem for continuous functions implies that either c(x)> c(0) for all x∈ (a,b) or c(x)< c(0)
for all x ∈ (a,b). We prove the result only for the first case because the second follows by the same
arguments.

Let c(x) > c(0) for all x ∈ (a,b). We claim that c is non-decreasing on (a,b). Assume not,
for a contradiction. Then, there are p1, p2 ∈ (a,b) with p1 < p2 and c(p1) > c(p2). We define
p′1 = max{x ∈ [p1, p2] : c(x) ≥ c(p1)}. Note that the set {x ∈ [p1, p2] : c(x) ≥ c(p1)} is nonempty
because it contains p1 and closed because c is continuous. Using (3a), there is ε = ε(p′1) > 0 such
that c(y)≥ c(p′1)≥ c(p1) for all y ∈ (p′1, p

′
1+ ε), contradicting the maximality of p′1.

(2)⇒ (1): If c is constant, we are done. Otherwise, let a = inf{x > 0 : c(x) ̸= c(0)}. Roughly
speaking, a is the largest element in ≥0 such that c(x) = c(0) for all x ∈ [0,a]. We claim that
c(x) ̸= c(0) for all x > a. For a contradiction, assume that there is x > a with c(x) = 0 and let
b = min{x > a : c(x) = c(0)}. By construction, c(x) ̸= c(0) for all x ∈ (a,b). Using (2), we derive
that c is monotonic on (a,b). The continuity of c implies that c is monotonic on [a,b]. This is a
contradiction to c(a) = c(b) = 0 and c(a+b2 ) ̸= 0. We conclude that c(x) ̸= c(0) for all x> a. Using
(2), this however implies that c is monotonic on (a,b′) for all b′ ≥ b. The fact that c(x) = c(0) for
all x ∈ [0,a] gives the claimed result.

The following existence result for continuous, non-monotonic functions can be derived directly
from Lemma 3.1 and will be very useful in the remainder of this chapter. It states that for each
continuous, non-monotonic function c there are x,y ∈ >0 with x < y such that either c(y− x) <
c(y)< c(x) or c(y− x)> c(y)> c(x), see Figure 3.1 for an illustration.

Lemma 3.2. For a continuous and non-monotonic function c : ≥0 → there are x,y ∈ >0 with
x< y such that either c(y− x)< c(y) < c(x) or c(y− x)> c(y) > c(x).

Proof. Using the characterization of monotonic functions of Lemma 3.1, for every continuous non-
monotonic function c, there is x> 0 such that one of the following holds: c(x) > c(0) and for every

a1 c(z) - a2 c(z+δ)

zx y x+y s1

a1 c
t1s2

t2

a1 c

a2 c

a2 c

s3

t3

d3 = δ
▸ for all δ > 0  there are a,b ∈ ℝ, with c(x+δ) = a c(x) + b.

Proof “⇒”
1. Step: c ∈ v ⇒ a1 c(x) - a2 c(x+δ) monotonic for all a1, a2 ∈ ℤ, δ > 0.

d1 = x

d2 = y
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▸ for all δ > 0 there are a,b ∈ ℝ with c(x+δ) = a c(x) + b, i.e, 

▸ 0 = c((k+2)δ) - (a+1) c((k+1)δ) + a c(kδ) for all k ∈ ℕ.

▸ solution of the linear recurrence relation 
▹ if a ≠ 1 :  c(kδ) = β + α ak = α exp(k ln |a|) + β.  
▹ if a = 1 :  c(kδ) = β + α k.

94

c( 1δ)  = a c( 0δ)+ b
c( 2δ)  = a c( 1δ)+ b

…c( (k+1)δ)  = a c( kδ)+ b
c( (k+2)δ)  = a c( (k+1)δ)+ b

Proof “⇒”
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Resource-dep. demands [Harks, K. ’12]  
▸ !i(s) = ∑r∈si

 di,r cr(xr(s)),

▸ xr(s) = ∑i∈N : r∈si
 di,r

affine functions 

Weighted [Harks, K. ’12]  
!i(s) = ∑r∈si

 di cr(xr(s)),
xr(s) = ∑i∈N : r∈si

 di

affine functions 
or 

exponential functions

Uniform, res.-dep. demands [Harks, K. ’12]  
▸ !i(s) = ∑r∈si

 cr(xr(s)),

▸ xr(s) = ∑i∈N : r∈si 
di,r

contant functions 

r∈si

[Rosenthal, IJGT `73]

Uniform, variable demands [Harks, K. ’15]  
▸ !i(s) = Ui(di) - ∑r∈si 

cr(xr(s)),

▸ xr(s) = ∑i∈N : r∈si
 di, Si ⊆ 2R×ℝ

homogeneously exponential functions

[Rosenthal, IJGT `73]

Uniform, weighted [Harks, K. ’12]  
▸ !i(s) = ∑r∈si 

cr(xr(s)),

▸ xr(s) = ∑i∈N : r∈si
 di

affine functions 
or 

exponential functions 
Unweighted [Rosenthal ’73]  
▸ !i(s) = ∑r∈si 

cr(xr(s)),
▸ xr(s) = ⎢i∈N : r∈si⎢

all functions

Variable demands [Harks, K. ’15]  
▸ !i(s) = Ui(di) - ∑r∈si

 di cr(xr(s)),

▸ xr(s) = ∑i∈N : r∈si
 di, Si ⊆ 2R×ℝ

affine functions 
or 

homogeneously exponential functions
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Conclusion
▸ existence: 
▹ equilibria exist for non-atomic players 
▹ equilibria exist for unweighted atomic players 
▹ equilibria may not exist for weighted atomic players 

(only for affine or exponential cost functions) 
▸ computation: 
▹ convex programming for non-atomic players 
▹ efficient only for special cases (single source, Matroid) for 

unweighted players 
▹ open for weighted atomic players 

▸ efficiency: 
▹ Wardrop equilibria generalize electric networks which minimize 

energy dissipation 
▹ general road networks are not efficient wrt total travel time 
▹ inefficiency can be bounded in terms of the price of anarchy
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