Master Thesis

Subject:<<Motitfs of Network Models>>

Student : George Argyris
Adyvisor: Dimitris Kugiumtzis
AUTH Thessaloniki December 2016

THE GOAL: Separate the concepts of randomness, smallworldness,
scalefreeness




¢ Erdos-Renyi random networks (n, p)

& Watts-Strogatz small world networks (n, k, py)

& Barabasi-Albert scale free networks (n, G;, m,)

& Power law distribution scale free model (n, @)



Motifs

& Generally: statistically significant sub-graphs of a graph that occurs recurrently within the
graph

¢ In our study, motifs are connected (tetrads) 4’s nodes:

CNLINNI

& Counting a graph’s motifs:

-Work on the adjacency matrix
Examine all 4x4 sub-matrices of A (Wn@4 )=n!/4\-(n—4)! =n-(n—1)-(n—-2)-(n—3)/24

-Symmetric graphs’ problem: The algorithm was computationally complex because one motif
1s depicted by more than one adjacency matrices.

Solution: Same degree distribution for graphs of size: 7<4 & isomorphic motifs

-1 used Brain Connectivity Toolbox in order to further reduce computational complexity.



Motif 1 frequency in ER random graphs

& 12 symmetries

& occurrence probability for each symmetry: p°- (I-p)°

& Motif’s 1 frequency: /¥l =12-(Wn@4 )p13-(1—p)73



Motif 2 frequency in E-R random graphs

& 4 symmetries

& Probability of occurrence of each one of them: p’- (I-p)°

& Motif’s 2 frequency: /¥2 =4 (Mn@4)-p13-(1-p)13



Motif 3 frequency in E-R random graphs

& 3 symmetries

& Probability of occurrence of each one of them: p?- (I-pf

& Motif’s 3 frequency: /¥2 =3 (Wn@4)ptt-(1-p)72



Motif frequency of Erdos-Renyi random graphs

& Frequency of motif i:

S (np)=Nimi-(Bn@4 ) -pT/-(1—p)T6—/
(1

¢ Relative frequency of motif i: FUi (np)=/1i (n,p) /Xi=116 511l (np)

¢ Motifs’ relative frequency vector: F=(FI1,FI2 ,FI3 ,Fl4 FI5 ,FL6 )
Highlight 1



Motifs’ frequency comparison between ER and
WS networks

We counted the motifs’ frequency for 25 networks of 25 nodes

(random and small world (p; = 0) ) .

¢ In case of ER networks we constructed the graphs analytically, for different values of p,
according to this function:

mli (p)=25-fLi (25,p)=25-NVimi - (Hn@4 ) pT/-pT6—/

& In case of WS networks we constructed the graphs empirically, for different values of k and
ps = 0.
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Highlights

& The smaller the euclidean distance between the motifs’ relative frequency vector of an
observed network and the expected motifs’ relative frequency vector calculated previously
the more random the network is.

& Maybe, we have same degree distributions for 5 of 6 motifs with different parameters
independently the construction model.

& Motif 2 of great importance! As p of WS model approximates 1 the frequency of that motif
tends to the expected value of a random one.



Problem-Method

Suppose we have an observed network, could we find which model generates 1t? Or which
model best approximates it?

Method

Construction of the motifs’ relative frequency vector for each one of the models and for
each of their parameters as n=25, 50, 75.
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Finding the corresponding vector of the observed network.

The model that generates the network 1s the one that minimizes the euclidean distance.

1 2 3 4 3 6
We expect intuitively that: I: N I:I & N E




Assessing the reliability of the method for 100 Erdos-Reny1 graphs
and for different fundamental scale free models










Why method does not work well

& Method does not work well because:

I Networks constructed by one model are classified to close models.
Ex. ER(p) networks are mapped ER(p’), p'=p%0.1
WS(k, p) are mapped to WS(k’, p’) with pT" =p+0.1 and k'=k+2

2o Density 1s the most critical parameter that affects the relative frequency of a vector.

Solution

If parameter density of the observed network is known, we could calculate some of the parameters of the
models. So, the models that generate an observed graph become less, and the method more accurate.



The parameter calculation

¢ Concerning density d from an observed network, we could calculate some of the
parameters of the models as below:

Erdos-Renyi: p=d

Watts-Stro ggﬁé'rap/z Order/MaximumOrder =n-k/2 /n-(n—1)/2 =k/
n—1=
k=d- (n—1)

Barabasi-Albert:

md0 =(d-(n—1)-n/2 —4)/n—4



Success rate of the method for known density,
n=>50




Success rate of the method for standard density
n=>50




Success rate of the method for standard density
n=>50




Application to real data

& The Morgan Sanley Capital International’s (MSCI) dataset contains the capitalization
indices for 55 markets.

& It contains 1305 daily returns for each market from 5 March 2004 to 5 March 2009.

& We separate the dataset into 87 and 29 subdatasets each one of them contains 15 and 45

returns respectively in chronological order. For each one of the subdatasets we have an
association network which is constructed by the correlation of the time series.



Statistical procedures used

For the statistical analysis of the multivariate time series we used:

& For each one of the subdataset and for each one of the time series a prewhiten method.

& A significance test for finding the statistically significant cross correlation. In that test there
1s a significance level a. As a gets large, the cross-correlation that are statistically significant
are getting large. Also, a determines the density d of the association network.



The randomness indicator for the association
networks for the case of 87 networks




The randomness indicator for the association
networks for the subdataset of 29 networks




Conclusion

Statement 1.
Let G be an ER(p) graph and G, G, be subgraphs of same order and size.

The frequency of G; 1s higher than the frequency of G, if and only if G, has more symmetries
than G,.

Statement 2.

Subgraph G achieves highest frequency in an ER(p) graph when p = d;.



Future research activities

Find the motifs of a WS(n, k, 0) model analytically.

Find which motif triad better recognizes the model and make a 3D representation.
The statement 2 may help to this direction.

Application to other multivariate time series.

Instead of euclidean distance, we could train a perceptron which works if-f the data are linearly
separable and we compare only 2 models.

Same analysis for motifs of size 5 1s feasible.
Extendable to directed networks.

The method might be extendable to other network models.



