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Motivation: Multi-scale Plasticity

¸ ˚˙ ˝
Continuum Mechanics

¸ ˚˙ ˝
Dislocation Dynamics

Atomistic Mechanics
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Motivation: Multiscale Fracture

I Fun Fact: At least 5% of the world’s energy resources are used to grind up rocks.
This is essentially a fracture problem.

I Gri�th fracture ˙̧(G ≠ G
crit

) = 0 is rarely true at scales of interest.
I Again use molecular simulation to inform continuum models.
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Motivation: This Lecture
I Analysis and Numerics for Crystalline Defects

I Discrete (atomistic) problems vs PDEs

I Make Precise what is The Problem, Simulation, and the Error.

I Analyse the Error.
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Motivation: Discrete-vs-PDE

min
b.c.

Ec(u) :=
⁄

�
W (Òu) dx

I Domain � µ Rd

I Displacement u : � æ Rd

I Òu : standard displacement gradient
I W : strain energy density

min
b.c.

Ea(u) :=
ÿ

¸œ�
V

!
Du(¸)

"

I Domain � µ Zd

I Displacement: u : � æ Rd

I Du(¸) := {u(¸ + fl) ≠ u(¸)}flœR

I V (Dy(¸)) = site energy of atom ¸
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Motivation: The Simulation and The Problem

The Simulation:

uh œ arg min{Eh(v) | vh œ Vh}

What we mean by this simulation:
configuration (and quantities of interest)
of a defect in Zd .

u œ arg min{E (v) | v œ V }
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Motivation: Aims of this Analysis

I understand, consolidate, improve existing models and computational
methods

I feedback into method development

I huge area in computational science, but relatively new for applied
mathematics, there is genuine interest in input from mathematics.

I IMPORTANT CAVEAT: these lectures only cover a very simple
situation (“Dirichlet problem”). The ideas must be extended into many
diverse directions to become widely useful (“Navier Stokes, Helmholtz,
Fokker-Planck, . . . )” I will discuss this at the end of the lectures.
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Outline of Lectures

0. Motivation X
1. Variational Problem in Zd

I Discrete energy space
I “Well-posedness” of energy-di�erence formulation

2. Boundary Conditions for Numerical Simulation
I Dirichlet conditions
I Regularity and Approximatio Error Estimates
I REVISION CLASS: Linearised elasticity as a boundary condition

3. Atomistic/Continuum Multiscale Scheme
I Cauchy–Born model
I The ghost force problem
I A/c coupling via blending
I Proof of consistency estimate, sketch of error estimate
I Fine-tuning for simulation

4. Outlook
I Some open problems
I Perspective of the field
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Part 1:
Variational Problem in Zd
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The Lattice
The computational domain is a lattice � = AZd , A œ SO(d)

Example 1:
triangular lattice in 2D

A =
C
1 cos(fi/3)
0 sin(fi/3)

D

Example 2:
body-centered cubic (bcc) in 3D

A =

S

WU
1 0 1/2
0 1 1/2
0 0 1/2

T

XV

But for simplicity we can just take � = Zd . 10 / 85

Kinematics
I Material points: ¸ œ �
I Reference configuration: x(¸) = ¸

I Displacement: u : � æ Rd

I Deformation: y = x + u
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Site Potential
For a displacement u, the energy associated with a site ¸ is

V (Du(¸))
I Site energy should be translation invariant,

i.e., depends only on k ‘æ (u(k) ≠ u(¸)).
I Interaction range: R µ � \ {0}

finite, point symmetry ≠R = R;
I Strain of bond (¸, ¸ + fl), fl œ R is

Dflu(¸) := u(¸ + fl) ≠ u(¸)

Hence, the site energy is a function of
Du(¸) := (Dflu(¸))flœR .

Assumption 1 (V).
V œ Ck!

(Rd)R"
, V (0) = 0, point symmetric V

!
(≠g≠fl)flœR

"
= V (g)
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Site Energy - Notes

Notes:
I V (0) = 0 simply normalised the energy so that u = 0 has zero-site energy.

Suppose, that we do not make this assumption, then we would, on the next slide define
an “energy-di�erence functional” instead of an “energy functional”:
E(u) =

q
¸

V (Du(¸)) ≠ V (0), and then proceed as before. So in fact the “correct” way
to think about V is that it is a site energy-di�erence and E is a total energy-di�erence.

I V has no ¸-dependence, this means that all atoms are of the same species;
generalisations to multi-lattices are possible: here each site is occupied by A species, the
displacement is now u = (ua)aœA and V =

q
aœA Va((ub(¸ + fl) ≠ ua(¸))).

I Assumption Ck is unrealistic as V æ Œ as atoms collide (y(¸ + fl) ≠ y(¸) æ 0). To
overcome this, we could restrict the definition to displacements such that the
deformation |y(¸Õ) ≠ y(¸)| Ø c|¸ ≠ ¸Õ|. See, e.g., [27]

I However, our later analysis will be purely local, in neighbourhood of a well-behaved
deformation where V is in fact smooth. We can circumvent some boring technicalities
by making the assumption V œ Ck globally.
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Energy
The energy of a displacement is simply the sum over site energies,

Ea(u) :=
ÿ

¸œ�
V (Du(¸))

This is well-defined for compact displacements, i.e., for
u œ U̇c :=

)
v : � æ Rd -- supp(Dv) compact

*

It is also well-defined if Du œ ¸1. But intuitively, it must be possible to define the
total energy in the energy space

U̇1,2 :=
)

v : � æ Rd -- Dv œ ¸2*
.

The associated (semi-)norm is Î · ÎU̇1,2 = ÎD · Î¸2 .

Lemma 2 (Extension Lemma).

(a) U̇c µ U̇1,2 is dense: ’u œ U̇1,2 ÷uj œ U̇c s.t. Duj æ Du in ¸2.
(b) Ea : (U̇c, ÎD · Î¸2) æ R is continuous, hence there exists a unique continuous
extension to U̇1,2, which we still denote by Ea.
(c) Ea œ Ck(U̇1,2), in the sense of Frechet.

This completes the definition of the energy functional. See also the following remarks.14 / 85

Proof of Extension Lemma
I (a) is an EXERCISE
I (b) For u œ U̇c,

E(u) =
ÿ

¸œ�

1
V (Du(¸)) ≠ V (0) ≠ È”V (0), Du(¸)Í

2
+

ÿ

¸œ�

È”V (0), Du(¸)Í.

I Summation by parts:
q

¸œ�È”V (0), Du(¸)Í = 0,
I Taylor expansion:

--V (Du(¸)) ≠ V (0) ≠ È”V (0), Du(¸)Í
-- . |Du(¸)|2, so

E Õ(u) =
ÿ

¸œ�

1
V (Du(¸)) ≠ È”V (0), Du(¸)

2

is also well-defined for u œ U̇1,2.
I TODO: prove E Õ œ Ck(U̇1,2) in the sense of Frechet. EXERCISE

Notes:
I The proof indicates that, in fact, U̇1,2 is the largest space to which E can be

continuously extended. This is a strong indicator that we have a good function space
setting. EXERCISE
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Introducing the Defect

Introducing an Impurity into the host crystal
(replace atom ¸ = 0 with a di�erent species)

This corresponds simply to replacing the site energies V (Du(¸)) with
Ṽ¸(Du(¸)) for ¸ œ {0} fi R. We write the perturbed (total) energy as

Fa(u) := Ea(u) + P(u)

Assumption 3 (P).
P œ Ck(U̇1,2), translation invariant (i.e., P(u + c) = P(u)) and local, i.e.,
a function of only Du(¸), |¸| Æ Rdef , for some Rdef > 0.
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Notes on the Defect

Notes:
I Other point defects can be introduced analogously, or with modified notation. All

subsequent results can be extended to arbitrary point defects. See [9] for more detail.
I There are many other important classes of defects: dislocations, cracks, etc. We will

discuss more on this at the end of the lectures. For now, we just mention that straight
dislocation lines can still be incorporated into this framework, but this requires a little
additional work. Cracks are essentially an open problem.

I For dislocations: Briefly, the idea is to decompose u = upred + ucorr, where upred is a
predictor displacement that can, e.g., be obtained from continuum linearised elasticity
and ucorr supplies the missing atomistic information. (E.g., for a pure screw dislocation
in anti-plane deformation, upred(x) = b

2fi arg(x1 + ix2).)
Since Òupred ≥ |x |≠1 it has infinite energy, however the corrector ucorr œ U̇1,2. Hence,
we consider the energy-di�erence E(u) =

q
¸œ� V (Dupred(¸) + Du(¸)) ≠ V (Dupred(¸)).

One can again prove that this is well-defined, etc, and then continue similarly as in the
point defect case.
This procedure can also be thought of as supplying the far-field boundary condition
u(x) ≥ upred(x) as |x | æ Œ.
Again, see [9] for more details.
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The Variational Problem
With our results so far, we have shown that the following problem is well
formulated:

ūa œ arg min
)
Fa(u)

-- u œ U̇1,2*
(1)

We will always understand this in the sense of local minimality.

Remarks:
I Uniqueness cannot be true, unless we “design” the interatomic

potential to prevent lattice symmetries.
I Existence of minimisers is a property of V , P, i.e., of the model.

Except in rare circumstances it cannot be proven. (again: unless we
“design” our potential so that we get an existence result via the direct
method)

I In the following we shall assume existence of some minimiser (not
necessarily unique) and study (i) properties of the minimiser, (ii) how
to approximate it computationally.
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Stability
(1) ∆ ”Fa(ūa) = 0 and ”2Fa(ūa) Ø 0, i.e. the hessian is positive
semi-definite. This is almost never su�cient for analysis. We will therefore
employ a stronger stability definition.
We say that a displacement u is strongly stable if

÷“ > 0 s.t. È”2Fa(u)v , vÍ Ø “ÎDvÎ2
¸2 ’v œ U̇c.

Assumption 4 (S).
There exists a strongly stable solution ūa to (1).

Remarks
I If any u œ U̇1,2 is strongly stable, then the reference crystal must be stable as well,

i.e., EXERCISE
È”2Ea(0)v , vÍ Ø “ÎDvÎ2

¸2 (2)
I (2) is precisely the discrete analogue of the Legendre–Hadamard condition

(ellipticity), Cj—
i–vi vjk–k— Ø “|v |2|k|2, for elliptic systems divC : Òu = 0.
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Notes:
I Why the strong stability assumption: all our subsequent analysis will rely on

linearisation techniques. For example, we will linearise the equation at infinity to deduce
rates of decay for the elastic fields. We will use the inverse function theorem to deduce
existence of solutions of the approximation schemes. All these technques require that
the linearisation of the problem contains “much” of the problems information. Without
the strong stability assumption this is simply false.
For example, we cannot use the inverse function theory for the function f (x) = x3 to
deduce the existene of a solution to x3 = ‘ for ‘ small, due to the fact that all
information about x3 is lost upon linearisation.
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Part 2:

Boundary Conditions
for Numerical Simulation
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A Basic Galerkin Approximation
Remember, the reason we developed the discrete variational problem was to give a
meaning to crystal defect simulations in finite domains, explaining these as
approximations to the infinite-domain problem.

The Simplest Approximation Scheme:
I Computational Domain:

�R µ � s.t. (BR fl �) µ �R

I “Coarse” admissible space:
U̇R :=

)
u œ U̇c

-- u = 0 in � \ BR
*

I Approximate Variational Problem:

ūa

R œ arg min
)

Fa(u)
-- u œ U̇R

*
(3)

With the tools we have so far we can prove the following:

Proposition 5.
Let k Ø 3, ūa be a strongly stable solution of (1), then, for R su�ciently large, there
exists ūa

R solution to (3) such that ÎDūa

R ≠ DūaÎ¸2 æ 0 as R æ Œ.
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The Main Tools for the Analysis

Lemma 6 (Inverse Function Theorem – IFT).
X Hilbert, x0 œ X ; m, “, ÷ > 0, r := 2÷/“ such that (i) G œ C1(BR(x0); Xú) with
Î”G(x) ≠ ”G(x Õ)ÎL(X ,Xú) Æ mÎx ≠ x ÕÎX for x , x Õ œ Br (x0);

(ii) Stability: È”G(x0)v , vÍ Ø “ÎvÎ2
X ’v œ X;

(iii) Consistency: ÈG(x0), vÍ Æ ÷ÎvÎX (i.e. ÎGÎXú Æ ÷)

and the “saturation assumption” 2÷m“≠2 < 1 holds, then ÷ ! x̄ œ X such that

G(x̄) = 0, Îx̄ ≠ x0ÎX Æ 2 ÷

“
and È”G(x̄)v , vÍ Ø “

!
1 ≠ 2÷m“≠2"

ÎvÎ2
X .

Notes:
I Normally in the inverse function theorem we start with a solution G(x0) = 0 and then

perturb the right-hand side. The idea of the above result is to think of x0 solving
G(x0) = G(x0) where the right-hand side is small, so changing the right-hand side to 0 is
a small perturbation.

I Proof is an left as an exercise; hint: set x̄ = x0 + u, rewrite as a fixed point problem
G(x̄) = 0 … ”G(x0)u = ≠G(x0) +

#
”G(x0)u + G(x0) ≠ G(x0 + u)

$
,

and apply Banach’s fixed point theorem. 23 / 85

Proof of Proposition 5

1. U̇c µ U̇1,2 dense ∆ ÷ uR œ U̇R s.t. ÎDuR ≠ DūaÎ¸2 æ 0 as R æ Œ. Let R1 > 0
such that ÎDuR ≠ DūaÎ¸2 Æ 1 for R Ø R1.

2. In the IFT we set X = U̇R , x0 = uR , G = ”Fa|U̇R
.

3. Since k Ø 3, ”Fa and ”2Fa are Lipschitz in B1(ūa) with Lip. const. m1, m > 0.
Therefore,

Î”Fa(uR)ÎU̇≠1,2 = Î”Fa(uR) ≠ ”Fa(ūa)ÎU̇≠1,2 Æ m1ÎDuR ≠ DūaÎ¸2 =: ÷R ,

È”2Fa(uR)v , vÍ Ø È”2Fa(ūa)v , vÍ ≠ mÎDuR ≠ DūaÎ¸2 ÎDvÎ2
¸2

Ø
1

“ ≠ m
m1

÷R

2
ÎDvÎ2

¸2 Ø “
2 ÎDvÎ2

¸2 ,

the last inequality, provided that R is su�ciently large.
4. Since ÷R æ 0, we obtain, for R su�ciently large all conditions of IFT are satisfies,

so IFT implies existence of a solution to (3) with
ÎDūa

R ≠ DuRÎ¸2 Æ 4m1“≠1ÎDuR ≠ DūaÎ¸2 .
(note that 4 can be replaced with any number > 1.)
and so, ÎDūa

R ≠ DūaÎ¸2 . ÎDuR ≠ DūaÎ¸2 æ 0. Positivity of ”G(x̄) (final statement
of the lemma) implies that ūa

R is a local minimiser.
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Quantifying the Approximation Error
Exact Problem:

ūa œ arg min{Fa(v) | v œ U̇1,2}

Simulation:

ūa
R œ arg min{Fa(v) | v œ U̇R}

From the convergence proof we get the stronger result

ÎDūa
R ≠ DūaÎ¸2 Æ CRÎDuR ≠ DūaÎ¸2 ,

where CR æ “≠1 as R æ Œ and uR œ U̇R is arbitrary. This is analogous to
to Céa’s Lemma / best-approximation error estimates in FEM.

Lemma 7 (Best Approximation Error Estimate).
There exists C > 0 such that, for all u œ U̇1,2 there exists uR œ U̇R
satisfying

ÎDu ≠ DuRÎ¸2 Æ CÎDuÎ¸2(�\BR/2).

 We need a decay estimate for Du!
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Proof of Lemma 7

Instead of proving this result, we prove a continuous analogue. The proof of the discrete
result is tedious unless one first introduced some machinery that makes it a corollary of
its continuous version. (we will actually introduce this in the last part of the lecture)
So let u œ Ḣ1(Rd), d > 1. We define a mollifier ÷ œ C1(Rd) with ÷(x) = 1 in |x | < 1/2,
÷ = 0 in |x | > 1, 0 Æ ÷ Æ 1, and set

uR(x) := ÷(x/R)
!
u(x) ≠ ÈuÍAR

"
, AR := BR \ BR/2,

then clearly uR œ Ḣ1, ÒuR has support BR and further

ÒuR(x) = R≠1Ò÷(x/R)
!
u ≠ ÈuÍAR

"
+ ÷(x/R)Òu,

Ò(u ≠ uR) = (1 ≠ ÷(x/R))Òu + R≠1Ò÷(x/R)
!
u ≠ ÈuÍAR

"
,

ÎÒ(u ≠ uR)ÎL2 Æ ÎÒuÎBÕ
R/2

+ ÎÒ÷ÎLŒ R≠1Îu ≠ ÈuÍAR ÎL2 Æ CÎÒuÎL2(BÕ
R/2),

where in the last inequality we used the Poincaré inequality for AR with scales linearly
with R.
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Regularity: What should we expect?
We can think of ”Fa = 0 as a discrete and nonlinear version of

≠�u = f , x œ Rd , supp(f ) µ B1,
⁄

f = 0.

(these conditions corresponding to locality and translation invariance of P).
Let G be the Green’s function, then

Òu(x) =
⁄

ÒG(x Õ)f (x ≠ x Õ) dx Õ =
⁄ 1

ÒG ≠ (ÒG)B1(x)
2
f (x ≠ x Õ) dx Õ

(Since
s

f = 0, we can subtract the mean of G .) Hence, we obtain

|Òu(x)| . ÎÒ2GÎLŒ(B1(x)) . |x |≠d

More generally, once could prove (under suitable assumptions on f ) that

|Òju(x)| . |x |1≠d≠j .

We can think of this as a regularity estimate at x = Œ.
27 / 85

Notes on PDE in Rd

Notes:
I The equation ≠�u = f , x œ Rd can be solved in the homogeneous Sobolev space

Ḣ1 :=
)

u œ H1
loc

(Rd )
-- Òu œ L2*.

This can be made a Hilbert space by considering equivalence classes. {u + c|c œ R}. If
f œ L2(Rd ), supp(f ) compact and

s
f = 0, then it is easy to see (Lax Milgram) that

there exists a unique solution in this space.
I In general, the equation can be solved for any right-hand side of the form divg , g œ L2.
I It can also be checked that, if

s
f ”= 0, then no solution exists. In this case, the solution

has a component that decays like the Green’s function.
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Regularity Theorem

Theorem 8 (Regularity).
Let u œ U̇1,2 with ”Fa(u) = 0, and assume the lattice is stable (2), then

|Du(¸)| Æ C |¸|≠d .

Consequence for the best-approximation error:

ÎDu ≠ DuRÎ¸2 . ÎDuÎ¸2(�\BR/2) ¥
3 ⁄ Œ

R/2
rd≠1r≠2d

41/2
¥ R≠d/2.

Theorem 9 (Convergence Rate).
Let k Ø 3, ūa be a strongly stable solution to (1), then for R su�. large
÷ ! ūa

R solution to (3) such s.t. ÎDūa
R ≠ DūaÎ¸2 . R≠d/2 ¥ (DOF)≠1/2.
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Numerical Confirmation
Numerical Test: divacancy in triangular lattice, NN EAM toy model

102 103 104

10−3

10−2

DoF

∥
∇
u
a
c

h
−

∇
u
a
∥
L

2

 

 

ATM

WORK−1/2
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Proof of the Regularity Theorem – Sketch
1. Linearisation: Let H := ”2Ea(0), u = ūa, v œ U̇c. The intuition is that “near Œ”,

”Fa(u) = 0 reduces essentially to Hu = 0. In other words, far from the defect, linearised
(lattice) elasticity is su�cient. This is in particular supported by the fact that Du œ ¸2

implies |Du(¸)| æ 0 uniformly as |¸| æ Œ. This key observation one of the main things
that distinguish discrete problems from continuous ones.

ÈHu, vÍ = ÈHu ≠ ”Ea(u) ≠ ”P(u), vÍ

=
ÿ

�

Ó
È”2V (0)Du + ”V (0) ≠ ”V (Du), DvÍ

Ô
≠ È”P(u), vÍ,

Since |”2V (0)Du + ”V (0) ≠ ”V (Du)| . |Du|2 we obtain

ÈHu, vÍ = Ègdef + g , DvÍ where |g(¸)| . |Du(¸)|2.

To continue it is su�cient to assume that

ÈHu, vÍ = Èg , DvÍ, |g(¸)| . |¸|≠p + |Du(¸)|2,

for some p > d . (p = d is also possible, then some log-factors come into the estimates;
this is needed for the dislocation case)
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2. Lattice Green’s Function: It can be shown that there exists a lattice Green’s function
G : � æ Rd , with the properties that |Dj G(¸)| . |¸|2≠d≠j and

u(¸) = ÈHu, G(¸ ≠ ·)Í = Èg , DG(¸ ≠ ·)Í, Du(¸) = Èg , D2G(¸ ≠ ·)Í.

(There is a corresponding continuum linear elasticity Green’s function, which behaves
asymptotically the same as G, and G inherits its far-field properties.)
If we did not have the |Du|2 dependence on the right-hand-side (i.e. if the problem were
linear) then we could now directly estimate |Du(¸)| . |¸|≠d .

3. Dealing with the nonlinearity: Let w(r) := ÎDuÎ¸Œ(�\Br ), then the key idea is to
estimate w(2r) in terms of w(r). From the recursion we will get, we will then be able to
prove the result. This is similar to the Campanato approach to regularity for elliptic
systems, but in our case applied at x = Œ.
Let |¸| Ø 2r , then after a tedious but not di�cult calculation, one obtains that

|Du(¸)| .
ÿ

k

!
(1 + |k|)≠p + |Du(k)|2

"
(1 + |¸ ≠ k|)≠d . . .

. . . Æ C(1 + 2r)≠d + ÷(r)w(r),

where ÷(r) æ 0 as r æ Œ. Multiplying with (1 + r)≠d we obtain, for a new constant C ,

(1 + 2r)d w(2r) Æ C + ÷(r)(1 + r)d w(r).

Now set v(r) := (1 + r)d w(r), then we have v(2r) Æ C + ÷(r)v(r). Since ÷(r) æ 0, for
r Ø r0, we have ÷(r) Æ 1/2, so in fact, v(2r) Æ C + 1

2 v(r). Let F := suprÆr0 v(r), then by
induction

v(r) Æ C + 1
2

1
C + 1

2

1
. . .

1
C + 1

2
F

2
. . .

22
Æ 2C + 2≠N(r)F ,

where N(r) . log(r); in particular v(r) Æ C1. This concludes the proof. 32 / 85



Part 3:
Revision Class
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Exercises
1. (a) Let U̇1,p = {u : � æ Rd | Du œ ¸p(�)}, 1 Æ p Æ Œ. Which space is largest,

which is smallest? Compare with Sobolev spaces W 1,p(�), where � is a bounded
domain.
(b) Analogously, prove that ¸2 µ U̇1,2, but not vice-versa. Again contrast this with
the embedding for the Sobolev spaces L2(�), W 1,2(�), � bounded. Is the
embedding ¸2 µ U̇1,2 compact?
(c) Prove that U̇1,2

[] := {[u] | u œ U̇1,2}, where [u] = {u + c | c œ R}, with natural
associated norm is a Hilbert space.
(d) Prove that U̇c is dense in U̇1,2 (in the sense that U̇c

[] is dense in U̇1,2
[] ). (You may

use Lemma 7 for this. If you want to complete its proof, then read ahead to learn about
the ṽ interpolant on slide 39)

2. (a) Complete the proof of the extension lemma.
(b) Explain the remark after the proof of the extension lemma: Suppose that Ea is
stable in the reference state, i.e, È”2Ea(0)v , vÍ Ø “ÎDvÎ2

¸2 for all v œ U̇c. Under this
assumption show that U̇1,2 is indeed the largest space from the class U̇1,p to which
Ea can be continuously extended.

3. Prove (2).
HINT: use the fact that, if Du œ ¸2(�), then |Du(¸)| æ 0 uniformly as |¸| æ Œ. Choose a
test function v œ U̇c and “shift” it to infinity.
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Exercises
LIN-Method: Using a harmonic approximation of the interaction outside a core region
� ∏ (� fl BR) amounts to defining a modified energy functional

E lin

R (u) =
ÿ

¸œ�

V (Du(¸)) +
ÿ

¸œ�\�

Q(Du(¸)),

where Q(Du) = V (0) + È”V (0), DuÍ + 1
2 È”2V (0)Du, DuÍ.

Setting F lin

R := E lin

R + P, in the LIN method we solve

ūlin

R œ arg min
)

F lin

R (u)
-- u œ U̇1,2*. (4)

This is still infinite-dimensional, but it can be reduced to a finite-dimensional problem using
lattice Green’s functions (similar to FEM-BEM coupling). We will not be concerned with this, but
focus on the resulting error.

4. Prove the following result; the exponent – is something you should determine from
your proof.

Theorem 10.
Let k Ø 3, ūa be a strongly stable solution to (1), then there exist C , –, R0 such that, for
R Ø R0, there exists a unique solution ūlin

R to (4) such that ÎDūlin

R ≠ DūaÎ¸2 Æ R≠–.

35 / 85

Exercises

Outline for exercise 4:
I Prove that E lin

R œ C k(U̇1,2).
I Prove that

Î”E lin

R (u) ≠ ”Ea(u)ÎU̇≠1,2 . ÎDuÎ2
¸4(�\�R ), (5)

Î”2E lin

R (u) ≠ ”2Ea(u)ÎL(U̇1,2,U̇≠1,2) . ÎDuÎ¸Œ(�\�R ) (6)

I Consistency: conclude that Î”E lin

R (ūa)ÎU̇≠1,2 . R≠–, where ūa is a stable solution
of (1). (Here is the step where you find –)

I Apply the inverse function theorem to conclude the proof.
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Part 4:
Coarse-Graining the Far-Field via
Atomistic/Continuum Approach
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Physical Motivation
Atomistic Model

I Requires huge
computational domain
because of long-ranged
elastic field

I intractable except for
extremely high crack
speeds

Continuum Model

I does not model
bond-breaking
(chemistry) accurately

I generic crack tip
singularity does not
capture the complexity
of the crack tip

I but considered accurate
for the elastic far-fields!

Hybrid Model

I accuracy of atomistic
model at crack tip

I cheap computational
cost and “su�cient
accuracy” of continuum
model for far-fields
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Analytical Motivation: Higher Regularity

Theorem 11.
Let ūa be a strongly stable solution of (1), then, for j Æ k ≠ 2,

|Dj ūa(¸)| . |¸|1≠d≠j

(The proof is analogous to Theorem 8.)

Interlude: For the rest of this lecture it is convenient to identify all lattice functions
v : � æ Rd with a C2,1-smooth interpolant. The details of the construction are unim-
portant, so we do not show them, but only state the important facts: there exists a
piecewise Q5-interpolant (multi-quintic) which we denote by ṽ : Rd æ Rd such that

ṽ(¸) = v(¸) ’¸ œ Z,

ÎÒj ṽÎLp(Q) Æ C1ÎDjvÎ¸p(Qfl�) Æ C2ÎÒṽÎLp(ÊQ ) ’Q = ¢[¸i , ¸i + 1], ¸ œ �, j Æ 3.

Theorem 11 can now be restated EXERCISE as

|Òj ũa(x)| . |x |1≠d≠j , 1 Æ j Æ k ≠ 2. (7)
In the following we drop the tilde, and unless stated otherwise we always identify a
function with its C2,1-interpolant, i.e., v © ṽ .
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Notes:
I The ṽ interpolant is contructed as follows: for � = Zd , let Q = ¢(¸i , ¸i + 1) be a “cell”

in the lattice. To define a multi-quintic interpolant on that cell, we have 6d degrees of
freedom, which we can fill by prescribing Ò–ṽ(k) at the 2d corners k of the hypercube
Q, where – œ Nd is a multi-index with the restriction |–|Œ Æ 2. (note that the number
of DOFs and the number of conditions, 2d ◊ 3d , matches.)
To that end, we denote

Dnn,0
i v(¸) := v(¸),

Dnn,1
i v(¸) := (v(¸ + ei ) ≠ v(¸ ≠ ei ))/2,

Dnn,2
i v(¸) := v(¸ + ei ) ≠ 2v(¸) + v(¸ ≠ ei ),

and Dnn,– := Dnn,–1 · · · Dnn,–d and then define

Ò–ṽ(k) = Dnn,–v(k),

for the corners k of the hypercube.
A proof that this interpolant is well-defined, and that it leads to a C2,1-interpolant of v
is given in [17]. (quite possibly it can also be found in a textbook somewhere?)
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Analytical Motivation: Exploiting the Regularity

Recall the atomistic Energy: Ea(u) =
ÿ

¸œ�
V

!
{Dflu(¸)}fl

"

Expansion of V :

V (Du) = V (0) + È”V (0), DuÍ
+ 1

2 È”2V (0)Du, DuÍ
+ 1

6 ”3V (0) : (Du)¢3

+ 1
24 ”4V (0) : (Du)¢4

+ . . .

Only the quadratic expansion is in gen-
eral practical because this makes evaluating
the far-field cheap through Green’s function
techniques.

Expansion of Du:

V ({Dflu}) = V ({Òflu+ 1
2 Ò2

flu+. . .}).

We will truncate at Òu,

V (Du) ¥ V
!
{Òflu}fl

"
=: W (Òu)

 Cauchy–Born Approximation.
(Higher-order expansions lead into a strange
variant of strain-gradient theories [1])

Thm 11 ∆ Ò3u π Ò2u π Òu!

Remark: Expanding either (i) W from the Cauchy–Born model; or (ii) the Du in lattice
linearised elasticity both leads to continuum linearised elasticity. In that respect, the
diagram is commutative.
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Short Summary of the CB Model
Dflu(¸) = u(¸ + fl) ≠ u(¸) = Òflu(¸) + 1

2 Ò2
fl + O(|Ò3u|),

(here, and throughout we mean by O(|Òj f |), that the missing term is bounded above by
ÎÒj f ÎLŒ(Ê) where Ê is some “suitable” uniformly bounded neighbourhood)
Crucial consequence of Thm 11:

at the atomic scale, . . . Ò3u π Ò2u π Òu π u!
This motivates the continuum model (as an approximation to Ea)

Ec(u) =
⁄

Rd
W (Òu) dx , W (F) = V

!
(Ffl)flœR

"
.

Theorem 12.
(some technical conditions [27]) Let � be stable (2), F œ H1(Rd) fl H2

Œ(R2) (a dead-load
force) and f‘(¸) := ‘f (‘¸), then for ÎFÎH1flH2

Œ
and Á su�. small, ÷! ua

Á , Uc s.t.

ua

Á œ arg min
)

Ea(u) ≠ ÈfÁ, uÍ | u œ U̇1,2}, ≠divˆW (ÒUc) = F ,

ÎDua

Á ≠ Duc

ÁÎL2 . ÎFÎH1 ¥ ÎD3ūaÎ¸2 + ÎD2ūaÎ2
¸4 ,

ÎÒUa

Á ≠ ÒUcÎL2 . Á2ÎFÎH1 ¥ Á2!ÎÒ3UcÎL2 + ÎÒ2UcÎ2
L4

"

where Ua

Á (x) = Áua

Á(Á≠1x), uc

Á(x) = Á≠1Uc(Áx). (the CB model is second-orderaccurate)
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Additional Notes on the CB Model
Notes:
I The result on the previous slide is taken from [27], a similar result, with similar approach

is also taken in [8]. Previous/recent results leading up to this result are [2, 23].
I A rough outline of the proof is the following:

1. First, prove that (2) implies that ˆ2W (0) is elliptic (Legendre–Hadamard). This is
classical, but for a recent discussion see [11]. Knowing this means we can apply all
sorts of classical stability and regularity results for the CB Model.

2. Solve the associated PDE with external force at macro-scale:

divX ˆW (ÒU(X)) + F (X) = 0, U œ Ḣ1(Rd ) fl Ḣ3(Rd ).

For ÎFÎH1 su�ciently small, existence and local uniqueness follows from IFT and
some elliptic regularity.

3. Rescale: discrete force fÁ(¸) := ÁF (Á¸), trial solution ûÁ(x) := Á≠1U(Áx), and
estimate its residual

--È”Ea(ûÁ) ≠ fÁ, vÍ
-- . ÎÒ3ûÁÎL2(Rd ) + ÎÒ2ûÁÎ2

L4(Rd )

¥ Á2!ÎÒ3UÎL2(Rd ) + ÎÒ2UÎ2
L4(Rd )

"
. Á2ÎFÎH1(Rd ).

4. Apply IFT to obtain a unique uÁ œ U̇1,2 such that

ÎDuÁ ≠ DûÁÎ¸2 . Á2ÎFÎH1 . 43 / 85

Notes:
I The key to getting second-order accuracy is the point symmetry of V . Here, I show this

for the energy, but a similar argument applies also for the forces (we will see this later):
let ÒRu := {Òflu}flœR, then

V ({Dflu(¸)}) = V ({Òflu + 1
2 Ò2

flu + O(|Ò3u|)})

= V (ÒRu) +
ÿ

Î

V,Î(Òflu) · [ 1
2 Ò2

flu + O(|Ò3u|)] + O(|Ò2u|2)

= V (DRu) + 1
2

ÿ

Î

V,Î(Òflu) · Ò2
Îu + O

!
|Ò3u| + |Ò2u|2

"
.

Now the point symmetry V ({≠g≠fl}fl) = V ({gfl}) implies

V,≠Î({Ffl}fl) = ≠V,Î({Ffl}fl),

so we obtain that
1
2

ÿ

Î

V,Î(ÒRu) · Ò2
Îu = 0.
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The Simplest A/C Coupling: “QCE”

I Atomistic Region: �a µ �
I Continuum Region: �c := Rd \

t
¸œ�a vor(¸), (vor(¸) := ¢d

i=1(¸i ≠ 1/2, elli + 1/2]

I The Hybrid energy functional: Eac(u) :=
q

¸œ�a V (Du(¸)) +
s

�c W (Òu) dx
(remember we identified discrete functions with a C2,1-interpolant)
We can prove an extension lemma to show that Eac œ C k(U̇1,2).

Assuming that the atomistic region surrounds the influence of the defect P, we define
Fac(u) := Eac(u) + P(u) and solve

ūac œ arg min
)

Fac(u)
-- u œ U̇1,2*. (8)

(In practise need domain truncation and finite element discretisation; we will return to
this! But for simplicity, we first consider simplified schemes.) 45 / 85

The Ghost Force Problem
Suppose P © 0 and � is stable (2), then ūa © 0 is a stable solution of the atomistic
problem (1). It turns out that ”Eac(0) ”= 0 , i.e., u = 0 is not a solution of the A/C
method, i.e., the A/C method fails the patch test.

Proposition 13 (Failure of Patch Test).
Let P = 0 and � stable (2), then there exists a constant c > 0 such that, whenever
�a ”= ÿ, ÎDūac ≠ DūaÎ¸2 Ø c.

Sketch of Proof:
1. Compute forces, f (¸) := ˆEac(0)

ˆu(¸) , show for certain ¸ in a neighbourhood of the
interface that they are bounded below, |f (¸)| Ø c Õ > 0.

2. Î”Eac(0)ÎU̇≠1,2 & Î”Eac(0)Î¸2 > 0. (recall that ¸2 µ U̇1,2 so U̇≠1,2 µ ¸2)

3. Inverse of the error estimate:
ÎDūa ≠ DūacÎ¸2 & Î”Eac(ūa) ≠ ”Eac(ūac)ÎU̇≠1,2 = Î”Eac(ūac)ÎU̇≠1,2 Î Ø c > 0.
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Notes on the Ghost Force Problem

Notes:
I The first rigorous results on the ghost force problem (1D, pair potential models) are

given in[4, 5, 25]. It is shown by an elementary analysis of the finite di�erence equations
that the e�ect of the ghost force decays exponentially away from the interface. Such
results do not, however extend to 2D/3D. For a/c interfaces with corners, the ghost
force e�ects can decay only algebraically. A precise and general analysis of this case is
still open.

I A more severe problem though that the ghost forces imply is that they change the
bifurcation diagram [6, 16].
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The Zoo of A/C Methods
see also Tadmor, Miller (2009) “benchmark of fourteen a/c methods” [24]

1. Force-based coupling
I FeAt: Kohlho�, Schmauder, Gumbsch (1989, 1991) [14]
I Dead-load GF removal: Shenoy, Miller, Rodney, Tadmor, Phillips, Ortiz (1999) [31]
I AtC: Parks, Gunzburger, Fish, Badia, Bochev, Lehoucq, et al. (2007, . . . )
I CADD: Shilkrot & Curtin & Miller (2002, . . . )

2. Blending methods: “di�usive interface”
I Belytschko & Xiao (2004) [33]
I Klein & Zimmerman (2006) [12]
I Parks, Gunzburger, Fish, Badia, Bochev, Lehoucq, et al. (2008)

3. Ghost Force Removal:
I Geometry reconstruction: Shimokawa et al (2003) [32], E, Lu, Yang (2006) [7]

CO, Zhang (2012, 2014) [28]
I Special cases: Shapeev (2012, 2013); Iyer, Gavini (2010); [30]

Makridakis, Mitsoudis, Rosakis (2014) [22]
4. Quadrature approaches

I Knap/Ortiz (2003) [13], Eidel/Stuchowski (2009) [10], Gunzburger/Zhang
(2010,2011), Lin (2007)
(Luskin/CO (2009) [19]: all of them are “inconsistent” in realistic situations)

Further variations: weak equality constraints (matching) vs. strong equality constraints
(patching), optimal control approaches, domain decomposition framework, di�erent classes of
continuum models, . . . 48 / 85



The Three Main Ideas in Pictures

force-based bu�er atoms blending

49 / 85

Blending / Di�use Interface Method

 

Eb(u) =
ÿ

¸œ�
(1 ≠ —(¸))V

!
Du(¸)

"
+

⁄

Rd
—W (Òu) dx

Belytschko/Xiao/2004 [33],
Badia/Parks/Bochev/Gunzburger/Lehoucq/2008,
Bauman/Dhia/Elkhodja/Oden/Prudhomme/2008

Luskin/Vankoten/2011 [15],
Luskin/CO/Vankoten/2012 [21]
Li/Ortner/Shapeev/Vankoten [17]

The B-QCE Scheme: ūb œ arg min
)
Fb(u) | u œ U̇1,2*

(9)
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Why Blending Should Work

L

1

1

1/L

Z
f 2 = 1

Z
f 2 = L�1
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Why a Numerical Analysis

Di-vacancy, blending width 5.

Eb(u) =
ÿ

¸œ�
(1 ≠ —(¸))V

!
Du(¸)

"
+

⁄

Rd
—W (Òu) dx

Approximation Parameters: 1. atomistic region, 2. blending region,
3. blending function —, 4. mesh size h
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Why a Numerical Analysis
Di-vacancy, blending width 5.

102 103 104

10−3

10−2

DoF

∥
∇
u
a
c

h
−

∇
u
a
∥
L

2

 

 

ATM
QCE
B−QCE−1
GRAC

WORK−1/2

WORK−1DOF

DOF

Eb(u) =
ÿ

¸œ�
(1 ≠ —(¸))V

!
Du(¸)

"
+

⁄

Rd
—W (Òu) dx

Approximation Parameters: 1. atomistic region, 2. blending region,
3. blending function —, 4. mesh size h
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Why a Numerical Analysis
Di-vacancy, optimised blending

102 103 104

10−3

10−2

DOF ≈ WORK

∥
∇
u
a
c

h
−

∇
u
a
∥
L

2

 

 

ATM
QCE
B−QCE−1
B−QCE−2
GRAC

WORK−1/2

WORK−1/2

WORK−1

DOF

DOF

DOF

Eb(u) =
ÿ

¸œ�
(1 ≠ —(¸))V

!
Du(¸)

"
+

⁄

Rd
—W (Òu) dx

Approximation Parameters: 1. atomistic region, 2. blending region,
3. blending function —, 4. mesh size h
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Outline of The Error Estimate

Recall the general strategy to prove an error estimate via IFT:
I X := U̇1,2, x0 := ūa

I Stability estimate

È”2Fb(ūa)v , vÍ Ø “—ÎDvÎ2
¸2

I Consistency Estimate

È”Fb(ūa), vÍ Æ ÷—ÎDvÎ¸2

I If L÷—(“—)≠2 < 1 then we obtain ūb solution to (9) s.t.

ÎDūa ≠ DūbÎ¸2 . ÷—
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Proof of Consistency in 1D

The full estimate is fairly technical; see [17]. Instead we show a 1D proof from [20]
(extends an earlier proof by Van Koten [15]), which shows most of the key ideas. Further,
we assume that Th has full atomistic resolution, i.e., Th = {(¸, ¸ + 1) | ¸ œ Z}. In this case:

Eb(u) =
ÿ

¸œZ
(1 ≠ —(¸))V (Du(¸)) +

⁄

R
—W (Òu) dx

È”Eb(u), vÍ =
ÿ

(1 ≠ —)È”V (Du), DvÍ +
⁄

—W Õ(Òu)Òv dx ,

È”Eb(u) ≠ ”Ea(u), vÍ =
⁄

—W Õ(Òu)Òv dx ≠
ÿ

È”V (Du), DvÍ

=
ÿ

flœR

;⁄
—V,fl(ÒRu)Òflv dx ≠

ÿ
V,fl(Du)Dflv(¸)

<

ÒRu = (Òflu)flœR, Òflu = flÒu

Taylor expansion easily implies that V,fl(ÒRu) = V,fl(Du) + O(|Ò2u|), but v has no
regularity so we cannot show Dflv ¥ Òflv . This is nonlocality vs. locality issue is the
core issue in translating between atomistic and continuum models.
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È”Eb(u) ≠ ”Ea(u), vÍ =
ÿ

flœR

;⁄
—V,fl(ÒRu)Òflv dx ≠

ÿ
—V,fl(Du)Dflv(¸)

<
.

In 1D (and in 1D only!) we can write

Dflv(¸) =
⁄

‰¸,flÒflv dx

where ‰¸,fl(x) = |fl|≠1, x œ conv{¸, ¸ + fl} and 0 otherwise.
We can now continue:

È”Eb(u) ≠ ”Ea(u), vÍ =
ÿ

flœR

;⁄
—V,fl(ÒRu)Òflv dx ≠

⁄ 5 ÿ

¸

—(¸)V,fl(Du)‰¸,fl

6
Òflv dx

<

=
⁄ ÿ

flœR

;
—flV,fl(ÒRu(x)) ≠

ÿ

¸

—(¸)V,fl(Du(¸))fl‰¸,fl

<
Òv(x) dx

We have now removed the “bad non-locality” by shifting it into a “good non-locality”
which we can remove via Taylor expansions:
I —(¸) = —(x) + Ò—(x)(¸ ≠ x) + O(Ò2—)
I V,fl(Du) = V,fl(ÒRu) +

q
Î

V,flÎ(DÎu(¸) ≠ ÒÎu(x)) + O(|Ò2u|2)
I Dflu(¸) = Òflu(x) + 1

2 Ò2
flu(x) + ÒflÒ¸≠x u(x) + O(Ò3u)
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This is a tedious calculation, the details of which can be found in [20]. In addition to the
Taylor expansions we also need, that at element-midpoints x = k + 1/2, k œ Z,

ÿ

¸

‰¸,fl(x) = 1,
ÿ

¸

(¸ ≠ x)‰¸,fl(x) = ≠ fl
2 .

Here is roughly what happens: (we write — = —(x), Ò— = Ò—(x) and so forth)
ÿ

¸

—(¸)V,fl(Du(¸))fl‰¸,fl =
ÿ

¸

fl‰¸,fl

!
— + Ò—(¸ ≠ x)

"!
V,fl +

ÿ

Î

V,flÎ (DÎ u ≠ ÒÎ u)
"

+ O(|Ò2—| + |Ò2u|2)

=
ÿ

¸

fl‰¸,fl—V,fl +
ÿ

¸

fl‰¸,fl—

ÿ

Î

V,flÎ

!
1
2 Ò2

Î u + ÒÎ Ò¸≠x u
"

+
ÿ

¸

fl‰¸,flÒ¸≠x —V,fl + O
!

|Ò2—| + |Ò2u|2 + |Ò3u| + |Ò—Ò2u|
"

= —flV,fl + —Ò2u
ÿ

Î

V,flÎ

!
1
2 flÎ2 ≠ 1

2 fl2Î
"

≠ 1
2 V,flfl2Ò— + O

!
. . .

"
.

Now we go back into the sum over fl:

ÿ

flœR

Ó
—flV,fl(ÒRu(x)) ≠

ÿ

¸

—(¸)V,fl(Du(¸))fl‰¸,fl

Ô
=

ÿ

fl

Ó
—Ò2u

ÿ

Î

V,flÎ

!
1
2 flÎ2 ≠ 1

2 fl2Î
"

≠ 1
2 V,flfl2Ò—

Ô

+ O
!

. . .
"
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The final step is exploiting point symmetry of V : Assumption (V) implies Vfl = ≠V,≠fl and
V,flÎ = V,(≠fl)(≠Î), so we obtain

· · · = 1
2 Ò2u

ÿ

fl,Î

V,flÎ

!
flÎ2 ≠ fl2Î

"

¸ ˚˙ ˝
=0

+ O
1

|Ò2—| + |Ò2u|2 + |Ò3u| + |Ò—Ò2u|
2

Remark on Generalisation to 2D/3D: [17]
The only step that does not generalise to 2D/3D is Dflu(¸) =

s
‰¸,flÒflu dx . In fact it is also

true if we allow line integrals, but this does not help since we need to convert it to a volume
integral. In 2D there is a small miracle in that bond integrals can be summed to become volume
integrals [30]. In 3D no such miracle exists (to the best of my knowledge), instead we resort to
very careful mollification argument. We identify lattice fuctions v : Zd æ Rd with their Q1
intepolants. Let ’ be the Q1 hat-function centered at 0 and define vú := ’ ú v . Then we obtain

Dflvú(¸) =
⁄ 1

0
Òflvú(¸ + tfl) dt =

⁄ 1

0

⁄
’(¸ + tfl ≠ x)Òflv(x) dx dt

=
⁄

Rd
‰¸,fl(x)Òflv(x) dx , ‰¸,fl(x) :=

⁄ 1

0
’(¸ + tfl ≠ x) dt.

The key in the analysis is then to exploit the invertibility of the operation v ‘æ vú (true due to
discreteness!) and to transfer back and forth between v and vú as needed.
An alternative route might be to employ the ideas in [23]?
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Full Statement of the Consistency Error Estimate

Generalising to 2D/3D we finally arrive at the following result.

Theorem 14.
Let u œ U̇1,2, then for each vh œ U̇(Th) there exists u œ U̇c such that

---È”Eb(�R,hu), vhÍ ≠ È”Ea(u), vÍ
---” . ”ÎÒ2—ÎL2 + ÎÒ—Ò2uÎL2

+
..—Ò3u

..
L2 +

..—Ò2u
..2

L4 .

(legend: blending error, continuum modelling error)

Notes:
I The ” . ” indicates that I’ve sligthly simplified the statement of the result. The “true

estimate” is what I stated + higher-order terms, or alternatively one can state an
estimate that looks more complicated but is qualitatively equivalent.
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Very Rough Sketch of Stability
The proof of stability is even more involved than the proof of consistency. In 1D it is still
somewhat elementary [20], but in 2D/3D it is fairly involved: [17]
The idea is to take a sequence of approximation parameters (—j , Tj ) with Ra

j ø Œ and of
minimising test functions vj œ U̇j (the space is now indexed by j) such that ÎÒvj ÎL2 = 1 and+!

”2Eb(�h,j y) + ”2P(�h,j y)
"

vj , vj
,

= “—
j . Due to the bound ÎÒvj ÎL2 = 1, we can extract a

weakly convergent subsequence (still denoted by vj ). This sequence is then decomposed into three
components (scales): vj = va

j + vb

j + vc

j , for each of which we use a di�erent stability argument:
I Òva

j converges strongly at the atomic scale. It is concentrated near the defect core, hence
for a su�ciently large atomistic region stability of the defect implies stability for this test
function.

I Òvb

j converges weakly to zero at the atomic scale but strongly at the “interfacial scale”;
i.e., after a rescaling wb

j (x) = ”vb

j (x/‘), where ‘ ¥ (Ra)≠1 and ” so that
ÎÒwb

j ÎL2 = ÎÒvb

j ÎL2 . This scaling keeps the interface (i.e., supp(Ò—)) near |x | = 1 as
Á æ 0. Consistency of B-QCE implies that the action of the B-QCE hessian on this test
function is approximately the same as that of the Cauchy–Born hessian, hence stability of
the continuum model implies stability for this component of the test function.

I Òvc

j converges weakly to zero both at the atomic and “interfacial scale” (which means that
it is not concentrated near a defect or interface). We can then exploit that, for a
subsequence, vc

j æ 0 strongly in L2(BRb ) to reduce the action of the B-QCE hessian on
this test function to the independent actions of the linearized atomistic and continuum
operators which are both stable.

I All cross-terms can be neglected in the limit as j æ Œ due to an approximate orthogonality
between the three components.
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Incorporating Regularity
Having proven a consistency and a stability estimate (we skip the Lipschitz estimate), we
check that the consistency error æ 0 (this happens as Ra æ Œ; it is easy to see) and the
IFT therefore yields an error estimate

ÎDūa ≠ DūbÎ¸2 . ÎÒ2—ÎL2 + ÎÒ—Ò2uÎL2 +
..—Ò3u

..
L2 +

..—Ò2u
..2

L4

Assuming that u = ūa and employing the regularity estimate |Òju| . |x |1≠d≠j to obtain

ÎDūa ≠ DūbÎ¸2 . ÎÒ2—ÎL2 + ÎÒ— |x |≠d≠1ÎL2 +
..—|x |≠d≠2..

L2 +
..—|x |≠d≠1..2

L4

Introduce the radii Ra, Rb as in the figure: to be
precise, we need that

BRa µ {— = 0}, BÕ
Rb µ {— = 1}

Some elementary estimates
..—|x|≠d≠2

..
L2 .

1⁄ Œ

Ra
rd≠1r≠2d≠4

dr
21/2

. (Ra)≠2≠d/2,

..—|x|≠d≠1
..2

L4 .
1⁄ Œ

Ra
rd≠1r≠4d≠4

21/2
. (Ra)≠2≠3d/2.

Ra

Rb

We arrive at: ÎDūa ≠ DūbÎ¸2 . ÎÒ2—ÎL2 + ÎÒ— |x |≠d≠1ÎL2 + (Ra)≠2≠d/2 .
60 / 85

Optimising B-QCE: —

We have arrived at
ÎDūa ≠ DūbÎ¸2 . ÎÒ2—ÎL2 + ÎÒ— |x |≠d≠1ÎL2 + (Ra)≠2≠d/2

To continue analysing the rate of convergence, we must now choose —. Since we have the
precise dependence of the error on — we know exactly how to choose it: �2— = 0 subject
to b.c. — = 0 in BRa and — = 1 in BRc . In 1D this means that — is a cubic spline [15]. In
practise, this is very useful for implementatin (solve this problem in a preprocessing step
[21].)
It turns out for the error estimate we the following:

— œ C1,1, |Ò—| Æ C—(Rb ≠ Ra)≠1, C—(Rb ≠ Ra)≠2. (10)
(this is easy to achieve by choosing a radial —) This yields

ÎÒ—|x |≠d≠1ÎL2 . (Rb ≠ Ra)≠1
3 ⁄ Rb

Ra
r d≠1r≠2d≠2

41/2

. (Rb ≠ Ra)≠1(Ra)≠1≠d/2,

ÎÒ2—ÎL2 . (Rb ≠ Ra)≠2#(Rb)d ≠ (Ra)d$1/2

We see that the the term ÎÒ2— is by far the worst. Its rate becomes quasi-optimal if
c—Ra Æ Rb ≠ Ra Æ C—Ra, (11)

and in this case we obtain the convergence rate
ÎDūa ≠ DūbÎ¸2 . (Ra)≠2+d/2 + (Ra)≠2≠d/2
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Convergence Rates
Summarising what we have so far obtained:

Theorem 15 (BQCE Convergence).
Let ūa be a strongly stable solution of (1), — satisfy (10, 11) where C—, c—

are independent of Ra. Then, for su�ciently large Ra, there exists ūb

solution to (9) such that ÎDūa ≠ DūbÎ¸2 . (Ra)≠2+d/2

Remarks:
I In 2D, the BQCE rate is the same as that of the trivial atomstic

truncation scheme. The complex multi-scale idea has gained us
nothing! In 3D, the BQCE scheme is worse than the truncation
scheme!

I Is the rate really optimal? We will see after some remarks on
implementation.
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Convergence Rate with P1-FEM
I Keep blending width Rb ≠ Ra ¥ Ra

I Create finite element mesh Th
I full atomistic resolution in atomistic and

blending region
I coarseing with rate h(x) ¥ (|x |/Ra)3/2

I Total computational domain �h = fiTh has
radius Rc ¥ (Ra)2

I U̇(Th) =
)

vh : Rd æ Rd | p.w. a�.,
vh = 0 in �Õ

h
*

.
I FEM-BQCE functional (Qh © midpt quadrature)

Eb

h (uh) =
ÿ

(1 ≠ —)V (Duh) +
⁄

�h

Qh
#
—W (Òuh)

$
.

Theorem 16.
ūa strongly stable soln of (1), Ra su�. lge., then
÷ !ūb

h œ arg min{(Eb

h + P)(uh) | uh œ U̇(Th)} s.t.

ÎDūa ≠ Dūb

h Î¸2 . (Ra)≠2+d/2 + (Ra)≠1≠d/2.

Ra

Rb

Ra

Rb

Rc
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Numerical Implementation

1. Choose Ra, then Rb = 2Ra, Rc = (Ra)2

2. Construct a finite element mesh and corresponding domain �h according to
these radii, with the optimal coarsening rate.

3. Compute a blending function —. In practise, this is best done by solving a
discrete bi-Laplace problem. [21]

min Î�h—hÎL2 subj. to —h =
;

0, atomistic region. e.g., |x | Æ Ra,
1, continuum region, e.g., |x | Ø Rb

where �h is some arbitrary discrete Laplacian.
4. Supply energy and forces for

Eb
h (uh) =

ÿ

¸œ�
(1 ≠ —(¸))V (Duh(¸)) +

⁄
Qh

#
—W (Òuh)

$
dx ,

where Qh is the mid-point quadrature operator.
5. Minimise Eb

h + P using a gradient scheme (ideally preconditioned.)
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Numerical Confirmation of the Rate
Numerical Test: divacancy in triangular lattice, NN EAM toy model
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Ghost-Force Removal
Motivation:
I Recall that the “ghost forces” ”Eac(0) ”= 0 are not removed, but only smeared out

i.e. we still have ”Eb(0) ”= 0. We can also see this if we dig deeper into the
consistency error estimate: the ÎÒ2—ÎL2 term can be made more precise:

ÎÒ2—ÎL2  
.. |Ò2—| |”V (ÒRu)|

..

Can we remove them altogether?
I But, motivated by the proof of the extension lemma, we can easily remove these by

“renormalising” the atomistic energy

Ea(u) =
ÿ

V (Du) =
ÿ 1

V (Du) ≠ È”V (0), DuÍ
2

=:
ÿ

V Õ(Du)

Let the corresponding strain energy function be W Õ(F) := V (F · R).
I While the new site potential V Õ does not change Ea, it does change Eb:

Egb(u) :=
ÿ

¸œ�

(1 ≠ —(¸))V Õ(Du(¸)) +
⁄

—W (Òu) dx

With the total energy Fgb = Egb + P we solve

The GFC-B-QCE Scheme: ūgb œ arg min
)

Fgb(u) | u œ U̇1,2* (12)
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Notes on the GFC-B-QCE Scheme

Notes:
I An alternative interpretation of the GFC-B-QCE scheme (which gives it its name) is to

remove the “ghost forces” as follows:

Egb(u) := Eb(u) + È”Ea(0) ≠ ”Eb(0), uÍ.

It is easy to see that these are equivalent formulations, however the new formulation is
much easier to extend to more complex situations (dislocations, cracks, problems with
boundaries, etc).
The dead load correction obviously achieves that È”Egb(0), uÍ = 0.
More generally, one could remove the ghost force in some predictor û; see [29].

I The idea of static ghost-forces correction originates (to my knowledge) from [31]. It is
somewhat under debate whether the scheme schould be considered energy-based or
force-based [3]; it depends heavily on the context. In our context it is clearly
energy-based.

I There is so far no rigorous analysis of the pure GFC scheme in 2D/3D, due to the fact
that as for all sharp-interface schemes, proving stability is very di�cult.
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Error Estimate for GFC-B-QCE
We only look at the leading term, assuming all our previous optimisations on —:

.. |Ò2—| |”V Õ(ÒRu)| ÎL2 . (Rb ≠ Ra)≠2Î”V Õ(ÒRu) ≠ ”V Õ(0)ÎL2(BRb \BRa )

. (Rb ≠ Ra)≠2(Ra)≠d/2 ¥ (Ra)≠2≠d/2.

Remark: This matches the error contribution from the continuum model!
That is, the GFC-B-QCE scheme is optimal among all a/c coupling schemes
where the continuum model is of first-order.

Theorem 17 (GFC-BQCE Convergence).
Let ūa be a strongly stable solution of (1), — satisfy (10, 11) where C— , c— are
independent of Ra. Then, for su�ciently large Ra, there exists ūgb solution to (9)
such that ÎDūa ≠ DūgbÎ¸2 . (Ra)≠2≠d/2

Remarks:
I Adding P1-FEM and truncation to the method yields the rate (Ra)≠1≠d/2

I For optimal rate, use P2-FEM discretisation. (This extension is possible.)68 / 85

Numerical Confirmation of the Rate
Numerical Test: divacancy in triangular lattice, NN EAM toy model
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Appendix A: Outlook
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Some Obvious Directions (that Require Attention)

I A Posteriori Model Adaptivity:
1. A posteriori error control of course;
2. Optimise approximation parameters on the fly to also optimise the

prefactor, not just the rate;
3. Evolve the atomistic region with the defect;
4. Place atomistic region where defect nucleates.

I Stability of sharp-interface coupling (as opposed to our blending method) E.g., it
can be shown that within the QNL class (the only known general class of
energy-based sharp-interface couplings) no “universally stable” variant exists [26].

1. How large is the stability error, i.e., is this ever a problem?
2. Are force-based sharp-interface methods stable? For a first step, see [18].

I Complex Crystals: if more than one specis of atom occurs in the crystal, they still
arrange into a periodic environment (but not a Bravais lattice anymore). Point
symmetry of the crystal and of the interaction is now lost. What is the consequence
of this? (see publications by [Abdulle/Shapeev/Lin],
[Dobson/Elliot/Luskin/Tadmor], [Vankoten/Ortner], . . . )

I Charged Defects: depending on who you talk to even the model seems to be
unclear? (e.g., Mott/Littleton vs. PBCs?) This seems particularly di�cult for
charged defects on surfaces. Because of Coulomb interaction, both the interaction
and the elastic fields are long-ranged. Both are more di�cult to treat analytically.
Important applications, e.g., in semiconductor design, energy storage, etc. 71 / 85

Perspective
I Multi-scale modelling has become a huge subdiscipline of applied mathematics.

What I have discussed in these notes is a still small niche: numerical analysis of
coarse-graining schemes for atomistic models. I have discussed one particular
example which we understand well (though not completely!) But there are many
other coarse-graining schemes that are still waiting to receive similar attention.

I 2013 Nobel Prize in Chemistry: “for the development of multiscale models for
complex chemical systems”.
This is often confused to mean “for the introduction of the QM/MM scheme”, but
in reality it was given for the development of “coarse-grained” molecular simulation
as a whole, including the development of interatomic potentials (as coarse-graining
of Born-Oppoenheimer MD).

I The state of multi-scale modelling is roughly where finite-di�erence methods were
before the CFL condition. There are few precise “regulations” to follow in
constructing good coarse-graining schemes. As a result a considerable proportion of
human resources goes into generating, fine-tuning and calibrating atomistic models
and coarse-graining schemes. A continued e�ort to develop a mathematical
foundation for molecular simulation in general and coarse-graining in particular will
lead to automated procedures, and simulation by “press of a button” (cf. FENICS).

I (this is all aside from the obvious improvements in accuracy, performance and
reliability that a rigorous mathematical foundation can bring.) 72 / 85
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Solution Exercise 1
(a) ¸1 µ ¸p µ ¸Œ, hence U̇1,Œ is the largest and U̇1,1 the smallest. By contrast,
LŒ µ Lp µ L1 provided the domain is bounded (or, measure finite) so in this case
W 1,1 is the largest, W 1,Œ the smallest.
The important point here is that on lattices ¸2 µ ¸Œ, which is the main reason
that linearisation arguments (Inverse function theorem) can be applied in the
energy space. By contrast one cannot normally apply IFT arguments to quasilinear
PDE divS(Òu), when taking u œ W 1,2, because the linearisation error is not
controlled. Instead one then resorts monotonicity or convexity arguments.
(b) immediate corollary of triangle inequality. The embedding is not compact; take
un(¸) = ”(kn ≠ ¸) where |kn| æ Œ.
(c) This just follows from the fact that ÎDu ≠ DvÎ¸2 = 0 implies u = v + c .
(d) For this, we just employ Lemma 7. If we believe it (we didn’t actually prove
it), then we can now just use the fact that ÎDuÎ¸2(�\BR/2) æ 0 as R æ Œ, due to
the fact that |Du(¸)|2 œ ¸1.
If we do want to prove Lemma 7 properly, then all we need is a discrete Poincaré
inequality, but this requires considerable machinery. An easier technique is to
triangulate the lattice, then get an interpolant ū of u, so that we get
Îū ≠ ÈūÍAR Î . RÎÒūÎ and then show some norm-equivalences. This is done in [9].
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Solution Exercise 2

(a) We need to prove that E Õ œ Ck ; k Ø 2. We show that E Õ œ C . We first write

�(Du) := V (Du) ≠ È”V (0), DuÍ =
⁄ 1

0
(1 ≠ t)È”2V (tDu)Du, DuÍ dt.

Fix u œ U̇1,2 and take v æ u in U̇1,2; wlog ÎDu ≠ DvÎ¸Œ Æ 1. There is a modulus
of continuity Ê for ”2V in the domain {g œ (Rd)R | |g | Æ ÎDuÎ¸Œ + 1}, hence we
obtain

|�(Du) ≠ �(Dv)| Æ
----
⁄ 1

0
(1 ≠ t)È[”2V (tDu) ≠ ”2V (tDv)]Du, DuÍ dt

---- + quadratic terms

Æ
⁄ 1

0
Ê

!
t|Du(¸) ≠ Dv(¸)|

"
|Du(¸)|2 dt + quad. terms

Æ Ê
!
ÎDu ≠ DvÎ¸Œ

"
ÎDuÎ¸2 + quad. terms.

The quadratic terms are of course continuous and further, ÎDu ≠ DvÎ¸Œ æ 0 as
ÎDu ≠ DvÎ¸2 æ 0. Hence, E Õ œ C(U̇1,2).
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To show that E Õ œ C2 (with k = 2) we just expand,

E Õ(u + v) =
ÿ

¸

�(Du + Dv)

=
ÿ

¸

1
�(Du) + È”�(Du), DvÍ + 1

2 È”2�(Du)Dv , DvÍ

+
⁄ 1

0
È[”2V (Du + tDv) ≠ ”2V (Du)]Dv , DvÍ

2
,

and arguing as before we obtain that the remainder tends to zero as Dv æ 0 in ¸2.

(b) Let u œ U̇c. If Du æ 0 in ¸p for some p < 2, then in particular Du æ 0 in ¸2

and hence Ea(u) æ 0.
Now suppose we take Du æ 0 in ¸p for p > 2, but ÎDuÎ¸2 æ Œ. In this case,
Ea(u) æ Œ, i.e., Ea is not continuous. A simple way to see this is to write

Ea(u) =
⁄ 1

0
(1 ≠ t)È”2E(tu)u, uÍ dt Ø 1

2 È”2E(0)u, uÍ ≠ CÎDuÎ¸ŒÎDuÎ2
¸2 .

Upon rescaling, we can in fact obtain Ea(u) æ c for any c œ [0, Œ]. It remains to
show that such a sequence exists. To that end we just consider a mollifier µ and
define uR(¸) := R–µ(¸/R). One can then quickly see that ÎDuRÎ¸p ¥ R–+d/p≠1,
and by adjusting – we can obtain DuR æ 0 in any ¸p space.
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Solution Exercise 3

Pick an arbitrary v œ U̇c with support contained in BR , say, and define
vm(¸) := v(¸ ≠ m). Then,

ÎDvÎ2
¸2“ = “ÎDvmÎ2

¸2 Æ È”2Ea(u)vm, vmÍ
=

ÿ

¸œ�flBR(m)
È”2V (Du)Dv , DvÍ

= È”2Ea(0)vm, vmÍ +
ÿ

¸œ�flBR(m)
È[”2V (Du) ≠ ”2V (0)]Dv , DvÍ

Æ È”2Ea(0)v , vÍ + sup
|¸|>|m|≠R

Ê(|Du(¸)|)ÎDvÎ¸2 ,

But sup|¸|>|m|≠R Ê(|Du(¸)|) æ 0 as |m| æ Œ, so in the limit we obtain the
stated result.
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Solution Exercise 4
We follow the outline given after the statement of the problem. The first step, E lin

R œ C k

is analogous to proving the Ea œ C k . Note in particular that ”Q(0) = ”V (0) so the
“renormalisation” does not change.
Proof of (5) (estimate for ”E lin

R ≠ ”Ea):

È”E lin

R (u) ≠ ”Ea(u), vÍ =
ÿ

�Õ

È”V (Du) ≠ ”Q(Du), DvÍ

=
ÿ

�Õ

È”V (Du) ≠ ”V (0) ≠ ”2V (0)Du, DvÍ.

Since V œ C3, we have |”V (Du) ≠ ”V (0) ≠ ”2V (0)Du| Æ C |Du|2, where C depends only
on ÎDuÎ¸Œ . So we obtain

È”E lin

R (u) ≠ ”Ea(u), vÍ .
ÿ

�Õ

|Du|2|Dv | Æ ÎDuÎ2
¸4(OmÕ)ÎDvÎ¸2 .

Proof of (6) (estimate for ”2E lin

R ≠ ”2Ea): analogously to the last step,

ÈÈ”2Ea(u) ≠ ”2E lin

R (u)]v , vÍ =
ÿ

¸œ�Õ

È[”2V (Du) ≠ ”2(0)]Dv , DvÍ

.
ÿ

�Õ

|Du||Dv |2 Æ ÎDuÎ¸Œ(�Õ)ÎDvÎ2
¸2 .

This works because k Ø 3. 83 / 85

To employ the IFT we set X = U̇1,2, x0 = ūa (note there is no approximation
necessary here since the computational space is the same as the problem space!),
G = ”E lin

R . Then we obtain from Theorem 8 that

ÎG(x0)Î = Î”E lin
R (ūa)ÎU̇≠1,2 = Î”E lin

R (ūa) ≠ ”Ea(ūa)ÎU̇≠1,2

Æ CÎDūaÎ2
¸4 Æ C

3 ⁄ Œ

R
rd≠1r≠4d

41/2
Æ CR≠3d/2 =: ÷.

Further, from (6) we obtain that

È”2E lin
R (ūa)v , vÍ Ø “RÎDvÎ2

¸2 ,

where “R æ “ as R æ Œ. Lipschitz continuity of ”2E lin
R is easy to show along

similar lines. Hence, the IFT gives us existence of a uniquye ūlin
R satisfying (4) and

ÎDūlin
R ≠ DūaÎ¸2 Æ CR≠3d/2.
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Rate of Convergence of LIN
Interstitial in 2D triangular lattice, EAM-type NN interaction
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