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Why fast image segmentation?




Why fast image segmentation?

Preoperative data - high resolution scans.




Why fast image segmentation?

Surface rendering of preoperative data.




Why fast image segmentation?

Intraoperative MR scans.

» smaller volume required / available.
» low resolution - compromise: quality vs. acquisition time.



Active contour approaches

» Edge detector based image segmentation.

— computationally inexpensive;
— ’edgy’ image required.

» Active contours without edges.

— region bases models - Mumford-Shabh;
— requires PDE solution.



Fundamental task of image segmentation

» Given a (possibly noise corrupted gray scale) image...
» ...find boundary curves of regions with approx. constant
gray levels (contours).
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Some existing approaches

=
=

Global energy principles satisfied by optimal contour.
Snakes — active contours as deformable models based on
energy minimization along curve. Disadvantage: Depends
on parametrization - non geometric (non intrinsic) model.
Geodesic active contours combining a geometric model
with the energy minimization approach. Parametrization by
Euclidean arclength of curve. Curve evolution:

dc

gt = 9Ok = (Vg )N,

where g is an edge detector.

Deformable active contours with contour as zero-level set
of time dependent function v in terms of geometrically
intrinsic formulation. Propagation according to

ur+ F|Vu| = 0.



Choices of F

F—g(dlv<‘§u|> +u)

with v a "balloon force”.
» The choice

Yu Yu 1
F= d|v< ) gdiv<> Vg, Vu
Iyl ) T VOV

can be interpreted as the gradient direction of the energy

J(I) :/gdS (...contour).
r



Edge detector based segmentation

For image segementation one seeks to locally minimize the
functional

J(F):/g,d8+z//g,dx.
r Q

Here g, is an edge detector for the edges in the original image /.

Image! Edge detector!



Signed distance function

The signed distance function bg of a bounded open set Q ¢ R?
is defined as
br(X) = dQ(X) — dR2 \Q(X).

1
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Properties

v

|Vbr|? = 1 a.e. on R? if meas(I")=0.

> Vbr‘r:n.
> Abr‘r:/’i.
> brlr = —vy with vp = (V, n)|r.

v

AbHr = —Arv, with Arw = din(VrW) the
Laplace-Beltrami operator.



Gradient and Newton-type level set flow

= Level set idea and descent flow. Suppose F : T — R is
descent direction, e.g. negative shape gradient.

Propagating front formulation for I'(t):
x(t) = F((t),T(t)) n(x(t)) for x(t) € T(2).
Equivalent formulation given by level set equation
o1+ F|Vg|=00nR? x (0, 7)
where propagating front is zero level set of ¢, i.e.
[(t) = {x e R : ¢(x,t) = 0}.

Scalar function F : R x [0, T) — R chosen such that
Flr = FT(D).



» Extension velocity. Some freedom in extending F : ' — R
to F: R% x [0, T) — R. In our context preferred:
Constructing F as solution to transport equation

(VF,Vbr)=00nR?% F| =F

most appropriate.
Define .
Ve =FVbr.

Then (VE,n) = F.
» Newton-type speed function. The Newton-type speed

function is the solution F: T — R to

Q2J(T; Ve; Vig) = —dd(T: V) forall G: T — R.



1st and 2nd order Eulerian semi-derivs.

dJ(T; V) = (Drd, V) = /r <(% +9i(k+ y)) n, v> ds.

Newton-type speed function F solves

9°g, 99 _
/r[( - +(2ﬁ+u)%+mg,)FG+g,<er,er>} ds =

/r<gi'+(/<+u)g,)GdS

= Coercivity (*).

9*g, o9 _
/r (09 +(2x+0) % 4 vkg) FG+g(ViF.vG)| as =

—/r<€;%+(m+u)g,)6d8




Shape Newton-Algorithm with narrow band

1. Initialization. Choose Iy. Initialize level set function ¢°
such that Iy is zero level set of ¢9; set k = 0. Choose
bandwidth w € N and v € R.

2. Newton direction. Find zero level set ', of actual level set
function ¢*. Solve (*) to obtain Newton-type direction F~.

3. Extension. Extend F* to band around actual zero level set
[« with bandwidth w yielding FX,,.

4. Update. Perform time step in level set eguation with speed
function FX, to update ¢* on band. Let ¢**' denote this

update.

5. Reinitialization. Reinitialize ' in order to obtain signed
distance function ¢**1 with zero level set given by zero
level set of p**+1. Set k = k + 1 and go to (2).



Numerical results.

Example 1

Steepest descent! Newton-type direction!



Comparison

Comparison of Algorithms (LS ...
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Example 2.

AN
0

Newton-type direction! Steepest descent!

™



Active contours without edges

» Given: Gray value image uy : D — R (noisy and/or blurred)
with D = (0,1) x (0,1).

» Aim: Find denoised and deblurred approximation u to
given data uy and a set I' ¢ D — the edge set of given
image uy — as minimizer of the Mumford-Shah functional

J(U,F):/D|u—ud\2dx+g/D\r|Vu]2dx+u/r1d?-h,

with u, v > 0, and H4 the 1-dim. Hausdorff measure.



Consider
F=0Q;={xeD:¢(x) =0}, Q ={xeD:epx) <0}
with Q4 € D open.
Q =D\ = {x € D:¢(x) >0}

Under suitable assumptions:

inf J(u, I =inf  min _J(u,rT).
(u,N)eH (D\T)xE re€ ueH'(D\r)

£ denotes the set of admissible edges.



v

v

v

v

Set ux = ulg, fork =1,2.
Note: u € H'(D\T) < ux € H'(Qx) for k = 1,2.

Solution u(l') = uy(MN)xq, + Uz2(I)xq, to inner minimization
is given as solution to optimality system

/(uk(r)@+u<VUk(r),V¢>)dX—/ Ug ¢ dx
Qx Q

for all ¢ € H'(Q) and for k = 1,2.
Weak form of Neumann problem for

—puAuk(T) + u(l) = ug on Q
9U(T) — 0 on 9

ony

fork =1,2.



Remaining shape optimization problem.

Z/ ( lu (T —ud|2+g|ka(r)2> dx+z//1dH1
r

overl € &.

Let Ve = FVbr with a scalar function F.

Eulerian derivative of J:
. o 1 2 H 2
dJ(T; Vg) = g é[ﬂu—ud\ ]] +§[[\Vru(r)\ ]] + vk | FdH,

where
> [lu—ugl?] = us — ugl? — Juz — ugl?;
> [[Vu(D)P] = Vi (N = [Vue(N)2
denote the jumps of |u — uy|? and |Vul?, respectively, across I.



Shape Hessian

d?J(T; F; G) = /r B </~@ ([lu - ugl®] — w[IVrul?]) + % [lu— ud\Z]D

+ [(u—ug) ug] + u[(Vu,Vug)] — vArG| F d#s.
The shape derivative uy; solves
—pAuy g + Uy g = 0 on Q

/
8Uk,G
oy

1
=divr(GVrug) + ;(Ud —ux)GonT,

fork =1,2.

Shape Hessian evaluation too expensive!!!



Descent direction and PCG.

» Let B(T'x; VF; Vi) denote the shape Hessian or a positive
definite approximation. A descent direction Gﬁ, for Jin Ik
is obtain as solution to

B(T: Vri Var) = —dJ(T; VE) VF

by means of the preconditioned conjugate gradient
method, i.e., Gy satisfies

<VG’I§/7 VF> <0 VF.

» = allows to replace constant time-stepping
(CFL-condition) with a line search technique.



Numerical results.
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Initialisation! Segmented image
15 Iterations!




Solution of elliptic equation.

hd
O 4



I

Initialisation! Segmented image
5 lterations!




Steepest descent method at iteration 8.




Denoising and simultaneous segmentation.

Datal Denoised image
5 Iterations!



Segmentation result.




Mumford-Shah (MS) model in image segmentation

Given: f : Q — R gray-level image, Q C R? bounded;
Find : u, reconstruction of true image, and I', the edge set (contours).

. _ Y 2 v 1
nJ,IrnJ(U’ r)_/ﬂ(f u) +u/Q\r|Vu| +vH'(T), (1)

Piecewise constant MS (Chan-Vese)
When u is piecewise constant:

minJ(u,T) = /(f —u)? +vH'(I). )
u,r Q
Algorithm for minimizing (2) o, ) 8, o
1. Apply topological derivative /\ 9\\
2. Apply shape derivative 5 \\\;/,,//7>




Topological derivative

> ATy <

DA



Topological derivative

«O>» «Fr «=>»

DA



Topological derivative

= 2

Topological derivative

Let ws be a ball of radius 6 > 0 and center xp € Q. Qs := Q \ w;.
For § — 0 we have

J(€25) = J(Q) + p(8) T (x0) + 0(p(9)),

and 7 (xp) is the topological derivative of J at xp; p(d) — O.



Why use topological derivative?
» Extremely fast in detecting topological NIV

I,\ ,\ ,~,~ A ,\ ,\ ,\,~\
1 G
structures. D 55 55 58 58 55 58 58 o 5
Is\\~'~’\\\’\"
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Why use shape derivative?

» Topological derivative cannot handle perimeter term 7' (I").

TOPSHAPE - Algorithm

1. Phase I: Apply TOPological derivative for v = 0.
2. Phase II: Apply SHAPE derivative for v > 0.



Agenda

Mumford-Shah functional and topological derivative
Topological derivative
Phase I: Algorithm for topological derivative

Mumford-Shah functional and shape derivative + level set
framework

Shape sensitivity analysis

Phase IlI: Algorithm for shape derivative



Piecewise constant MS-model (Chan-Vese)

» f:Q+—— R : gray scale image.

o g, o » Q C R?: corresponding domain
Q=UmQ;, QNQ=0 Vi#]
> [ = Ul-n;1 M= U,n;189,'.
Q; ¢y

v

"colors” ¢; = [ [, f(x) dx.

Image 1

v

approximation u(x) = ¢; Vx € Q,.



» Note that the I'; N T, j # i, might be non-empty.

For v =0in (2), we obtain

Ju,T) = /Q(f— u)2.

» Note that ¢; = ¢;(Q;) for all /.
We can rewrite (3) in terms of Q; only:

T 1)_2/ X) = 6)2 dx = J(u,T).

Later we also use

TR = To({QT0) + 2( 69>+Z’H )



Shape resp. topology optimization problem

Minimize  7,({Qi})
st. Q=u",Q,
QN =0 Vi#]j,
Q; measurable Vi € {1,.., m}.

Theorem
Problem (5) admits a solution {2 }ic(4....m}-



Let {Q;}, be given, p > 0, xo € Q;, B, := B(xo, p).
Q: Jo reduced when moving B, (p small) from Q; to ;?

Topological derivative

jo(Q1 s oS\ Bp, ey Qj U Bp, ey Qm)
= Jo({Qitiept,m) + mo°Tj(x0) + 0(p%)

Matrix-valued derivative:

T =A{Ti}tijeq,...mp

with 7 =0forall i € {1,..., m}.



Remove "material” from Q;
Here it is assumed that Q; #

ci(Qi\B,) = ¢i(Q)+7|| ™" p? (Ci(Qi) - |ij|/5 f(X)dX> +o(p?)

Add "material” to Q;
If Q; # 0 then

’

ci(QUB,) = ¢;()—n|Q " p? (cj(Qj) — |B|/B f(x)dx) +0(p?).
p o

If ; = () then

1
9% UB,) = 5 /B F(x)dx.



If Q; # 0, then we obtain
Jo(Q1, s Qi \ By, ooy QU By, ., Un)
= o eprm) + / (F(x) — 6)? — (F(x) — G)2dx+

2r ||~ 2(, i) ’B|/f dx)/ X) — ¢;)ax—
1

271"9‘ 1 2(/ ] ’B|/ f dX)/ —Cj)dX+O(p ),
1Y

but since [q, (f(x) — ¢i) fQ — ¢) = 0, we obtain:

Topologlcal derivative

Tj(x0) = (f(x0) — ¢)° — (f(x0) — ci)?.



If Q; = 0, then we obtain
jo(Q1 s eeey SO \ Bp7 ey Qj U Bp, ...,Qm)
— Do} ierm) + /B (F(x) — G2 — (F(x) — G)*+

27r|9,-|—1p2(, )1 [, )/ (x) - &) + 0(P).

Since [, (f(x) —¢i) =0and ¢;(Q; U B,) = |17 Ja, f(x)ax:

Topolog|cal derivative

77]'(X0) = —(f(Xo) — C,')z.



Observations.

» For Tji(x0) = (f(x0) — ¢;)? — (f(X) — ¢i)2, we have
Tiji(x0) = Tik(x0) + Tij(x0)-

» For Tji(xo) as above, it holds that

either ¢ <c¢ and f(x)> %9
Ti(x) < 0 <= o 2’
i) { or ci>c and f(x)< %39
> Letd;:= %=5% vie {2,..,m} and assume
min(f) < c§°) << cfo) <. < C,(-,?) < max(f),

where (9) refers to initial guess of subsequent algorithm.
Let x € Q4 and p be smallest integer such that
Tkp(X) = Minjcgy, . my Tra(X). Then



Conversely, if f(x) satisfies (6) for some p then

Tep() = _min_ Ty(x)

- le{1,..,m}



Algorithm

v

Input: Q, f, m. Output: Q;, ¢, i=1,..,m.

Initialization: Choose
min(f) < c1(°) <. < c,-(o) <. < c,(,g) < max(f). Set/=0

and Q¥ = gvie{1,.,m.
While[(/ > 0 and |2" AQ!"""| > 0 Vi) or / = 0]
Compute d,.(l), i€{2,..,m},set d1(’) <0, d,(,ﬁﬂ = max(f).
Set QEIH) = {x €Q| d,.(’) < f(x) < dfﬁ} Vi
Fork=1,..m
if (27| > 0 then
Update ¢{'*" = jo{+)|-1 Jogen £x) .

else
Choose arbitrary c,((’+1) outside [d,gL ; d;((l)]-
set/=1+1

v

v

v



Chan-Vese model

Image f




Piecewise constant Mumford-Shah model

Image f

c1=3/4
Ti2=-9/16 T p=-1/14 Ty ,=-25/
Initialization

2



Chan-Vese model

=173 cp=2

Ti2=-1/9 T 2=—4/9 | ) =0

First iteration



Chan-Vese model

c1=1/3 cy=2 ¢1=0 c1=1 co=2

Ti2=-1/9 T 2=—4/9 | T =0

First iteration Second iteration



Shape derivative

e 7N

) W "

y ~_
e \/ \
" \
\

M Q \
\ )
N, /}//

moving domain Q;

X: Lagrangian coordinate
x(t, X): Eulerian coordinate

cclitx(t’x) = V(t,x(t,X))

x(0,X) = X

Ti(V)(X) = x(t, X)
Q; = T:(V)(£2): moving domain

J(£2¢): shape functional
aJ(Q, V) = limy_,o L2



Structure theorem
If Q is smooth enough there exists VJ on I such that

aJ(I, V)= (VJ,va)r,

where v,(x) = V(0, x) - n(x) and (-, -)r a duality pairing. If
duality pairing can be realized as integral over I we have

dd(r, V) = /r VJ v, dr, )

and we are able to use a gradient-descent method by choosing
Vn - —VJ



Due to the Four-Color Theorem, we choose m = 4. Define two
level set functions ¢1 and ¢» such that

QU UQ = {xeQ]¢(x) <0} (8)
QU UQs = {xeQ]g¢x) <0}, 9

For instance, the set Q4 can be deduced by
Q1 ={xe€ Q]| ¢1(x) <0and ¢2(x) < 0}.
For convenience we also define the sets Dy and D-

Dy = Q4UQy,
D> = QUQs.



Image

P, <0 a0
@, >0
D >0 <I>2 <0
Level set function 1

Level set function 2

N




Hamilton-Jacobi equation

ot(t, x) + va(t, x)|Vo(t, x)| =0, (10)
where ¢; time derivative of ¢ and ¢(0, x) given data.
» Note that v, is defined only on I, therefore it is necessary

to define its extension to the entire domain (or at least a
band around the actual contour).



MS-functional

ZCIEDS /Q (100 = e ax+ 53 3! () + Gloa.

For convenience, we use the notation

To(F) = T({Qi}Ly).



Shape derivative

dIr.V) = D2 [ (fx) - a)el(r. V)

where
» x;is the curvature of '},
» n; is the outer unit normal vector to ;,
» ¢i(T, V) is the shape derivative of ¢; at I' in the direction V.



Since ¢i(I', V) is a scalar, we have

Z | 600~ apelr, vy ox = S Y) | (00~ ayax=o,

i=1 Qi

since ¢; is the mean value of f over the domain ;. Thus we
obtain

dJ,(T, V) Z/ —c)?+ gn,-(x)> Vi (X) dx.

Therefore we have identified the shape gradient
VI,(x) = (F(x) — )2 + %/-s,-(x) faaxerl;
and we may choose

Vo, (X) = —(f(x) — )2 — %m,-(x) faaxerl,



We deduce the value of the velocity on the boundaries of D,
and D5

Va(X) = —(f(x) - cr2(x))?

+(f(X) — C;34(X))2 — VKD, (X) fa.a. x € 9Dy,
Va(X) = —(f(x) - c1a(x))?

+(f(x) — c24(X))? — vrp,(x)  fa.a. x € dDy,

where ¢; is the piecewise constant function

ci(x) = ¢iftxerl;
ci(x) = ¢iftxerly

and kp,, xp, are the curvatures of Dy and D, respectively.



Phase Il - Algorithm

step 1 Initially choose ¢ and ¢3 as signed distances to
QU QY and Q% U QY where Q9,i € {1,...m} come
from phase I; set k = 0.

step 2 Compute normal velocities v, 1 and vn2 for ¢k and
5. If [lvi ]| = 0 and ||v%,|| = 0 then stop; otherwise
contmue W|th 3.

step 3 Extend v/, and vy, to Q. Update ¢ and ¢f by a
time step in Hamllton Jacobi equation.

step 4 Update domains Q¥ i € {1,...m} and put
k =k + 1. Go to step 2.



Table 1
It. topo | Time topo | It. shape | Time shape

3902 11 0.11s 6 11.28s

Figure: Original (ul), image after topo. step (ur), segmentation (ll) /
with contour in green (Ir).



size It. topo | Time topo | It. shape | Time shape

315 x 315 14 0.09s 3 4.05s

Figure: Original image (upper left), image after topology step (upper
right), segmentation without contour (lower left), segmentation with
contour (lower right)



size It. topo | Time topo | It. shape | Time shape

331 x 331 35 0.26 6 17.83s
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Figure: Original image (upper left), image after topology step (upper
right), segmentation without contour (lower left), segmentation with
contour (lower right)



Figure: 2D slices of original (upper) and after topology optim. (lower).

size It. topo | Time topo
256 x 208 x 70 30 4.93




The Osher-He Experience

Original Our result



The Osher-He Experience

Initialization Result by Osher / He
- ®
@ B



Segmentation AND modulation recovery

» Surface coils

exhibit high sensitivity o near center of coil which falls off away.
» Modulated image




Segmentation AND modulation recovery

» Werequireue [0,1]and 0 <o <5in Q.

» This motivates the following approximation:
J(u,T,0) = /(a—1f—u)2+5/ |v20|2+u/ VU + v (1)
Q Q Q\r

—i—n/ﬂmax(u— 1,0)2—)\/Q(In(0)+|n(5—a)),

with k > 0 and A > 0 (driven to 0 over iterations).
» Solution process: nonlinear Gauss-Seidel, i.e., minimize w.r.t.
one variable while keeping the respective other one fixed.

» For u fixed: Newton-Multigrid solver for fourth order PDE

A A
2 2\, AN A ;
(0A% + U)o o + G — o) uf inQ,

5',7,70 = an.,-J = anAU = 0 on r,



Segmentation AND modulation recovery

» For o fixed: TOPSHAPE with necessary optimality conditions for
¢, i € {1,..,m}, given by

f
2k|Q;lmax(c; —1,0) +/ 2 (c,- - ) =
Q; a

This leads to the two cases
1 f.
C,':|Q,'| —ifeg <1,
Q0

and

KA Q] fQ,. 5
14k

Note that in both situations ¢; > 0 for all .

i = if ¢; > 1.



Segmentation AND modulation recovery

> If |Q;] # 0, we get

Tilx) = (g(())((z)) —c,-) (f(XO) 6 max(g—1.0) 259 2)
)

f(Xo ' f(Xo o o
(O’(Xo) — C/> (O’(Xo) Ci maX(C/ 1,0) (K T |QI|)2

When |Q;| = 0 we obtain

Tixo) — (f(Xo) Ci)(f(xo) & — max(c — 1,0) 2k|Q;|

a(x0) o(X0)




Segmentation AND modulation recovery
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