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Navigating the Protein Fithess Landscape

. . ey L S R N
» Want to engineer proteins _’," § ‘,‘ 4’9’ "’ ¥

with desirable properties = Y— — g
¢ Vaccine design * ey
¢ Contrast agents

‘ LN ]

o Need experiments!

¢ Sequence space is vast

How can we design experiments to find good sequences?



Designing P450s chimeras
[Romero, K, Arnold PNAS ‘13]
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Protein Fitness Landscape

>
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X
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How can we experiment to learn and optimize thermostability? 5

Thermostability




Automatic Machine Learning
[Cf. Snoek et al’12; Google Vizier, Golovin et al "17]

>

Validation Performance
X

How can we automatically tune model & hyperparameters?




Explore-exploit in Recommendation
[cf Li et al‘10, Vanchinathan et al ‘14]

>

Relevance (CTR)
X

g u o e it e

Economics Politics Sport

How can we recommend to learn and optimize relevance?




Exploration—Exploitation Tradeoffs

Numerous applications require trading
experimentation (exploration) and optimization (exploitation)

—_—
(Theory)
¢ Recommender systems boinakoinad [sisu

engadge?

¢ Experimental design

i

e Online advertising
¢ Automatic ML
¢ Robotic control

Often:

e Halternatives >> #trials

e experiments are noisy & expensive

e similar alternatives have similar performance

Can one exploit this regularity?



Outline

o Motivating Examples and Problem Setting
o Review of Gaussian processes

o GP Bandits and Bayesian optimization

o More complex settings

¢ Parallelization

¢ Multi-task / contextual optimization

¢ Level sets

e Multi-objective optimization

¢ High dimensions

¢ Constraints and “Safe” Bayesian optimization
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k-armed

A

(stochastic) bandits

= ™

-

.........

Sequentially allocate T tokens to k “arms” of a slot machine
Each time: pick arm i; get iid payoff with (unknown) mean f,

Want to maximize the expected cumulative reward
Classical model of exploration — exploitation tradeoff

e Has been extensively studied (since Robbins ‘52)

¢ In same cases, can calculate optimal allocation (Gittins ~ 79)

e Tight bounds on cumulative regret (Auer et al ‘02, ...)

e Very successful in applications (e.g., drug trials, scheduling, ...)

Typically assume every “arm” is tried multiple times



o

o

co-grmed bandits

?PPTFVTP?TTT FTV
£, £ .. f

In many domains, number of choices is very large
e Space of parameters for possible lab experiments or NN architectures

¢ Recommender systems
e Policy parameters for robotic control

Can’t even try every choice once!
Classical algorithms don’t scale, and guarantees become useless

Substantial work on “structured” bandits (linear, Lipschitz,
combinatorial, networked, etc.)
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Another viewpoint:
Bayesian Optimization

= f(wt) + €

- Expected/most prob. improvement

c

_8 g , Information

B gain about maximum

g_ % , Knowledge gradient

O ¢ Predictive Entropy Search

< TruvaR
Max Value

Entropy Search
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Bandits vs Bayesian optimization

(Stochastic) Bandits Bayesian optimization
¢ Finite e Sample Bayesian (GP) model of f acc. to
Expected Improvement
Linear objectives Most Probable Improvement

Information gain about maximum
Lipschitz objectives
Knowledge gradient

¢ Strong theory e Little theory
¢ Not as , flexible” ¢ Highly configurable
¢ (Often) Frequentist ¢ Bayesian
\‘ Contextual, dueling, ... e Parallel, multi-fidelity, &
Y

Combine insights to get best of both worlds

14



Learning to optimize

o Given: Set of possible inputs D; noisy black-box access
to unknown function fe F, f:D —R

o Task: Choose inputs z1,...,z7 fromD
After each selection, observe y, = f(x,) + €,

T

Cumulative regret: R, — Z(maxf(az) _ f(fl?t))
=1 =
Sublinear if Rr/T — 0

Simple regret: St = te?ll,i?T} (mC?X f(iU) — f(wt))

Note that St < Rp/T



Brief review of
Gaussian Processes

16



(Gaussian processes
[c.f. Rasmussen & Williams 2006]

Likelihood: P(data | f)

| =>» Posterior: P(f | data)
f(x)A Prior P(f) _unlikely f(x)A
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Predictive uncertainty + tractable inference
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Gaussian Processes

Normal dist.  Multivariate normal Gaussian process
(1-D Gaussian) (n-D Gaussian) (e=-D Gaussian)

o Gaussian process (GP) = normal distribution over functions
o Finite marginals are multivariate Gaussians
o Closed form formulae for Bayesian posterior update exist

» Parameterized by covariance function K(x,x *) = Cov(f(x),f(x ’))
18



(Gaussian process

A Gaussian Process (GP) is an

(infinite) set of random variables, indexed by some set X
i.e., for each x in X there’s a random variable Y,

There exists functions : X - R K: X x X — R
suchthatforall AC X, A={xy,...,x1}

it holds that
Ya=1[Ye,, ...,V ] ~N(ua,Saa)
where
’C(-’L’l,fljl) }C<$1,$2) “ee ,C(ZCl,ZUiq;) /ZE:;;;\
2AA = : : = :
Kleg,z1) Klzg,2s) ... Klrg,2e) \/1,(:.1:;\,))

K is called kernel (covariance) function

i is called mean function "



Predictive confidence in GPs
f(x)4 t f(x")

. P(Fix’))
Typically, only care about marginals, i.e.,

P(f(z)) = N(f(x); pe(z), 07 (2))

Parameterized by covariance function K(x,x *) = Cov(f(x),f(x ’))

20



Kernel functions

o K must be symmetric
K(x,x" ) = K(x ,x) for all x, x’
o K must be positive definite
For all A: 2,, is positive definite matrix

o Kernel function K: assumptions about correlation!

o Decades of research in ML on kernels for different
data types (vectors, graphs, sets, sequences, ...)

21



Kernel functions: Examples

¢ Squared exponential kernel

K(x,x" ) = exp(-(x-x" )2/h?) /\

“Distance [xx |
Samples from P(f)

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Bandwidth h=.3 Bandwidth h=.1



Kernel functions: Examples

o Exponential kernel
K(x,x") = exp(-|x-x" | /h)

Distance x|

2l
i i
15
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Kernel functions: Examples

o Linear kernel:
K(x,x" ) =xT x’

1.6

1.4}

1.2L

1L

0.8}

0.6}

041

021

0 I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

o Corresponds to (Bayesian) linear regression!
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Kernel functions: Examples

o Linear kernel with features:
K(x,x" ) = ®(x)TD(x)

E.g., D(x) = [0,x,x?] E.g., D(x) = sin(x)

0.5¢ i
(S i

25 [ [ [ [ [ [ I I I
-2.5 0 01 02 03 04 05 06 07 08 09 1

[ [ [ I I [ [ [ [
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Application: Protein Engineering
[with Romero, Arnold, PNAS ‘13]

(*C)
g8 8

&

Predicted T,

8 & 8
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Making predictions with GPs

o Suppose  P(f)=GP(f;u, k)
e; ~ N(0,0°)

and we observe y; = f(X;) + €
o A={x1,...,X,}
e Then the posterior is also a GP:

P(f ‘ Xla---axnayla---ayn) :GP(f;u’,k’)
W (x) = p(x) + B, a(Baa +0°D) " (ya — pa)
]C/(X, X/) — k(X,X’) — Zm,A(EAA -+ 0‘21)_121475,3/

o Thus, predictive distribution for some test point:
PFX) [ X1, Xk s ) = NF); 1 (%), B (%, %))

27



GP Inference lllustration

)

. \
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Where do we get the kernel
(parameters) from?

o Prior knowledge

¢ Empirical Bayes (maximizing marginal likelihood)

¢ Integrating over hyperparameters

¢ Online hyperparameter adaptation (= JMLR 2019)

o For now, assume kernel is given

29



Active Learning and
Optimization with
Gaussian Processes



How do we quantify utility? Information gain

¢ Set D of points to evaluate f at
¢ Find S € D maximizing information gain:

F(S) = H(f) ~ H(f | ys) = I(f:ys) = 3 log|I + 055

H_I

Uncertainty Off Uncertainty Off NOISV ObS.
before evaluation after evaluation at locations S

4l i 4l
3l i 3l
2+ i 2L
1F 1k
D\—,//_J'-\ Or
-1 4 -1k
-2 B -2
-3k 4 3k

prior high infogain low infogain 31



Optimizing mutual information

o Mutual information F(S) is NP-hard to optimize
» Simple strategy: Greedy algorithm. For Sy = {x1,..., 24}

Tt41 = argmax F(S5:U{z})
TE

eD
— arg 1max 0'2 \
2) wep xlSt Constant for fixed
\ noise variance

Entropy is monotonic in variance

32



Side note: Submodularity of
Mutual Information

o Mutual information F(S) is monotone submodular:
VieD YACBCD:F(AU{:}) — F(A) > F(BU{+}) — F(B)

¢ Greedy algorithm provides constant-factor
approximation

F(sr)> (1-2) max_ F(S)

e/ SCD,|S|<T

e |l.e., uncertainty sampling is near-optimal!

33



Active Learning: Uncertainty sampling

Pick: T, = arg max o;_, ()
xeD

In active learning, we reduce uncertainty everywhere
In Bayesian optimization, only care about maximum!

f(x)l'

Wastes samples by exploring f everywhere!

34



Exploiting only

Pick: Ty = argmax iy 1(x)

xeD
f(x)| '

Gets stuck in local optima!

35



Bayesian Optimization

It—>?Q%—> yt:f(mt)+€t

Expected/most prob. improvement

S
= 5 , Information
20 gain about maximum
g‘ % , Knowledge gradient
é(') - Predictive Entropy Search
TruVaR
Max Value

Entropy Search

36



Gaussian process bandit optimization

f(x)1—

Goal: Pick inputs Xq,X,,... .t.
Z 2)] — 0

Average regret | |
= X

How should we pick samples to minimize our regret?

37



Avoiding unnecessary samples

f(x) "

— Best lower
bound

Key insight: Never need to sample where upper

confidence limit < best lower bound! 15



Upper confidence sampling (GP-UCB)

Pick input that maximizes upper confidence bound:

Ty = argmax pi;—1(x) + Bror—1(x)

xeD
A \
| How should
we choose [3,?

f(x)

Naturally trades off exploration and exploitation

Does not waste samples (with high probability)



Information capacity of GPs

o Will see that regret bounds depend on how quickly we can
gain information

» Mathematically: ~v7 = max I(f:ya
r = max I(f;ya)

I(f;ya) =H(f)—H(f|ya)
-

Optimized in
active learning/ YT
uncertainty
sampling

A

> T

40



Performance of GP-UCB

Theorem
If we choose B, = O(log t), then

= i[f(x*) — f(a)] = 0" (/)

Hereby T = ﬁlé}% I(f'f yA)

Information capac!ty/ DOF ...

41



High-level argument

» True function contained in confidence bounds w.h.p.

» Instantaneous regret bounded by confidence interval
at UCB action

» Bound cumulative regret by sum of (scaled)
squared predictive variances at evaluation points

o Latter is bounded by the log determinant
(= mutual information) of selected points 2



Performance of GP-UCB

Theorem
If we choose B; = O(log t), then

—Z t)]:O*( WTT>

dereby VT = ﬁ@;l (ny 4)

Information capau’ty/ DOF ...

The slower y; grows, the easier is f to learn
Key question: How quickly does y; grow??

43



Growth of information gain

Hard:
550! little/no
Independent C e
o diminishing
- Matern (v = 2.5) returns
= B
@) i
= 150 Squareql
= exponential
m 100_ N
50¢ Linear (d=4) strong
. . . / | diminishing

10 20 30 40 50
T

Can exploit submodularity of mutual info.
to compute tight data-dependent bounds .

returns




Bounds for common kernels

Theorem: For the following kernels, we have:

o Linear: yp = O(dlogT); % = 0" (%)

» Squared-exponential: vy = O((log T)d+1);
Rr _ o ((bgT)d“)

T VT
d(d+1)
o Matérn withy > 2, yp = O(T2v+4@+D log T');
% =0k (T 2Vv++dd((d jjrll)) - 1)

Smoothness of f helps battle curse of dimensionality!

Our bounds crucially rely on submodularity of YT

45



Robustness?

¢ So far, have assumed
¢ objective f is drawn from a known GP prior

e Noise is iid Gaussian with known variance

e Robustness w.r.t. these assumptions??

46



Reproducing Kernel Hilbert Spaces (RKHS)

o Given kernel k£ : D x D — R, consider functions

= Zaik(xi,az) where «; € R,z; € D
with inner product (f, g Z afagk

and norm |1/ = /{f. /)

e A Reproducing Kernel Hilbert Space (RKHS) is
Hy(D)={f:D =R, f(x = X aikai,a) st |l < oo}

47



Frequentist confidence intervals for GPs?

Theorem: |w Srinivas, Kakade, Seeger’10;
Want: cf Abbasi-Yadkori’12]

Pr(Vm,t : f(z) € [pe(z) t(az)]) >1—46
/ 1 ?\/\‘/\
o)es'esz) |

“Complexity” of f = max I(f;ya)
(RKHS norm) \|A|_ y

Y

Information capacity
YT
)T 48




What If fIs not from a GP?

o In practice, f may not be Gaussian

Theorem: Let f lie in the RKHS of kernel K with|| f||% < B,
and let the noise be bounded almost surely by o.
Choose 5, = O(2B + ~; log® t). Then w. high probability

Ry BryT
T0< T )

o Don’t need to know the “true prior”

o Intuitively, the bound depends on the “complexity” of
the function through its RKHS norm




Side note: Lower Bounds?

o Upper bounds tight for Gaussian kernel
o Open whether they can be improved for Matern kernel

50



Side note: Optimizing the acquisition function
o GP-UCB requires solving the problem

Ly = al'g gleag pe—1(x) + Bror—1(z)

¢ This is generally non-convex ®

¢ In low-D, can use Lipschitz-optimization (DIRECT, etc.)

¢ In high-D, can use gradient ascent (based on random
initialization)

o More later

51



Beyond Basic BO:
More Complex Settings



Confidence based sampling
¢ Key idea behind GP-UCB

¢ Utilize high-probability bounds on function value to
constrain sampling

¢ Information-capacity bounds problem complexity

o Can generalize to more complex settings
¢ Parallelizing exploration tradeoffs
e Context / Side-information
¢ Multi-objective optimization
¢ Level-set identification
e High-dimensions
e Constraints

53



Beyond Basic BO:

Parallel Exploration/
Delayed Feedback



Parallelizing exploration—exploitation tradeoffs
[cf Azimi et al ‘10; Ginsbourger et al '10]

o Basic algorithm is fully sequential
e Needs ¥y1,...,Yy: tochoose =41

e How should we choose the batch?
e How much “informational speedup” can we get?

55



Naive approaches

o Pick a single query and run this experiment B times?

¢ Intuitively seems like we could do better

o Pick top B queries in GP-UCB criterion?

e Problem: likely close to one another, no diversity

fixi

56



Batch Mode GP Optimization
[cf. “Kriging Believer”, Ginsbourger et al ‘10]

Tt = argr;leag{utb— () + 8o (x)}

» Update o¢;_;(x) after each selection
o This scheme anticipates information we are gaining
e Must be careful to avoid overconfidence!




GP-BUCB mode guarantees

Theorem
For sufficiently regular kernels, can choose
B = O(log(T))

and nevertheless obtain regret

Rh2tch — c'%‘d, K) - R:" 4+ O(polylog(T, B))

Independent of B and T!

=>» Near-linear speedup in convergence rate!

58



0.3r

Optimality Gap
o
o

Simulation Results

Repeat 5 times

1| Eg—
L

GP-BUCB (B=5)

0.1
0.05
O L L e O —
0 20 40 60 80 100

Time (Actions)
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Application: Protein Engineering

e Task: Design cytochrome P450s chimeras
o Action:  Experiment with protein sequence
¢ Feedback: Thermostability T,

o Kernel:  Structure-based kernel function
)y 33
A S
& ksg”
dw2 d=5 .8
g 9
'@.@ d=6 o

0 45 50 S5 60 65
A | G
ctua 50( C) 60



T”(°C)
8 & 8 8 8 8 d

Wet-lab results
[w Romero, Arnold PNAS "13]

parents library library UCBr1 UCBr2 UCBr3 UCBrd LCB UCBrS UCBr6
sample predicted

¢ ldentification of new thermostable P450s chimera
¢ 5.3C more stable than best published sequence!

61




Google Vizier: A Service for Black-Box Optimization

b - ':-‘;'-, Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, D. Sculley

“..., Vizier defaults to using Batched Gaussian Process Bandits [8]"

“Vizier is used across Google to optimize hyperparameters of
machine learning models, both for research and production models.
Our implementation scales to service the entire hyperparameter
tuning workload across Alphabet, which is extensive."

“Vizier has made notable improvements to production
models underlying many Google products, resulting in
measurably better user experiences for over a billion people.”

62



Other strategies

o Multi-point expected improvement
¢ Simulation matching
o DPP sampling

63



Beyond Basic BO:

Multi-task/
Contextual BO



Contextual GP bandits

In each round t do:

Observe context 2y € /
’ t Modeled as GP

¢ Observe Yt — f(CCt, Zt) + €4
e Incur regret T+ — Sup f(x, Zt) — f(xty Zt)
X
T
o Cumulative contextual regret R = g T
t=1

» Obtaining sublinear regret R, /T — 0 requires

learning optimal mapping from contexts to actions!
65




CGP-UCB

Pick input that maximizes upper confidence bound
at current context

Ty = argmax iy —1(x, z¢) + Beor—1(x, 2¢)
rxeD

‘:‘;\
SO L
SSOSoSS
S
AN “““0“’:’“ =/
S ==
NN

Contexts Actions




Where do we get the kernel from?

In principle, can choose any kernelon [) « /

Suppose we have kernels kp (x, ;13’) and k7 (2, z/)

Can compose to kernel on [) X / through
o Multiplication: k((x7 2), (x/, Z’)) = kp(x, ;1;/) -k (2, Z’)
¢ Addition: ]{((gj7 z), (x/7 z/)) = kD(ZIZ, ZC/) + kz(Z, Z/)

67



Examples

Payoffs

Contexts Actions Contexts o

Product Addition

Actions

Can bound the information gain for composite kernels
based on that of constituent kernels

68



Performance of CGP-UCB

Theorem
If we choose B, = O(log t), then

%Z Sy zt) (3375,275)]:0*< V?T)

t=1

Hereb — max [
ey 7 = max 1(f:ya)

Thus, information gain even bounds
stronger notion of contextual regret!

69



Expected Clicks

Book recommendation results

| |

CGP-UCB
UCB1 |

Previous

18 24
Time (days)

30 36 42



Beyond Basic BO:

Multiple objectives



Multi-objective performance optimization

o Protein structure optimization
¢ Trade binding affinity & thermostability

o Empirical algorithmics
¢ Trade performance & memory footprint

o Design of special purpose hardware
¢ Trade area, throughput, energy, runtime ...

o Evaluation can be costly and noisy

73



High-level synthesis for high-performance computing

Throughput Thro ugh P ut
A
. °° Latency
High-level == HLS =» © = Best
specification o® Area

Area Energy
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Exploring the Desigh Space

Sorting Networks
Throughput n = 256

10 Pareto
optimal

4 5 6 7 8 9 10 11 12

75



Goal

Sample as few designs as possible to predict Pareto optimal designs

Throughput

10

76



Running the Algorithm: Modeling

A
Throughput Confidence regions

(from GP model)

|

Area



Running the Algorithm: Classification

Throughput

A

Pareto-optimal

- not Pareto-optimal

unclassified
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Running the Algorithm: Sampling

A

Throughput

‘ -
®
next evaluation

Area
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Running the Algorithm: Evaluation

A

Throughput
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Running the Algorithm: Modeling

A
Throughput
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Running the Algorithm: Classification

Throughput

A

unclassified
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Running the Algorithm: Tolerances

Throughput

A

e-classification

Area
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Running the Algorithm: Termination

A
Throughput

Area
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The PAL Algorithm

Input: design space F; GP prior po.i, 00, k; for all 1 < <
n; €; By fort € N
Output predicted-Pareto set P
=0, No =0,Up = E {classification sets}
So = () {evaluated set}
Ro(x) =R" forallz € £
t=20
repeat

Modeling
Obtain p,(x) and o(x) for all x € F
{p,(x) = y(x) and o(x) =0 for all x € S;}
Ri(x) = Rit—1(x) N Qu,.0:.8,.: (x) forall z € £
Classtfication
P =PFP—1, Nt = N1, U = U
for all x € U; do
if there is no &’ # x such that min(R:(x)) + € <
max(R:(x’)) — € then
Pt = Pt U {w}, Ut = Ut \ {CE}
else if there exists ' # « such that
max(R:(x)) — € <X max(R:(z')) + € then
Nt = Nt U {CB}, Ut = Ut \ {33}
end if
end for

1: P,
2:
3:
4:
5:
6:
7

Sampling
Find wt(:c) for all c (Ut U f‘)t) \ St
Choose @y+1 = arg max, ¢ 7,up, )\ s, 1Wt(T) }
t=t+1

- Sample y,(x:) = f(x:) + v¢

23: until U; = ()

24: P = Pt

85



Theoretical Guarantee

Given a target error n, PAL is guaranteed to
stop in less than T iterations:

Theorem 1. Let § € (0,1). Running PAL with
B: = 2log(n|E|m?t?/(66)), the following holds with
probability 1 — 4.

To achieve a maximum hypervolume error of n, it is
sufficient to choose

n(n — 1)!
2nan—1 "’

where a = maxXgep1<i<n{\/Biki(x, x)}.

In this case, the algorithm terminates after at most T
iterations, where T' is the smallest number satisfying

T S na™ 1
C1B8ryr. — nin—1)!

Here, Ch7 = 8/log(1l — 07\ and vyr depends on the
type of kernel used.

€E =

Same 7|



Experiments: Data Sets

Network on Chip

NoC (|E| =259)

Sorting networks

SNW (|E| =206)

16

3.5 Pareto frontier

14

12

10 3.0

log(f2)

2.5

2.0

log(f,) log (/1)

0.14 0 2 4 6 8§ 10 12 14 16

log(f2)

5.0

4.5

3.5

Marcela Zuluaga, Andreas Krause, Peter Milder, Markus Puschel.

Streaming Sorting Networks. LCTES 2012

Oscar Almer, Nigel Topham, Bjorn Franke.

Compiler settings

SW-LLVM (| E| =1023)

0.124

0.126

Pareto frontier

0.128
log(f1)

0.130

A Learning- Based Approach to the Automated Design of MP-SoC Networks. ARCS 2011

N. Siegmund, S. Kolesnikov, C. Kastner, S. Apel, D. Batory, M. Rosenmuller, and G. Saake

Predicting Performance via Automated Feature-Interaction Detection. ICSI 2012

0.132
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Percentage Error: &1

== N W W
o o O o O ot O >

Experimental results

SNW (|E| =206) NoC (|E| =259)

ot

S

ParEGO ParEGO

w

PAL
0 \%::t
0 20 40 60 80 100 120 14C 0 20 40 60 80 100
Evaluations Evaluations

PAL

/.__.
Percentage Error: £1;
" )
Percentage Error: £1

e =0.001% o ¢=10.004% o €=0.016% € = 0.064%
° e = 0.002% ° e = 0.008% e =0.032% e =0.128%

SW-LLVM (|E| =1023)

ParEGO
PAL
[ — W
\\_“ﬁ—'
20 40 60 80 100 120 140
Evaluations
° e = 0.256%
o €=0512%
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Beyond Basic BO:

Constraints and
“Safe” Exploration



Therapeutic Spinal Cord Stimulation
[w Sui, Gotovos, Burdick 15; w Desautels, Burdick ‘14]

[S. Harkema,
The Lancet, Elsevier]

90



Safe Controller Tuning 0

91



Tuning the Swiss Free Electron Laser
[with Kirschner, Mutny, Ischebeck et al "18]

The SwissFEL Building Site /

. . .

o< F PAUL SCHERRER INSTITUT

- ===
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Illustration

A+ — 7T(St, 9)

q(0) ]

Tracking max f(0) Few
performance experiments
Safety g(6) >0 Safety for all
constraint experiments
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Safe Bayesian Optimization

(Noisy) Reward
f(6) + €l

g(0:) + €
(Noisy) Constraint

Goal: m@aX f(0) s.t. g(6) >0

safety:  g(6:) > 0 for all ¢

E—

|

INMONMINN

=
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Safe optimization

f(x) 4
=g(x) | Safe seed Reachable

/ /optimum

Global
optimum

Safety threshold
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Safe optimization

f(x) 4
=g(x) | Safe seed

Z.} +-Fﬂh:|' +

Safety threshold
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Starting point: Bayesian Optimization

It—>?Q%—> yt:f(mt)+€t

Unconstrained
CC) - Expected/most prob. improvement
= O , Information
% IS gain about maximum
g- g , Knowledge gradient
éE) Y- Predictive Entropy Search
TruVaR
Max Value

Entropy Search

Constraints / Multiple Objectives
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Plausible maximizers

f(x) "

|- Best lower
bound

' ' ' '
s [Th) [ - o - [ [T} B
1

Focus exploration where
upper confidence bound > best lower bound!
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Certifying Safety

g(x)’

| Safety
threshold

Statistically certify safety where lower bound > threshold!
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First Attempt: SafeUCB

Maximize acquisition function (GP-UCB, El, ...)
over certified safe domain

=>» Gets stuck in local optima!
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SAFEOPT

[Sui, Gotovos, Burdick, K ICML'15], [Berkenkamp, Schoellig K’16]

f(x)

g(x)




SAFEOPT Guarantees

Theorem (informal):

Under suitable conditions on the kernel and on f,g,
there exists a function T(g,6) such that for any >0 and
6>0, it holds with probability at least 1-6 that

1) SAFEOPT never makes an unsafe decision

2) After at most T(g,0) iterations, it found an
e-optimal reachable point

82

: . - log® 1
For Gaussian kernel: T(s,8) € O ((HfHk + lglls) og /5>
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Sate controller tuning
[with Berkenkamp, Schoellig ICRA "16]




Transfer learning / handling context
[cf K & Ong NIPS‘11; Berkenkamp, Schoéllig, K “16]

&

unknown

[\

mal})(f(x' ) s.t. gi(x. )>0forze{l,...,m}
XE

x: chosen by algorithm
Z: given as input (context)
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Optimization at 1 m/s
[with Berkenkamp, Schoellig ICRA '16]




Knowledge transfer to higher speeds

“0s 00 0%
x-position [m]

10

15

damping ratio
< < -
.- o ke

=
e

00 02 04 06 08 10 12
time constant T
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Exploration: Virtual vs Physical Q@

Expensive, but accurate Cheap, but biased

f(x) f(z) = f(z) + ()
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Multiple sources of information
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Exploration: Virtual vs Physical

Performance improvement

Starting controller Learned controller

51% cost reductuon

/ real expenments
25 simulations
Save 78% experiments




The Swiss Free Electron Laser

The SwissFEL Building Site /

PAUL SCHERRER INSTITUT

= CEE
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Tuning SwissFEL

[w Kirschner, Mutny, Ischebeck et al’18]

[c.f., MclIntire, Ratner, Ermon ~ 16] 111



Challenge: Safety Constraints

Vacuum Chamber of
Undulator Module

Beam Loss Monitor

Radiation damage leads to loss of the magnetization

=» Undulators need to be replaced
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Challenge: Heteroscedastic Noise

Relative noise level on log-scale

0.8
H 0.225
S ai . 0.150

0.6 4

- 0.075
0.5 - - 0.000
0.4 - -0.075

_ XX - ~0.150
-0.225
0-2 L] L] L] A L]

0.2 0.3 0.4 0.5 0.6 0.7 0.8

o Ag(x
=» Information Directed Sampling  Xt+1 = argmin Itt((:)c))

X

[w Kirschner ‘18, cf., Russo & van Roy "14] 113




Example: Heteroscedastic bandits

homoscedastic heteroscedastic
yr = f(x¢) + & yr = f(x¢) + (%)
40 - 150 o
----- UCB
e . —— W-UCB
P IDS-UCB
30 = el
z 100 A
/;f//
& 204 7 > Better estimation
| 50 ] ,/// v = = =
10 9 Better exploration
— UCB -
IDS
0 | | | | | 0 [ | | | |
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
T T

IDS obtains significantly lower regret than UCB
in case of heteroscedastic noise
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Application: Exploration in Deep RL js=*

Heteroscedasticity is everywhere in reinforcement learning
¢ Heteroscedastic reward functions
¢ Stochasticity in the transition model
¢ Aliasing due to partial observability
¢ Evolving TD targets

We propose IDS as a novel criterion for exploration in RL

¢ Bayesian deep learning to estimate the return distribution
(Categorical DQN )

¢ Extract confidence intervals to estimate the instantaneous regret
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IDS for Deep RL on Atari Games ot

[with Nikolov, Kirschner, Berkenkamp, ICLR 2019]

300%
2419, 293%
250% 224%
200% 176%
140% 0%
150% J0gy, 119% 126% °
(0]
100%
53%
50% I
0%
& Qo°$ & c°0$ S & \@Q% s & ¢
g & 9 N Q-
S & o
$o\ BN QS
X
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More Challenges

» Safety constraints crucial

o Heteroscedastic noise

¢ Need to contextualize to user requirements

¢ Simulations slower than physical experiment

# Variable dimensionality (2-100s)

¢ “Movement constraints” for parameter changes

9 ...
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Tuning SwissFEL
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Performance
[with Kirschner, Mutny, Hiller, Ischebeck ‘18]
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Beyond Basic BO:

Outlook & Further topics



Outlook: Further topics

o Exploiting gradient information

¢ Heteroscedastic noise

o Dealing with high dimensions

o Efficient kernel approximations and beyond GPs
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Exploiting gradient information

o In some applications, (noisy) gradient information
may be available

o These correspond to linear observations
— posterior is still a Gaussian process

¢ May have to be careful in choice of acquisition
function
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Heteroscedastic Noise
Var(y(x)) = g(x)

Relative noise level on log-scale

0.8
I 0.225
T +0.150

0.6 -

- 0.075
0.5+ - 0.000

0.4 - - -0.075

— - - -0.150
-0.225
0-2 L] . L] La Ll

0.2 0.3 0.4 0.5 0.6 0.7 0.8

=» Information Directed Sampling
[w Kirschner ‘18, cf., Russo & van Roy "14]
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High-dimensions

Statistical and computational challenges = need assumptions

[z, y)

[Wang et al’13, [Kandasamy et al * 15, Rolland
Djolonga & K13, ...] et al 18, Mutny & K"18]
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LINEBO

125



Guarantees in high dimensions

¢ We develop a novel algorithm — LINEBO

¢ Solve a sequence of one-dimensional Bayesian optimization
problems on one dimensional subspaces

o For random subspaces, can guarantee simultaneously

¢ Global convergence (at Lipschitz rates, automatically
adapting to intrinsic dimension)

e Local convergence (at fast rates in case of locally strongly
convex functions)

o Can also (heuristically) use more informed directions
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Efficient kernel approximations

o Naively, predictions in GPs require Cholesky
decompositions of T x T matrices = O(T?3)

o Considerable work in efficient approximations
¢ Data-independent (Fourier features, ...)

¢ Data-dependent (pseudo-inputs, Nystrom approximation,
DNN basis functions...)

e Can provably reduce to O(T polylog(T)) for generalized
additive GPs while still yielding no regret

o Much recent work on replacing GPs with neural nets
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Conclusions

¢ Bridging bandits and Bayesian optimization

¢ Key idea: Exploit confidence bounds to constrain sampling

Parallelization, Context, Multi-objective, Level sets,
Active search and discovery, Safety constraints ...

o Performance bounds based on information capacity,
bounded via submodularity

¢ Strong performance on real-world problems

128



References

129



Abbasi-Yadkori, Y. Online Learning for Linearly Parametrized Control Problems. PhD thesis, 2012.

Abdelrahman, H., Berkenkamp, F., Poland, J., Krause, A.. Bayesian Optimization forMaximum
Power Point Tracking in Photovoltaic Power Plants. ECC 2016

Almer, O., Topham, N., & Franke, B. (2011, February). A learning-based approach to the
automated design of MPSoC networks. In ICACS (pp. 243-258). Springer, Berlin, Heidelberg.
Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2-3), 235-256.

Azimi, Javad, Alan Fern, and Xiaoli Z. Fern. "Batch bayesian optimization via simulation matching."
Advances in Neural Information Processing Systems. 2010.

Berkenkamp, F., Schoellig, A. P., & Krause, A. (2016, May). Safe controller optimization for
quadrotors with Gaussian processes. In Robotics and Automation (ICRA), 2016

Berkenkamp, F., Schoellig, A.P. and Krause, A., (2019). No-Regret Bayesian Optimization with
Unknown Hyperparameters. Journal of Machine Learning Research, 20, p.50.

Bogunovic, |., Scarlett, J., Krause, A., & Cevher, V. (2016). Truncated variance reduction: A unified
approach to Bayesian optimization and level-set estimation. NIPS

Bubeck, S., Munos, R., Stoltz, G., & Szepesvari, C. (2011). X-armed bandits. Journal of Machine
Learning Research, 12(May), 1655-1695.

Cesa-Bianchi, N., & Lugosi, G. (2012). Combinatorial bandits. Journal of Computer and System
Sciences, 78(5), 1404-1422.

Dani, V., Hayes, T. P., & Kakade, S. M. (2008). Stochastic linear optimization under bandit feedback.

Desautels, T., Krause, A., & Burdick, J. W. (2014). Parallelizing exploration-exploitation tradeoffs in
gaussian process bandit optimization. JMLR
130



Djolonga, J., Krause, A., & Cevher, V. (2013). High-dimensional gaussian process bandits. In
Advances in Neural Information Processing Systems (pp. 1025-1033).

Frazier, Peter, Warren Powell, and Savas Dayanik. "The knowledge-gradient policy for correlated
normal beliefs." INFORMS journal on Computing 21.4 (2009): 599-613.

Gardner, J. R., Kusner, M. J,, Xu, Z. E., Weinberger, K. Q., & Cunningham, J. P. (2014, June).
Bayesian Optimization with Inequality Constraints. In ICML (pp. 937-945).

Garnelo, M., Schwargz, J., Rosenbaum, D., Viola, F., Rezende, D. J., Eslami, S. M., & Teh, Y. W.
(2018). Neural processes. arXiv preprint arXiv:1807.01622.

Garnett, R., Osborne, M. A., & Hennig, P. (2013). Active learning of linear embeddings for Gaussian
processes. arXiv preprint arXiv:1310.6740.

Gelbart, M. A., Snoek, J., & Adams, R. P. (2014). Bayesian optimization with unknown constraints.
arXiv preprint arXiv:1403.5607.

Ginsbourger, D., Le Riche, R., & Carraro, L. (2010). Kriging is well-suited to parallelize optimization.
In Computational intelligence in expensive optimization problems

Gittins, J. C. (1979). Bandit processes and dynamic allocation indices. Journal of the Royal
Statistical Society. Series B (Methodological), 148-177.

Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., & Sculley, D. (2017, August). Google
vizier: A service for black-box optimization. KDD

Gotovos, A., Casati, N., Hitz, G., & Krause, A. (2013, August). Active learning for level set
estimation. In IJCAI (pp. 1344-1350).

Herbert Robbins. Some aspects of the sequential design of experiments. Bulletin of the American

Mathematical Society, 58(5):527-535, 1952.
131



Hernandez-Lobato, J. M., Gelbart, M. A., Hoffman, M. W., Adams, R. P., & Ghahramani, Z. (2015).
Predictive entropy search for bayesian optimization with unknown constraints.

Hernandez-Lobato, J. M., Hoffman, M. W., & Ghahramani, Z. (2014). Predictive entropy search for
efficient global optimization of black-box functions. NIPS

Hitz, G., Gotovos, A., Garneau, M. E., Pradalier, C., Krause, A., & Siegwart, R. Y. (2014, May). Fully
autonomous focused exploration for robotic environmental monitoring. ICRA

Jones, Donald R., Matthias Schonlau, and William J. Welch. "Efficient global optimization of
expensive black-box functions." Journal of Global optimization 13.4 (1998): 455-492.

Kandasamy, K., Schneider, J., & Pdczos, B. (2015, June). High dimensional Bayesian optimisation
and bandits via additive models. ICML

Kathuria, T., Deshpande, A., & Kohli, P. (2016). Batched gaussian process bandit optimization via
determinantal point processes. NIPS

Kirschner, J., & Krause, A. (2018). Information Directed Sampling and Bandits with Heteroscedastic
Noise. COLT

Kirschner, J., Mutny, M., Hiller, N., Ischebeck, R. and Krause, A., (2019). Adaptive and Safe Bayesian
Optimization in High Dimensions via One-Dimensional Subspaces. ICML

Kleinberg, R., Slivkins, A., & Upfal, E. (2008, May). Multi-armed bandits in metric spaces. STOC

Krause, A. & Guestrin, C. (2005). Near-optimal Nonmyopic Value of Information in Graphical
Models, Proc. Uncertainty in Artificial Intelligence (UAI)

Krause, A., & Ong, C. S. (2011). Contextual gaussian process bandit optimization. In Advances in
Neural Information Processing Systems (pp. 2447-2455).

Li, L., Chu, W., Langford, J., & Schapire, R. E. (2010, April). A contextual-bandit approach to
personalized news article recommendation. WWW 132



Lindley, D. V. (1956). On a measure of the information provided by an experiment. The Annals of
Mathematical Statistics, 986-1005.

Marco, A., Berkenkamp, F., Hennig, P., Schoellig, A. P., Krause, A., Schaal, S., & Trimpe, S. (2017,
May). Virtual vs. real: Trading off simulations and physical experiments in reinforcement learning
with Bayesian optimization. In Robotics and Automation (ICRA)

Mockus, J. "On Bayesian methods for seeking the extremum." Optimization Techniques IFIP
Technical Conference. Springer, Berlin, Heidelberg, 1975.

Mockus, J. (1989). The Bayesian approach to local optimization. In Bayesian Approach to Global
Optimization(pp. 125-156). Springer, Dordrecht.

Mutny, M. & Krause, A. (2018) Efficient High Dimensional Bayesian Optimization with Additivity
and Quadrature Fourier Features. In Neural Information Processing Systems (NIPS)

Nemhauser, G. L., Wolsey, L. A., & Fisher, M. L. (1978). An analysis of approximations for
maximizing submodular set functions—I. Mathematical programming, 14(1), 265-294.

Nikolov, N., Kirschner, J., Berkenkamp, F. & Krause A.(2019). Information-Directed Exploration
for Deep Reinforcement Learning. ICLR

Rasmussen, C. E., & Williams, C. K. (2006). Gaussian processes for machine learning. 2006. The MIT
Press, Cambridge, MA, USA, 38, 715-719.

Rolland, P., Scarlett, J., Bogunovic, I., & Cevher, V. (2018). High-Dimensional Bayesian Optimization
via Additive Models with Overlapping Groups. arXiv preprint arXiv:1802.07028.

Romero, P. A., Krause, A., & Arnold, F. H. (2013). Navigating the protein fitness landscape with
Gaussian processes. Proc. National Academy of Sciences, 110(3), E193-E201.

Rusmevichientong, P., & Tsitsiklis, J. N. (2010). Linearly parameterized bandits. Mathematics of
Operations Research, 35(2), 395-411. 133



Russo, D., & Van Roy, B. (2014). Learning to optimize via information-directed sampling. In
Advances in Neural Information Processing Systems (pp. 1583-1591).

Scarlett, J. (2018). Tight Regret Bounds for Bayesian Optimization in One Dimension. ICML
Schonlau, M. (1997). Computer experiments and global optimization.

Shabhriari, B., Swersky, K., Wang, Z., Adams, R. P., & De Freitas, N. (2016). Taking the human out of
the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1), 148-175.

Shewry, M. C., & Wynn, H. P. (1987). Maximum entropy sampling. Journal of applied statistics,
14(2), 165-170.

Siegmund, N., Kolesnikov, S. S., Kastner, C., Apel, S., Batory, D., Rosenmtller, M., & Saake, G.
(2012, June). Predicting performance via automated feature-interaction detection. ICSE
Snoek, Jasper, Hugo Larochelle, and Ryan P. Adams. (2012) "Practical bayesian optimization of
machine learning algorithms." Advances in neural information processing systems. 2012.
Springenberg, J. T., Klein, A., Falkner, S., & Hutter, F. (2016). Bayesian optimization with robust
bayesian neural networks. NIPS

Srinivas, N., Krause, A., Kakade, S. M., & Seeger, M. W. (2012). Information-theoretic regret
bounds for gaussian process optimization in the bandit setting. IEEE Transactions on Information
Theory, 58(5), 3250-3265.

Sui, Y., Gotovos, A., Burdick, J., & Krause, A. (2015, June). Safe exploration for optimization with
Gaussian processes. In International Conference on Machine Learning (pp. 997-1005).

Swersky, K., Snoek, J., & Adams, R. P. (2013). Multi-task bayesian optimization. In Advances in
neural information processing systems (pp. 2004-2012).

134



Vanchinathan, H. P., Nikolic, I., De Bona, F., & Krause, A. (2014, October). Explore-exploit in
top-n recommender systems via gaussian processes. ACM RecSys

Villemonteix, J., Vazquez, E., & Walter, E. (2009). An informational approach to the global
optimization of expensive-to-evaluate functions. Journal of Global Optimization, 44(4), 509.

Wang, Z., & Jegelka, S. (2017). Max-value entropy search for efficient Bayesian optimization.
arXiv preprint arXiv:1703.01968.

Wang, Z., Zoghi, M., Hutter, F., Matheson, D., & De Freitas, N. (2013, August). Bayesian
Optimization in High Dimensions via Random Embeddings. In lJCAI (pp. 1778-1784).

Wu, J., Poloczek, M., Wilson, A. G., & Frazier, P. (2017). Bayesian optimization with gradients.
In Advances in Neural Information Processing Systems (pp. 5267-5278).

Zuluaga, M., Krause, A., & Pischel, M. (2016). e-pal: an active learning approach to the multi-
objective optimization problem. JMLR

Zuluaga, M., Krause, A., Milder, P., & Plischel, M. (2012, June). Smart design space sampling
to predict pareto-optimal solutions. In ACM SIGPLAN Notices (Vol. 47, No. 5, pp. 119-128).

135



