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Cutting-edge physics at the end of nineteenth century

Long-time behavior of a (dilute) classical gas

Take many (say 1020) small hard balls,

bouncing against each other, in a box

Let the gas evolve according to Newton’s equations









Prediction by Maxwell and Boltzmann

The distribution function is asymptotically Gaussian

f(t, x, v) ≃ a exp
(
−|v|2

2T

)
as t → ∞



Based on two major conceptual advances

• the Boltzmann equation models the dynamics of

rarefied gases via the position-velocity density f(x, v):

∂f

∂t
+

3∑

i=1

vi
∂f

∂xi

= Q(f, f)

=

∫

R3
v∗

∫

S2

B(v − v∗, σ)
[
f(v′)f(v′

∗) − f(v)f(v∗)
]
dv∗ dσ

( + boundary conditions)

• the increase of ENTROPY (H Theorem)



1872: Boltzmann’s H Theorem

S(f) = −H(f) := −
∫

Ωx×R3
v

f(x, v) log f(x, v) dv dx

Boltzmann identifies S with the entropy of the gas

and proves that S can only increase in time

(strictly unless the gas is in a hydrodynamical state)

— an instance of the Second Law of Thermodynamics

The state of maximum entropy given the conservation of

total mass and energy is a Gaussian distribution

... and this Gaussian distribution is the only one which

prevents entropy from growing further



Plausible time-behavior of the entropy

S

Smax

If this is true, then the distribution becomes Gaussian!



Why is the H Theorem beautiful?

- Starting from a model based on reversible mechanics +

statistics, Boltzmann finds irreversibility

- This is a theorem — as opposed to a postulate

More “mathematical” reasons:

- Beautiful proof, although not perfectly rigorous

- A priori estimate on a complicated nonlinear equation

- The H functional has a statistical (microscopic)

meaning: how exceptional is the distribution function

- Gives some qualitative information about the evolution

of the (macroscopic) distribution function

These ideas are still crucial in current mathematics



Not all did appreciate this theorem!

Ostwald, Loschmidt, Zermelo, Poincaré... questioned

Boltzmann’s arguments



Not all did appreciate this theorem!

Ostwald, Loschmidt, Zermelo, Poincaré... questioned
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Mathematicians chose their side

All of us younger mathematicians stood by Boltzmann’s
side.

Arnold Sommerfeld (about a 1895 debate)

Boltzmann’s work on the principles of mechanics suggest
the problem of developing mathematically the limiting
processes (...) which lead from the atomistic view to the
laws of motion of continua.

David Hilbert (1900)

Boltzmann summarized most (but not all) of his work in
a two volume treatise Vorlesungen über Gastheorie. This
is one of the greatest books in the history of exact
sciences and the reader is strongly advised to consult it.

Mark Kac (1959)



Three remarkable features of the H functional/Theorem

1) A priori estimate on a complicated nonlinear equation

2) Statistical (microscopic) meaning: how exceptional is

the distribution function

3) Qualitative information about the evolution of the

(macroscopic) distribution function



The H Theorem as an a priori estimate

Consider a solution of the Boltzmann equation

∂f

∂t
+ v · ∇xf = Q(f, f)

If H is finite at initial time, it will remain so at later

times

Moreover, the amount of produced entropy is a priori

controlled

H(f(t)) +

∫ t

0

∫
EP (f(s, x)) dx ds ≤ H(f(0))

These are two a priori estimates!



Importance of the entropy a priori estimates

Finiteness of the entropy is a weak and general way to

prevent concentration (“clustering”).

First important use : Arkeryd (1972) for the spatially

homogeneous Boltzmann equation.

Both estimates are crucial in the DiPerna–Lions stability

theorem (1989): Entropy, entropy production and energy

bounds guarantee that a limit of solutions of the BE is a

solution of the BE

Nowadays entropy and entropy production estimates

(robust and physically significant) are being used

systematically for hundreds of problems in probability

and partial differential equations



Example (Alexandre, Desvillettes, V, Wennberg, 2000)

Regularizing effects of long-range interaction can be seen

on the entropy production

collision kernel B = |v − v∗|γ b(cos θ),

b(cos θ) sin θ ≃ θ−(1+ν), 0 < ν < 2

(force like r−s =⇒ ν = 2/(s − 1))

∥∥∥(−∆v)
ν/4

√
f
∥∥∥

2

L2
loc

≤ C
(Z

f dv,

Z

f |v|2 dv, H(f)
) [

EP (f) +

∫
f(1 + |v|2) dv

]



Three remarkable features (continued)

1) A priori estimate on a complicated nonlinear equation

2) Statistical (microscopic) meaning: how exceptional is

the distribution function

3) Qualitative information about the evolution of the

(macroscopic) distribution function



The content of the H functional

Mysterious and famous, also appears

in Shannon’s theory of information

In Shannon’s own words:

I thought of calling it ‘information’. But the word was overly used,

so I decided to call it ‘uncertainty’. When I discussed it with John

von Neumann, he had a better idea: (...) “You should call it

entropy, for two reasons. In first place your uncertainty has been

used in statistical mechanics under that name, so it already has a

name. In second place, and more important, no one knows what

entropy really is, so in a debate you will always have the

advantage.”



Information theory

The Shannon–Boltzmann entropy S = −
∫

f log f

quantifies how much information there is in a “random”

signal, or a language.

Hµ(ν) =

∫
ρ log ρ dµ; ν = ρ µ.



Microscopic meaning of the entropy functional

Measures the volume of microstates associated,

to some degree of accuracy in macroscopic observables,

to a given macroscopic configuration (observable

distribution function)

=⇒ How exceptional is the observed configuration?

Boltzmann’s formula

S = k log W





−→ How to go from S = k log W to S = −
∫

f log f ?

Famous computation by Boltzmann

N particles in k boxes

f1, . . . , fk some (rational) frequencies;
∑

fj = 1

Nj = number of particles in box #j

ΩN(f) = number of configurations such that Nj/N = fj

Then as N → ∞

#ΩN(f1, . . . , fk) ∼ e−N
P

fj log fj

1

N
log #ΩN(f1, . . . , fk) ≃ −

∑
fj log fj



Sanov’s theorem

A mathematical translation of Boltzmann’s intuition

x1, . . . , xn, . . . (“microscopic variables”) independent with

law µ;

µ̂N :=
1

N

N∑

i=1

δxi
(random measure, “macroscopically

observable”)

What measure will we observe??

Fuzzy writing: P [µ̂N ≃ ν] ∼ e−NHµ(ν)

Rigorous writing: Hµ(ν) = lim
k→∞

lim sup
ε→0

lim sup
N→∞

− 1

N
log Pµ⊗N

[


∀j ≤ k,
˛

˛

˛

ϕj(x1) + . . . + ϕj(xN )

N
−

Z

ϕj dν
˛

˛

˛
< ε

ff
]



Voiculescu’s adaptation of Boltzmann’s idea

Recall: Von Neumann algebras

Initial motivations: Quantum mechanics, group

representation theory

H a Hilbert space

B(H): bounded operators on H, with operator norm

Von Neumann algebra A: a sub-algebra of B(H),

- containing I

- stable by A → A∗

- closed for the weak topology (w.r.t. A → 〈Aξ, η〉)

The classification of VN algebras is still an active topic

with famous unsolved basic problems



States

Type II1 factor := infinite-dimensional VN algebra with

trivial center and a tracial state = linear form τ s.t.

τ(A∗A) ≥ 0 (positivity)

τ(I) = 1 (unit mass)

τ(AB) = τ(BA)

(A, τ): noncommutative probability space

Noncommutative distribution functions

Let A1, . . . , An be self-adjoint in (A, τ).

law(A1, . . . , An) : the collection of all traces of all

(noncommutative) polynomials of A1, . . . , An



Noncommutative probability spaces as “macroscopic” limits

X
(N)
1 , . . . , X

(N)
n random N × N matrices

τ(P (A1, . . . , An)) := lim
N→∞

1

N
E tr P (X

(N)
1 , . . . , X(N)

n )

may define a noncommutative probability space.



Voiculescu’s entropy

Think of τ = law(A1, . . . , An) as the observable limit of a

family of “microscopic systems” = large matrices

Ω(N, ε, k) :=
{

(X1, . . . , Xn), N × N Hermitian; ∀P polynomial of degree ≤ k,

∣∣∣∣
1

N
tr P (X1, . . . , Xn) − τ(P (A1, . . . , An))

∣∣∣∣ < ε

}

χ(τ) := lim
k→∞

lim sup
ε→0

lim sup
N→∞

[
1

N2
log vol(Ω(N, ε, k)) − n

2
log N

]



Quotation (2004):

National Academy of Sciences – USA: Award in

Mathematics: A prize of $5,000 awarded every four years

for excellence in published mathematical research goes to

Dan Virgil Voiculescu, professor, department of

mathematics, University of California, Berkeley.

Voiculescu was chosen “for the theory of free probability,

in particular, using random matrices and a new concept

of entropy to solve several hitherto intractable problems

in von Neumann algebras.”



Three remarkable features (continued)

1) A priori estimate on a complicated nonlinear equation

2) Statistical (microscopic) meaning: how exceptional is

the distribution function

3) Qualitative information about the evolution of the

(macroscopic) distribution function



The H Theorem is the main “explanation” for the

hydrodynamic approximation of the Boltzmann equation

In a regime where there are many collisions per unit of

time, finiteness of the entropy production forces f to be

very close to a local Maxwellian:

f(x, v) ≃ Mρ u T (x, v) = ρ(x)
e−

|v−u(x)|2

2T (x)

(2π T (x))3/2

(only states for which entropy production vanishes)

This imposes a tremendous reduction of the complexity

The theoretical justification of this approximation has

been studied by many authors (part of Hilbert’s sixth

problem)



Back to the large-time behavior

A theoretical program started in the early nineties by

Carlen–Carvalho and Desvillettes, with some impulse by

Cercignani

Problem: Study the large-time behavior of the

Boltzmann equation in the large, through the behavior of

the entropy production

−→ prove that f(t, ·) approaches the global Maxwellian

(equilibrium) as t → ∞?

(keeping a control on time scales!!)



What do we want to prove?

Prove that a “nice” solution of the Boltzmann equation

approaches Gaussian equilibrium: 2 pages (basically

Boltzmann’s argument)

Get quantitative estimates like “After a time ....., the

distribution is close to Gaussian, up to an error of 1 %”:

90 pages of proof (1989–2004)

Note: General current trend in mathematics: go back to

constructive arguments



Conditional convergence theorem (Desvillettes – V)

Let f(t, x, v) be a solution of the Boltzmann equation,

with appropriate boundary conditions. Assume that

(i) f is very regular (uniformly in time): all

moments (
∫

f |v|k dv dx) are finite and all derivatives (of

any order) are bounded;

(ii) f is strictly positive: f(t, x, v) ≥ Ke−A|v|q .

Then f(t) −→ f∞ at least like O(t−∞) as t → ∞



The proof uses differential inequalities of first and second

order, coupled via many inequalities including:

- precised entropy production inequalities (information

theoretical input)

- Instability of hydrodynamical description (fluid

mechanics input)

- decomposition of entropy in kinetic and hydrodynamic

parts

- functional inequalities coming from various fields

(information theory, quantum field theory, elasticity

theory, etc.)

It led to the discovery of oscillations in the entropy

production



Numerical simulations by Filbet
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These oscillations of the entropy production slow down

the convergence to equilibrium (fluid mechanics effect)

and are related to current research on the convergence for

nonsymmetric degenerate operators (“hypocoercivity”)



A final point to the Boltzmann controversy??

NOT YET

(a) The Boltzmann equation has still not been rigorously

established, except for a rare cloud in the whole space

(Lanford 1973, Illner–Pulvirenti 1986)

(b) We DON’T KNOW how to prove the H Theorem!!

“Slight analytical difficulty”: the existence of smooth

solutions, known only in particular cases.



$1,000,000 problem

Take a solution of the incompressible Navier–Stokes

equation, assume it is smooth initially, does it remain

smooth??

For Boltzmann equation

Same problem!

In 1989 DiPerna and P.-L. Lions proved the existence

and stability of solutions of the Boltzmann equation

... but nothing about the smoothness!

The proof of approach to equilibrium needs it!!



Some major difficulties may still be untouched

Meanwhile, the entropy story goes on...

Two further unexpected examples:

• Central limit theorem

• Ricci curvature bounds



The central limit theorem

X1, X2, . . . , Xn, . . . identically distributed, independent

real random variables;

EX2
j < ∞, EXj = 0

Then

X1 + . . . + XN√
N

−−−→
N→∞

Gaussian random variable

Ball–Barthe–Naor (2004): Irreversible loss of information

Entropy

(
X1 + . . . + XN√

N

)
increases with N

(some earlier results: Linnik, Barron, Carlen–Soffer)



Ricci curvature

One of the three most popular notions of curvature. At

each x, Ric is a quadratic form on TxM .

(Ric)ij = (Riem)k
kij

It measures the rate of separation of geodesics in a given

direction, in the sense of volume (Jacobian)



Distortion
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the observer
location of

the light source looks like
how the observer thinks

the light source

by curvature effects

geodesics are distorted

Because of positive curvature effects, the observer overestimates the

surface of the light source; in a negatively curved world this would

be the contrary.

[ Distortion coefficients always ≥ 1 ] ⇐⇒ [ Ric ≥ 0 ]



Lower bounds on Ricci curvature are of constant use

• Isoperimetric inequalities

• Heat kernel estimates

• Sobolev inequalities

• Diameter control

• Spectral gap inequalities

• Volume growth

• Compactness of families of manifolds

• etc.



The connection between optimal transport of probability

measures and Ricci curvature was recently studied

(McCann, Cordero-Erausquin, Otto, Schmuckenschläger,

Sturm, von Renesse, Lott, V)

A theorem obtained by these tools (Lott–V; Sturm):

A limit of manifolds with nonnegative Ricci curvature, is

also of nonnegative curvature.

Limit in which sense? Measured Gromov–Hausdorff

topology (very weak: roughly speaking, ensures

convergence of distance and volume)

A key ingredient: Boltzmann’s entropy!



The lazy gas experiment

Describes the link between Ricci and optimal transport
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t = 1
t = 0

t = 1/2

t = 0 t = 1

S = −
R

ρ log ρ


