
Non-Derivative Optimization:
Mathematics or Heuristics?

Margaret H. Wright

Computer Science Department

Courant Institute of Mathematical Sciences

New York University

Kovalevskaya Colloquium

Berlin Mathematical School

June 19, 2009

Thank you for the great honor of inviting

me to give the Kovalevskaya Colloquium.

Sofia Kovalevskaya

1850–1891

Kovalevskaya’s connections with my title?

Mathematics (close): In her own words, she had

. . . a reverence for mathematics as an exalted and

mysterious science which opens up to its initiates a

new world of wonder, inaccessible to ordinary

mortals. . . . [Emphasis added.]

Heuristics (not close!): The Oxford English Dictionary

dates the first use of “heuristic” to 1860 (during her lifetime).

According to Pólya (1957):

Heuristic reasoning is reasoning not regarded as

final and strict but as provisional and plausible only,

whose purpose is to discover the solution to the

present problem. [Emphasis added.]

Today’s general topic: solving the

unconstrained continuous optimization

problem

minimize
x∈IRn

f(x)

And not just any old f .

Many real-world applications involve extremely

difficult (“nasty”) optimization problems in which f

has one or more of the following properties:

• f is very time-consuming or expensive to

calculate, even on the highest-end machines, or

it may involve data collected from the real world

(which may take hours, days, weeks, . . .)

• f is unpredictably non-nice (e.g., undefined at

certain points, discontinuous, non-smooth)

• f is evaluated by “black-box” software whose

inner workings are not under the current user’s

control

• f is “noisy” because of

– adaptivity in calculations

– stochastic elements

– uncontrollable variations (e.g., inclusion of

real-world experimental data)

In cases like these, first derivatives are difficult or

impossible to obtain, even with advanced automatic

differentiation.

A few examples (among hundreds):

• Drug selection during cancer chemotherapy,

based on the patient’s measured responses;

• Design of wireless systems;

• Design of heating, air-conditioning, and

ventilation (HVAC) systems;

• Modeling the population dynamics of the

cannibalistic flour beetle;

• Estimating the structure of transmembrane

proteins;

• Circuit design.

Unless we give up immediately, the only choice is a

non-derivative method, meaning a method that:

1. Uses only function values (no derivatives);

2. Does not, in its heart, approximate the gradient.

But what does “approximate the gradient” really

mean?

Two broad classes of non-derivative methods:

1. Model-based

• Create a model of f , usually quadratic, based

on interpolation or least-squares, and minimize

the model (à la Newton’s method or

quasi-Newton methods)

• Some smoothness assumed somewhere.

2. ∗∗ Geometry-based ∗∗

• No explicit model of f , but sometimes used

with “surrogate” models

NB: Genetic and evolutionary algorithms are not considered

here.

A sketchy history of non-derivative optimization

methods:

• Started in 1950s (or before)—Fermi and

Metropolis applied coordinate search in a 1952

paper.

• LOVED by practitioners from day 1,

especially the “simplex” method of Nelder and

Mead (1965), of which more later.

• Often based on low-dimensional intuition.

“Opportunistic” coordinate search (Fermi and Metropolis);

keep looking for a new best point by searching along the ±

coordinate directions, shrinking the step when no strictly

better point is found.

−3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

4

The most popular non-derivative method: the Nelder–Mead

“simplex” method (1965), in which each iteration is

associated with a nondegenerate simplex in Rn.

0 0.5 1 1.5 2 2.5 3 3.5 4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Goal of each iteration: Find a new vertex where f is strictly

better than the worst vertex.

−3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4

Starting in the mid-1960s, non-derivative methods became

essentially invisible within the mainstream optimization

community, for two reasons:

1. No theory!

Hence, because of the “mathematization” of optimization, by

the mid-1970s non-derivative methods were not just ignored,

but were actually scorned by mainstream optimizers.

2. (Perceived?) difficulties in practice.

Geometry-based methods were observed to be very slow at

times, with performance tending to degrade as the problem

dimension increases. Model-based methods were regarded as

much less efficient than finite-difference gradient-based

methods.

Nonetheless, despite a lack of theory and

occasional poor behavior, through the

1980s and into the 1990s, non-derivative

methods (almost always Nelder-Mead)

were the most popular optimization

routines in software libraries, i.e. users

loved non-derivative methods.

Why would users be so foolish as to ignore

the experts?

One plausible explanation for their popularity: users

did not want to write code to evaluate derivatives.

Don’t be too quick to jeer at this reason!

f(x) =
sinh(2x2

1
cos x2) arctanx3

√

x4

3
x2

5
+ 1− x4

In those days, the biggest single error in using

optimization software was programming the

derivatives incorrectly.

This should not be a big issue today because we

have reliable and sophisticated software for

automatic differentiation.

A second major appeal of geometry-based

non-derivative methods, as we’ve already seen:

Some of them are simple to describe in 2-d pictures

so that they appeal to (low-dimensional) intuition.

So these methods seem to be “accessible to

ordinary mortals”, a property that finds favor with

algorithm/software users even though it is contrary

to Kovalevskaya’s description of the world of

mathematics.

However, the apparent simplicity and accessibility of

non-derivative methods do not necessarily extend to

the associated mathematical analysis, as we shall

see.

What’s the status of non-derivative methods

today???

Non-derivative methods have experienced a major

renaissance, returning to grace, favor, and the

interest of researchers.

Since 1997, non-derivative methods, both model-

and geometry-based, have been presented at

mainstream optimization meetings.

The May 2008 SIAM Optimization Meeting

included five sessions on non-derivative methods,

and there will be a full “track” on this topic at the

August 2009 International Symposium on

Mathematical Programming.

One of the main factors in this sea change:

Torczon’s (1989) PhD thesis presented a

new geometry-based method

(multidirectional search) with a

convergence proof!!

Multidirectional search moves:

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Goal: find a point strictly better than the best vertex.

After Torczon’s thesis, a path of generalization

(which mathematicians love) began and continues

today:

Multidirectional search

(Torczon, 1989)

⇓

Pattern search

(e.g., Torczon, 1997)

⇓

Generalized pattern search

(Audet and Dennis, 2000)

An important definition in generalized pattern

search methods: A set of vectors in Rn

D
△

= {dℓ}, ℓ = 1, . . . ,K,

is a positive spanning set for Rn if every v ∈ Rn

can be written as a nonnegative linear combination

of the elements of D.

A positive spanning set must contain at least n + 1

vectors.

Standard examples in R2 of positive spanning sets:

D =

(

1 0 −1 0

0 1 0 −1

)

(Think coordinate search.)

D =

(

1 0 −1

0 1 −1

)

Each iteration of a generalized pattern search

method includes an (optional) search step and a

mandatory polling step.

The search step (which can be empty) is often

based on properties of the particular problem being

solved.

Convergence proofs depend on the polling step.

Excellent survey paper by Kolda, Lewis, Torczon,

SIAM Review, 2003.

In the polling step at iteration k, xk is the best point found so

far. A set of directions Dk is chosen whose columns form a

positive spanning set. (This set defines the “pattern”.)

The function f is then evaluated at some, possibly all, of the

“mesh-neighboring” points

x̃(ℓ) = xk + ∆kd(ℓ), d(ℓ) ∈ Dk,

where ∆k is a step control parameter.

Using a suitable acceptance strategy, if x̃(ℓ) is strictly better

than xk, then xk+1 ← x̃(ℓ) and k ← k + 1.

If none of the sampled points is strictly better than xk, xk is

said to be mesh-locally optimal, ∆k is reduced in a controlled

fashion, and the process is repeated.

Two points to note:

1. Most modern geometry-based methods no longer include

an associated geometric figure (as does Nelder–Mead), so

they are not so intuitively appealing to users.

2. The two most common variants of the acceptance

strategy for a new best point are:

• “Opportunistic” (accept a strictly better point as

soon as you find it), or else

• More demanding criteria (e.g., examine the complete

set of possible new points and choose the best)

What kind of convergence results are known?

Theorem. (Torczon) If f is continuously differentiable and

bounded below, then, for an opportunistic generalized pattern

search algorithm,

lim inf
k→∞

∇f(xk) = 0.

NB: this theorem does NOT guarantee that the sequence of

iterates converges to a stationary point.

Under “stronger hypotheses” (typically requiring more

function evaluations),

lim
k→∞

∇f(xk) = 0.

There are convergence proofs (sometimes with “convergence”

defined in a very limited sense) for the following categories of

non-derivative methods, and more:

• pattern search and generalized pattern search,

• generating set search,

• adaptive pattern search,

• mesh-adaptive direct search,

• frame-based methods,

• grid-restrained methods,

• . . .

The proof techniques are very closely related to those in

derivative-based optimization.

Having convergence proofs is important and comforting. But

• The results can be misunderstood to mean more than

they do, e.g., lim inf is not the same as lim, nor is

convergence of a subsequence that may or may not exist,

and that can be identified only after the fact, the same as

what most people view as “convergence”.

• The assumptions needed to prove convergence can be

very far removed from the nasty properties of the

functions we’re interested in.

• Unexpected things can happen even for apparently

well-behaved functions.

Audet (2002) presents an array of examples that probe the

limits of theory about generalized pattern search.

A continuously differentiable function of two variables:

if x < 0 then f(x, y) = −26x3 − 32x2y + 7|y|3

else if 0 ≤ x ≤ 1
2 then f(x, y) = (7− 8x2)|y|3

else f(x, y) = (7− 8x2)|y|3 + 8(x− 1
2)2(y3 + y + x− 1).

A specific generalized pattern search method applied to this

function has an infinite number of limit points of the form

(1/2ℓ, 0), one of which—(1, 0)—is not a stationary point.

−0.2 0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

So things are not always nice even when f is continuously

differentiable.

Suppose next that f is arguably “nice” in some

sense, but not continuously differentiable?

Modified Dennis–Woods function:

fDW = max(‖x− c‖2, ‖x− d‖2)

c =

(

1

−1

)

, d =

(

−1

1

)

.

The gradient of fDW is discontinuous along the line

x1 = x2, and this seemingly minor nondifferentiability

can cause difficulties for generalized pattern search

methods.

Coordinate search on modified Dennis–Woods:

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Multidirectional search on modified Dennis–Woods:

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Turning now to something completely different. . . How does

Nelder-Mead fit into the picture of generalized pattern search

and related methods?

Not at all!

Among geometry-based non-derivative methods, the

Nelder-Mead method is a far outlier (perhaps a singularity) in

several ways.

• Each move is determined solely by the ordering of

function values at the simplex vertices.

• A positive spanning set does not appear in the algorithm

description.

• There is no “quality control” on the vertices or properties

of the generated simplices.

Despite NM’s apparent simplicity (one of its

appeals to practitioners), it has proved to be very

difficult to analyze mathematically, at least for

those who have tried so far.

Part of the reason is that its algorithmic strategies

are unusual (to say the least):

• it seeks to improve the worst point rather than

the best; and

• the reflection point is accepted only if it is

better than the second-worst vertex.

A few results from LRWW (1998):

1. In any dimension, Nelder–Mead is affine

invariant.

2. In any dimension, with exact arithmetic, the NM

simplex remains nondegenerate if the first

simplex is nondegenerate.

3. In any dimension, if f is strictly convex, NM will

take no shrink steps.

For strictly convex functions with bounded level

sets:

Theorem. In dimension 1, NM converges to the

minimizer.

• • • • • • • •

Theorem. In dimension 2, the vertex function

values converge in standard Nelder–Mead.

Theorem. In dimension 2, the simplex diameters

converge to zero for standard Nelder–Mead.

• • • • • • • •

NB: The third result does not prove convergence!

Points to note:

1. The LRWW proofs are based on treating the

Nelder–Mead method as a discrete dynamical system, a

non-standard approach in analysis of optimization

methods.

2. The restriction to two dimensions arises because certain

properties needed in the LRWW proofs do not hold if

n > 2:

• A reflected triangle is congruent in 2-d, but not for

n ≥ 3.

• There are explicit forbidden move sequences in 2-d

(e.g, five consecutive reflections in which the

next-worst point changes), but no such sequences are

known for n ≥ 3.

And even in 2-d, there is a counterexample, a

strictly convex function with bounded level sets, for

which Nelder–Mead converges to a nonminimizer,

never changing the best vertex of the original

simplex (McKinnon, 1998).

The failure involves an infinite sequence of inside

contractions.

The McKinnon counterexample

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Nelder-Mead on the McKinnon counterexample

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Multidirectional search on the McKinnon

counterexample

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

A recent new theoretical result about Nelder–Mead:

In dimension 2, for functions

that are strictly convex with bounded level sets,

that are twice continuously differentiable and

whose Hessians are uniformly bounded away from

singularity. . .

• • • • • • • •

Theorem. (LPW, 2009) The restricted Nelder–Mead method

(with no expansion steps) converges to the minimizer.

NB: The smoothest McKinnon example does not satisfy these

more limited conditions, since the matrix of second partial

derivatives is singular at the vertex that causes the failure.

Given its extremely limited theory, no general

convergence proof even in 2-d, the McKinnon

counterexample. . .

Why not just abandon Nelder–Mead??

Because often it works (and works well) when other

methods don’t.

But we still don’t know why!

Example: on Dennis-Woods, where pattern search methods

fail. . .

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Mathematical results that would be useful about

Nelder–Mead:

Does it converge under the assumptions of the

LRWW paper?

Is there a counterexample in three dimensions à la

McKinnon for the restricted Nelder–Mead method

under the stricter assumptions of the 2009 LPW

result?

What is the theoretical (and/or likely) effect of

problem dimension? (There is longstanding

evidence that efficiency deteriorates with dimension

for non-derivative methods.)

Limited results about the effect of dimensionality are shown in

L. Han and M. Neumann (2006), Effect of dimensionality on

the Nelder-Mead simplex method.

Under several assumptions (discussed in a moment), they

show that convergence of the Nelder-Mead simplex to zero is

linear, with an asymptotic error constant that rapidly

approaches 1 as n increases, showing that performance

deteriorates with dimension.

The analysis is very interesting, and the conclusion matches

longstanding folklore.

But it answers only some of the open questions about

Nelder–Mead and problem dimension.

In the Han-Neumann analysis,

• f = xT x (so general quadratics are covered, using

affine-invariance);

• One of the vertices of the initial simplex is at the

minimizer;

• The moves analyzed involve infinite sequences of one

move, e.g., inside contraction (as in McKinnon’s

example).

Can a similar analysis be done that would apply when started

with a general nondegenerate simplex?

And what goes wrong in practice with NM?

• The simplex becomes close to degenerate, i.e., “almost

collapses into a subspace”, despite the theoretical

guarantee that it will remain nondegenerate.

(But this can be good, not bad, when the simplex is

“elongating” along directions that follow the function.)

• The simplex “stagnates”, or the optimization “stalls”,

and this can happen even when the simplex does not

seem to be close to degenerate.

Needed: a more complete analysis of failure modes.

A complication in figuring this out: some reported failures

happen only after thousands of iterations, and only for

specific starting simplices.

For geometry-based methods, there is a major open question

that is both mathematical and practical. . .

Getting a better answer quickly is often what users really

want, especially when optimizing models that are known to be

inaccurate.

There’s significant computational evidence that Nelder–Mead,

despite its lack of theory, is often (but not always) better in

this regard than generalized pattern search methods.

But we don’t really know how to define “getting a better

answer quickly” in a rigorous sense that can be analyzed

mathematically.

A (heuristic) approach: try to define classes of functions for

which different methods work more or less well, and explain

why.

Conclusions:

There are many open and interesting mathematical

and computational questions about non-derivative

optimization methods.

We need

• mathematics that helps us to understand the

theoretical properties as well as the performance

in practice of non-derivative methods, and

• clever numerical algorithms, possibly based on

sound heuristics, that will solve important

real-world problems.

