Rough paths and the Gap Between Deterministic and Stochastic Differential Equations

P. K. Friz

TU Berlin and WIAS

December 2009
Donsker’s invariance principle and Brownian motion

Itô integration and SDEs

Doss-Sussman’s ODE approach to SDEs

More on ODEs: Euler estimates

Smart ODE limits: rough differential equations

Brownian motion as a rough path

SDEs driven by non-Brownian noise

Rough path spaces

Donsker’s principle revisited
Donsker's invariance principle

- Let \((\zeta_i)\) be an IID sequence of zero-mean, unit-variance random variables. [Donsker '52] shows that the rescaled, piecewise-linearly-connected, random-walk

\[
W_t^{(n)} = \frac{1}{n^{1/2}} \left(\zeta_1 + \cdots + \zeta_{[tn]} + (nt - [nt]) \zeta_{[nt]+1} \right)
\]

converges weakly in the space of continuous functions on \([0, 1]\).
Donsker’s invariance principle

- Let \((\zeta_i)\) be an IID sequence of zero-mean, unit-variance random variables. [Donsker ’52] shows that the rescaled, piecewise-linearly-connected, random-walk

\[
W_t^{(n)} = \frac{1}{n^{1/2}} \left(\zeta_1 + \cdots + \zeta_{[tn]} + (nt - [nt]) \zeta_{[nt]+1} \right)
\]

converges weakly in the space of continuous functions on \([0, 1]\).

- Limit is a probability measure on \(C[0,1]\), called Wiener measure \(\mathcal{W}\).
Donsker’s invariance principle

- Let \((\xi_i)\) be an IID sequence of zero-mean, unit-variance random variables. [Donsker ’52] shows that the rescaled, piecewise-linearly-connected, random-walk

\[
W_t^{(n)} = \frac{1}{n^{1/2}} \left(\xi_1 + \cdots + \xi_{\lfloor nt \rfloor} + (nt - \lfloor nt \rfloor) \xi_{\lfloor nt \rfloor + 1} \right)
\]

converges weakly in the space of continuous functions on \([0, 1]\).

- Limit is a probability measure on \(C [0, 1]\), called Wiener measure \(\mathbb{W}\).

- Brownian motion (BM) \((B_t)\) is a stochastic process with law \(\mathbb{W}\).
Donsker’s invariance principle

- Let \((\xi_i)\) be an IID sequence of zero-mean, unit-variance random variables. [Donsker ’52] shows that the rescaled, piecewise-linearly-connected, random-walk

\[
W_t^{(n)} = \frac{1}{n^{1/2}} \left(\xi_1 + \cdots + \xi_{[tn]} + (nt - [nt]) \xi_{[nt]+1} \right)
\]

converges weakly in the space of continuous functions on \([0, 1]\).
- Limit is a probability measure on \(C[0, 1]\), called Wiener measure \(W\).
- Brownian motion (BM) \((B_t)\) is a stochastic process with law \(W\).
- Straight-forward extension to \(\mathbb{R}^d\)-valued case
Donsker’s invariance principle

- Let \((\xi_i)\) be an IID sequence of zero-mean, unit-variance random variables. [Donsker '52] shows that the rescaled, piecewise-linearly-connected, random-walk

\[
W_t^{(n)} = \frac{1}{n^{1/2}} \left(\xi_1 + \cdots + \xi_{[tn]} + (nt - [nt]) \xi_{[nt]+1} \right)
\]

converges weakly in the space of continuous functions on \([0, 1]\).
- Limit is a probability measure on \(C[0, 1]\), called Wiener measure \(\mathbb{W}\).
- Brownian motion (BM) \((B_t)\) is a stochastic process with law \(\mathbb{W}\).
- Straight-forward extension to \(\mathbb{R}^d\)-valued case
- In particular, a \(d\)-dimensional Brownian motion is just an ensemble of \(d\) independent Brownian motions, say

\[
B_t = \left(B_t^1, \ldots, B_t^d \right).
\]
Brownian motion: alternative characterizations

(i): continuous martingale such that \((B_t^2 - t) \) is also a martingale
Brownian motion: alternative characterizations

- (i): continuous martingale such that \(B_t^2 - t \) is also a martingale
- (ii): continuous 0-mean Gaussian process with covariance
 \[
 E(B_s B_t) = \min(s, t) \quad \forall s, t \in [0, 1]
 \]

Again, straightforward extension to \(\mathbb{R}^d \)-valued case
(i): continuous martingale such that \((B_t^2 - t)\) is also a martingale

(ii): continuous 0-mean Gaussian process with covariance

\[
E(B_s B_t) = \min(s, t) \quad \forall s, t \in [0, 1]
\]

(iii): Markov process with generator \(L = \frac{1}{2} \frac{\partial^2}{\partial x^2}\) in the sense that

\[
E \left[\frac{f(x + B_t)}{t} - x \right] \rightarrow Lf = \frac{1}{2} f'' \quad \forall f \text{ nice}
\]
Brownian motion: alternative characterizations

- (i): continuous martingale such that \((B_t^2 - t) \) is also a martingale
- (ii): continuous 0-mean Gaussian process with covariance
 \[
 E(B_sB_t) = \min(s, t) \quad \forall s, t \in [0, 1]
 \]
- (iii): Markov process with generator \(L = \frac{1}{2} \frac{\partial^2}{\partial x^2} \) in the sense that
 \[
 \frac{E[f(x + B_t)] - x}{t} \to Lf = \frac{1}{2}f'' \quad \forall f \text{ nice}
 \]

- Again, straightforward extension to \(\mathbb{R}^d \)-valued case
Fact: Typical sample paths of Brownian motion, \(t \mapsto B_t(\omega) \), have infinite variation on every interval.
Fact: Typical sample paths of Brownian motion, \(t \mapsto B_t(\omega) \), have infinite variation on every interval.

How to define integration against Brownian motion? Itô’s brilliant idea: with some help and intuition from martingale theory,

\[
\int_0^1 f(t, \omega) \, dB_t(\omega)
\]

can be defined for reasonable non-anticipating \(f \): start with simple integrands and complete with isometry

\[
E \left[\left(\int_0^1 f(t, \omega) \, dB_t(\omega) \right)^2 \right] = E \left[\int_0^1 f^2(t, \omega) \, dt \right].
\]
Fact: Typical sample paths of Brownian motion, $t \mapsto B_t(\omega)$, have infinite variation on every interval.

How to define integration against Brownian motion? Itô’s brilliant idea: with some help and intuition from martingale theory,

$$\int_0^1 f(t, \omega) \, dB_t(\omega)$$

can be defined for reasonable non-anticipating f: start with simple integrands and complete with isometry

$$E \left[\left(\int_0^1 f(t, \omega) \, dB_t(\omega) \right)^2 \right] = E \left[\int_0^1 f^2(t, \omega) \, dt \right].$$

Example: $\int_0^t B_s \, dB_s = \frac{1}{2} (B_t^2 - t)$... 2nd order calculus!
Itô integration

- Fact: Typical sample paths of Brownian motion, \(t \mapsto B_t(\omega) \), have infinite variation on every interval.

- How to define integration against Brownian motion? Itô’s brilliant idea: with some help and intuition from martingale theory,

\[
\int_0^1 f(t, \omega) \, dB_t(\omega)
\]

can be defined for reasonable non-anticipating \(f \): start with simple integrands and complete with isometry

\[
E \left[\left(\int_0^1 f(t, \omega) \, dB_t(\omega) \right)^2 \right] = E \left[\int_0^1 f^2(t, \omega) \, dt \right].
\]

- Example: \(\int_0^t B_s \, dB_s = \frac{1}{2} \left(B_t^2 - t \right) \) ... 2nd order calculus!

- Fact: Itô-integrals have left-point Riemann-sum approximations.
Fact: Typical sample paths of Brownian motion, \(t \mapsto B_t(\omega) \), have infinite variation on every interval.

How to define integration against Brownian motion? Itô’s brilliant idea: with some help and intuition from martingale theory,

\[
\int_0^1 f(t, \omega) \, dB_t(\omega)
\]

can be defined for reasonable non-anticipating \(f \): start with simple integrands and complete with isometry

\[
E\left[\left(\int_0^1 f(t, \omega) \, dB_t(\omega)\right)^2\right] = E\left[\int_0^1 f^2(t, \omega) \, dt\right].
\]

Example: \(\int_0^t B_s \, dB_s = \frac{1}{2} (B_t^2 - t) \) \(\ldots \) 2nd order calculus!

Fact: Itô-integrals have left-point Riemann-sum approximations.

Define Stratonovich-integration via mid-point Riemann-sum approximations \(\implies \int_0^t B_s \, dB_s = \frac{1}{2} B_t^2 \) (1st order calculus!)
Let B be a d-dimensional Brownian motion.
Stochastic differential equations

- Let B be a d-dimensional Brownian motion.
- Let V_0, \ldots, V_d be a collection of nice vector fields on \mathbb{R}^e.
Let B be a d-dimensional Brownian motion.

Let V_0, \ldots, V_d be a collection of nice vector fields on \mathbb{R}^e.

A solution (process) $y = y_t(\omega)$ to

$$dy = V_0(y) \, dt + \sum_{i=1}^d V_i(y) \, dB^i$$

is, by definition, a solution to corresponding integral equation.
Stochastic differential equations

- Let B be a d-dimensional Brownian motion.
- Let V_0, \ldots, V_d be a collection of nice vector fields on \mathbb{R}^e.
- A solution (process) $y = y_t(\omega)$ to

$$
dy = V_0(y) \, dt + \sum_{i=1}^{d} V_i(y) \, dB^i
$$

is, by definition, a solution to corresponding integral equation.
- At the price of modifying the drift vector field V_0 we can switch to Itô formulation ($\partial B \rightarrow dB$).
Let B be a d-dimensional Brownian motion.

Let V_0, \ldots, V_d be a collection of nice vector fields on \mathbb{R}^e.

A solution (process) $y = y_t(\omega)$ to

$$dy = V_0(y) \, dt + \sum_{i=1}^d V_i(y) \, dB^i$$

is, by definition, a solution to corresponding integral equation.

At the price of modifying the drift vector field V_0 we can switch to Itô formulation ($\partial B \rightarrow dB$).

Existence, uniqueness by fixpoint arguments.
Stochastic differential equations

- Let B be a d-dimensional Brownian motion.
- Let V_0, \ldots, V_d be a collection of nice vector fields on \mathbb{R}^e.
- A solution (process) $y = y_t(\omega)$ to

$$\begin{align*}
 dy &= V_0(y) \, dt + \sum_{i=1}^d V_i(y) \, \partial B^i \\
\end{align*}$$

is, by definition, a solution to corresponding integral equation.
- At the price of modifying the drift vector field V_0 we can switch to Itô formulation ($\partial B \to dB$).
- Existence, uniqueness by fixpoint arguments.
- For simplicity only: from here on $V_0 = 0$.
The Doss-Sussman approach

- Let B be a d-dimensional Brownian motion, $d = 1$.

Let V be a nice vector field on \mathbb{R}.

Aim: find solution to SDE

$$
\begin{align*}
 \frac{dy}{dt} &= V(y) \partial dB
\end{align*}
$$

Let e^{tV} be the solution flow to the ODE

$$
\begin{align*}
 \dot{z} &= V(z)
\end{align*}
$$

Then

$$
\begin{align*}
 y(t, \omega) &= e^{Bt}(\omega) V y_0
\end{align*}
$$

is the SDE solution. Proof: First order calculus.

This is an ODE solution method for SDEs.

Benefit: solution depends in a robust way on B and y_0.

A drift $V_0(y) dt$ can be incorporated (flow decomposition)

but this method fails when $d > 1$.

P. K. Friz (TU Berlin and WIAS)
The Doss-Sussman approach

- Let B be a d-dimensional Brownian motion, $d = 1$.
- Let V be a nice vector field on \mathbb{R}^e
The Doss-Sussman approach

- Let B be a d-dimensional Brownian motion, $d = 1$.
- Let V be a nice vector field on \mathbb{R}^e.
- Aim: find solution to SDE

$$dy = V(y) \, \partial dB.$$
The Doss-Sussman approach

- Let B be a d-dimensional Brownian motion, $d = 1$.
- Let V be a nice vector field on \mathbb{R}^e.
- Aim: find solution to SDE

$$dy = V(y) \, dB.$$

- Let (e^{tV}) be the solution flow to the ODE $\dot{z} = V(z)$. Then

$$y(t, \omega) := e^{B_t(\omega)V} y_0$$

is the SDE solution. Proof: First order calculus.
Let B be a d-dimensional Brownian motion, $d = 1$.

Let V be a nice vector field on \mathbb{R}^e

Aim: find solution to SDE

$$dy = V(y) \, \partial dB.$$

Let (e^{tV}) be the solution flow to the ODE $\dot{z} = V(z)$. Then

$$y(t, \omega) := e^{B_t(\omega) V} y_0$$

is the SDE solution. Proof: First order calculus.

This is an ODE solution method for SDEs.
The Doss-Sussman approach

- Let B be a d-dimensional Brownian motion, $d = 1$.
- Let V be a nice vector field on \mathbb{R}^e.
- Aim: find solution to SDE

$$dy = V(y) \partial dB.$$

- Let (e^{tV}) be the solution flow to the ODE $\dot{z} = V(z)$. Then

$$y(t, \omega) := e^{B_t(\omega)V}y_0$$

is the SDE solution. Proof: First order calculus.

- This is an ODE solution method for SDEs.
- Benefit: solution depends in a robust way on B and y_0.
The Doss-Sussman approach

- Let B be a d-dimensional Brownian motion, $d = 1$.
- Let V be a nice vector field on \mathbb{R}^e
- Aim: find solution to SDE

$$dy = V(y) \partial dB.$$

- Let (e^{tV}) be the solution flow to the ODE $\dot{z} = V(z)$. Then

$$y(t, \omega) := e^{B_t(\omega)V} y_0$$

is the SDE solution. Proof: First order calculus.
- This is an ODE solution method for SDEs.
- Benefit: solution depends in a robust way on B and y_0.
- A drift $V_0(y) dt$ can be incorporated (flow decomposition)
The Doss-Sussman approach

- Let B be a d-dimensional Brownian motion, $d = 1$.
- Let V be a nice vector field on \mathbb{R}^e.
- Aim: find solution to SDE

$$dy = V(y) \partial dB.$$

- Let (e^{tV}) be the solution flow to the ODE $\dot{z} = V(z)$. Then

$$y(t, \omega) := e^{Bt(\omega)V} y_0$$

is the SDE solution. Proof: First order calculus.

- This is an ODE solution method for SDEs.
- Benefit: solution depends in a robust way on B and y_0.
- A drift $V_0(y)dt$ can be incorporated (flow decomposition)
- ... but this method fails when $d > 1$.

So far, we have been interested in stochastic differential equations of the type

\[dy_t = \sum_{i=1}^{d} V_i(y_t) \, dB_t^i \]

Let us now look at such differential equations when \(B \) is replaced by some path \(x \in C^1([0,1], \mathbb{R}) \); that is

\[\dot{y}_t = \sum_{i=1}^{d} V_i(y_t) \, \dot{x}_t \]

This is a classical setup in system control theory... and in our case the system response is modelled by ODE... How would one simulate... on a computer?
So far, we have been interested in stochastic differential equations of the type

\[dy_t = \sum_{i=1}^{d} V_i(y_t) \, dB_t^i \]

Let us now look at such differential equations when \(B \) is replaced by some path \(x \in C^1([0,1], \mathbb{R}^d) \); that is

\[\dot{y}_t = \sum_{i=1}^{d} V_i(y_t) \, \dot{x}_t \]

This is a classical setup in system control theory... and in our case the system response is modelled by ODE (\(*\)). How would one simulate (\(*\)) on a computer?
More on ODEs: Euler estimates

- So far, we have been interested in stochastic differential equations of the type

\[dy_t = \sum_{i=1}^{d} V_i(y_t) \partial B_t^i \]

- Let us now look at such differential equations when \(B \) is replaced by some path \(x \in C^1([0,1], \mathbb{R}^d) \); that is

\[(\ast): \dot{y}_t = \sum_{i=1}^{d} V_i(y_t) \dot{x}_t \]

- This is a classical setup in system control theory ...

input signal \(x \) \(\implies \) output signal \(y \)
So far, we have been interested in stochastic differential equations of the type

\[dy_t = \sum_{i=1}^{d} V_i(y_t) \, dB_t^i \]

Let us now look at such differential equations when \(B \) is replaced by some path \(x \in C^1([0,1], \mathbb{R}^d) \); that is

\[(\ast) : \dot{y}_t = \sum_{i=1}^{d} V_i(y_t) \, \dot{x}_t \]

This is a classical setup in system control theory ...

input signal \(x \) \(\implies \) output signal \(y \)

... and in our case the system response is modelled by ODE (\(\ast \)).
More on ODEs: Euler estimates

- So far, we have been interested in stochastic differential equations of the type

\[dy_t = \sum_{i=1}^{d} V_i(y_t) \, dB_t^i \]

- Let us now look at such differential equations when \(B \) is replaced by some path \(x \in C^1([0,1], \mathbb{R}^d) \); that is

\[(\ast) : \dot{y}_t = \sum_{i=1}^{d} V_i(y_t) \, \dot{x}_t \]

- This is a classical setup in system control theory ...

\[\text{input signal } x \quad \Longrightarrow \quad \text{output signal } y \]

- ... and in our case the system response is modelled by ODE \((\ast)\).

- How would one simulate \((\ast)\) on a computer?
More precisely: \(x \in C^1 ([0, 1], \mathbb{R}^d) \), \(V_1, \ldots, V_d \in C^{2,b} (\mathbb{R}^e, \mathbb{R}^e) \)

\[
dy = V(y) \, dx \iff \dot{y} = V_i(y) \, \dot{x}^i
\]

(Summation over repeated indices!) Usual Euler-scheme:

\[
y_t - y_s \approx V_i(y_s) \int_s^t dx^i
\]
More precisely: \(x \in C^1 ([0, 1], \mathbb{R}^d) \), \(V_1, \ldots, V_d \in C^{2, b} (\mathbb{R}^e, \mathbb{R}^e) \)

\[
dy = V(y) \, dx \iff \dot{y} = V_i(y) \, \dot{x}^i
\]

(Summation over repeated indices!) Usual Euler-scheme:

\[
y_t - y_s \approx V_i(y_s) \int_s^t dx^i
\]

Step-2 Euler scheme:

\[
y_t - y_s \approx V_i(y_s) \int_s^t dx^i + V_i V_j(y_s) \int_s^t \int_s^r dx^i dx^j
\]

\[
= \mathcal{E}(y_s, x_{s,t})
\]

with

\[
x_{s,t} = \left(\int_s^t dx, \int_s^t \int_s^r dx \otimes dx \right) \in \mathbb{R}^d \oplus \mathbb{R}^{d \times d}.
\]
More precisely: \(x \in C^1 ([0, 1], \mathbb{R}^d) \), \(V_1, \ldots, V_d \in C^{2,b} (\mathbb{R}^e, \mathbb{R}^e) \)

\[
dy = V(y) \, dx \iff \dot{y} = V_i(y) \, \dot{x}^i
\]

(Summation over repeated indices!) Usual Euler-scheme:

\[
y_t - y_s \approx V_i(y_s) \int_s^t \, dx^i
\]

Step-2 Euler scheme:

\[
y_t - y_s \approx V_i(y_s) \int_s^t \, dx^i + V_i V_j(y_s) \int_s^t \int_s^r \, dx^i \, dx^j
\]

\[
= \mathcal{E} (y_s, x_{s,t})
\]

with

\[
x_{s,t} = \left(\int_s^t \, dx, \int_s^t \int_s^r \, dx \otimes dx \right) \in \mathbb{R}^d \oplus \mathbb{R}^{d \times d}.
\]

Natural scaling assumption. For some \(\alpha \in (0, 1] \),

\[
\left| \int_s^t \, dx^i \right| \vee \left| \int_s^t \int_s^r \, dx^i \, dx^j \right|^{1/2} \leq c_1 |t - s|^\alpha.
\]

[Okay for BM with \(\alpha < 1/2 \) but keep \(x \in C^1 \) for now ...]
Davie’s Lemma: Error estimate on Step-2 Euler scheme

\[|y_t - y_s - \mathcal{E}(y_s, \mathbf{x}_s, t)| \leq c_2 |t - s|^{\theta} \]

with \(\theta = 3\alpha > 1 \) \(\implies \) need \(\alpha > 1/3 \) [Okay for BM ...]. The catch is **uniformity**

\[c_2 = c_2(c_1) \quad \text{not } c_2(\|\dot{x}\|_{\infty}) \text{ or } c_2\left(\|x\|_{\text{Lip}}\right) \]
Davie's Lemma: Error estimate on Step-2 Euler scheme

\[|y_t - y_s - \mathcal{E}(y_s, x_{s,t})| \leq c_2 |t - s|^{\theta} \]

with \(\theta = 3\alpha > 1 \) \(\implies \) need \(\alpha > 1/3 \) [Okay for BM ...]. The catch is uniformity

\[c_2 = c_2(c_1) \quad \text{not} \quad c_2(\|\dot{x}\|_{\infty}) \quad \text{or} \quad c_2(\|x\|_{\text{Lip}}) \]

Easy to see that

\[\mathcal{E}(y_s, x_{s,t}) \leq c_3 |t - s|^{\alpha}, \quad c_3 = c_3(c_1) \]
\[|y_t - y_s| \leq c_4 |t - s|^{\alpha}, \quad c_4 = c_4(c_1). \]
Davie’s Lemma: Error estimate on Step-2 Euler scheme

\[|y_t - y_s - \mathcal{E}(y_s, x_{s,t})| \leq c_2 |t - s|^{\theta} \]

with \(\theta = 3\alpha > 1 \implies \text{need } \alpha > 1/3 \) [Okay for BM ...]. The catch is uniformity

\[c_2 = c_2(c_1) \quad \text{... not } c_2(|\dot{x}|_\infty) \text{ or } c_2(|x|_{Lip}) \]

Easy to see that

\[\mathcal{E}(y_s, x_{s,t}) \leq c_3 |t - s|^{\alpha}, \quad c_3 = c_3(c_1) \]

\[|y_t - y_s| \leq c_4 |t - s|^{\alpha}, \quad c_4 = c_4(c_1). \]

Take \(x_n \in C^1([0,1], \mathbb{R}^d) \) with uniform bounds

\[\sup_n \left| \int_s^t dx_n^i \right| \vee \left| \int_s^t \int_s^r dx_n^i dx_n^j \right|^{1/2} \leq c_1 |t - s|^{\alpha} \]

s.t. \(x_n + \text{iterated integrals converge (pointwise)} \) to

\[x_t = \left(x_t^{(1)}, x_t^{(2)} \right) \in \mathbb{R}^d \oplus \mathbb{R}^{d \times d}; \]

then call \(t \mapsto x_t \) a (geometric) rough path.
Apply Davie’s lemma: get \(\{y_n\} \) with uniform Hölder bound \(c_4 \).
- Apply Davie’s lemma: get \(\{y_n\} \) with uniform Hölder bound \(c_4 \).

- Arzela–Ascoli \(\implies \{y_n : n \geq 1\} \) has limit points
 ... call them \textit{RDE solutions}
• Apply Davie’s lemma: get \(\{y_n\} \) with uniform Hölder bound \(c_4 \).

• Arzela–Ascoli \(\implies \{y_n : n \geq 1\} \) has limit points
 ... call them \textit{RDE solutions}

• More regularity + a bit work \(\implies \exists! \) RDE solution \(y \equiv \Phi(x; y_0) \)
 and write

 \[dy = V(y) \, dx \]

... and this "\textit{Itô-Lyons}" map \(\Phi \) is continuous in the above sense
[Lyons 98].
Apply Davie’s lemma: get \(\{y_n\} \) with uniform Hölder bound \(c_4 \).

Arzela–Ascoli \(\implies \{y_n : n \geq 1\} \) has limit points
... call them \textit{RDE solutions}

More regularity + a bit work \(\implies \exists ! \) RDE solution \(y \equiv \Phi(x; y_0) \)
and write
\[
dy = V(y) \, dx
\]

... and this "\textit{Itô-Lyons}" map \(\Phi \) is continuous in the above sense [Lyons 98].

Various useful extensions ...
Apply Davie’s lemma: get \(\{y_n\} \) with uniform Hölder bound \(c_4 \).

Arzela–Ascoli \(\Rightarrow \) \(\{y_n : n \geq 1\} \) has limit points
... call them \textit{RDE solutions}

More regularity + a bit work \(\Rightarrow \) \(\exists! \) RDE solution \(y \equiv \Phi(x; y_0) \)
and write
\[
dy = V(y) \, dx
\]

... and this "\textit{Itô-Lyons}" map \(\Phi \) is continuous in the above sense [Lyons 98].

Various useful extensions ...

- Error estimates for step-\(N \) Euler schemes [F-Victoir, JDE 07]
Apply Davie's lemma: get \(\{y_n\} \) with uniform Hölder bound \(c_4 \).

Arzela–Ascoli \(\implies \) \(\{y_n : n \geq 1\} \) has limit points
... call them \(RDE \) solutions

More regularity + a bit work \(\implies \) \(\exists! \) \(RDE \) solution \(y \equiv \Phi(x; y_0) \)
and write

\[
dy = V(y) \, dx
\]

... and this "\(\text{Itô-Lyons} \)" map \(\Phi \) is continuous in the above sense [Lyons 98].

Various useful extensions ...

- Error estimates for step-\(N \) Euler schemes [F-Victoir, JDE 07]
- RDE smoothness and Malliavin calculus [Cass-F, Annals of Math 09]
• Apply Davie’s lemma: get \(\{y_n\} \) with uniform Hölder bound \(c_4 \).

• Arzela–Ascoli \(\iff \) \(\{y_n : n \geq 1\} \) has limit points
 ... call them \emph{RDE solutions}

• More regularity \(\iff \) a bit work \(\iff \) \(\exists ! \) RDE solution \(y \equiv \Phi (x; y_0) \)
 and write
 \[
 dy = V (y) \, dx
 \]

... and this "Itô-Lyons" map \(\Phi \) is continuous in the above sense [Lyons 98].

• Various useful extensions ...
 - Error estimates for step-\(N \) Euler schemes [F-Victoir, JDE 07]
 - RDE smoothness and Malliavin calculus [Cass-F, Annals of Math 09]
 - Continuity of \(\Phi \) as flow of diffeomorphisms [Caruana-F, JDE 08]
• Apply Davie’s lemma: get \(\{y_n\} \) with uniform Hölder bound \(c_4 \).

• Arzela–Ascoli \(\implies \{y_n : n \geq 1\} \) has limit points
 ... call them \(RDE \) solutions

• More regularity + a bit work \(\implies \exists \) RDE solution \(y \equiv \Phi(x; y_0) \)
 and write
 \[
dy = V(y) \, dx
\]

... and this "Itô-Lyons" map \(\Phi \) is continuous in the above sense [Lyons 98].

• Various useful extensions ...
 • Error estimates for step-\(N \) Euler schemes [F-Victoir, JDE 07]
 • RDE smoothness and Malliavin calculus [Cass-F, Annals of Math 09]
 • Continuity of \(\Phi \) as flow of diffeomorphisms [Caruana-F, JDE 08]
 • Rough partial differential equations [Caruana-F-Oberhauser ...]
Examples of RDEs

- **ODEs:** For a smooth driving signal, RDEs are just ODEs. Even here, continuity statements are powerful.
Examples of RDEs

- **ODEs:** For a smooth driving signal, RDEs are just ODEs. Even here, continuity statements are powerful.

As example, consider

\[\dot{y} = V_1(y) + V_2(y) \iff dy = V_1(y) \, dt + V_2(y) \, dt; \]

we immediately get the (splitting) result

\[e^{\frac{1}{n}V_2} \circ e^{\frac{1}{n}V_1} \circ \cdots \circ e^{\frac{1}{n}V_2} \circ e^{\frac{1}{n}V_1} \rightarrow e^{V_1 + V_2} \]

where \(e^{tW} \) denotes the solution flow to \(\dot{z} = W(z) \).
Examples of RDEs

- **ODEs**: For a smooth driving signal, RDEs are just ODEs. Even here, continuity statements are powerful.

- As example, consider

\[
\dot{y} = V_1(y) + V_2(y) \iff dy = V_1(y) \, dt + V_2(y) \, dt;
\]

we immediately get the (splitting) result

\[
e^{\frac{1}{n} V_2} \circ e^{\frac{1}{n} V_1} \circ \cdots \circ e^{\frac{1}{n} V_2} \circ e^{\frac{1}{n} V_1} \to e^{V_1 + V_2}
\]

where \(e^{tW}\) denotes the solution flow to \(\dot{z} = W(z)\).

- Indeed, it suffices to approximation the diagonal \(t \mapsto (t, t)\) by a \(1/n\) - step function
Examples of RDEs

ODEs: For a smooth driving signal, RDEs are just ODEs. Even here, continuity statements are powerful.

As example, consider

\[\dot{y} = V_1(y) + V_2(y) \iff dy = V_1(y)\, dt + V_2(y)\, dt; \]

we immediately get the (splitting) result

\[e^{\frac{1}{n} V_2 \circ e^{\frac{1}{n} V_1 \circ \cdots \circ e^{\frac{1}{n} V_2 \circ e^{\frac{1}{n} V_1}}} \to e^{V_1+V_2} \]

where \(e^{tW} \) denotes the solution flow to \(\dot{z} = W(z) \).

Indeed, it suffices to approximation the diagonal \(t \mapsto (t, t) \) by a \(1/n \) step function.

This approximation converges with uniform 1-Hölder (i.e. Lipschitz) bounds.
Differential equations driven by pure area:

\[t \mapsto \mathbf{x}_t \equiv \begin{pmatrix} 0 & 0 \\ 0 & -t \end{pmatrix} \begin{pmatrix} 0 \\ t \end{pmatrix} \]

is the limit (with uniform 1/2-Hölder bounds ...) of the highly oscillatory

\[x_n(t) = n^{-1} \exp(2\pi in^2 t) \in \mathbb{C} \cong \mathbb{R}^2. \]

Given two vector fields \(V = (V_1, V_2) \) the RDE solution

\[dy = V(y) \, dx \quad (1) \]

models the effective behaviour of the highly oscillatory ODE

\[dy^n = V(y^n) \, dx^n \quad \text{as} \ n \to \infty. \]

In fact, the RDE solution of (1) solves the ODE

\[\dot{y} = [V_1, V_2](y) \]

where \([V_1, V_2]\) is the Lie bracket of \(V_1\) and \(V_2\).
Stochastic differential equations: Let B be d-dimensional Brownian motion. Since $B(\omega) \notin C^1$ careful interpretation of the stochastic differential equation

$$dy = V(y) \partial B$$

is necessary (Itô-theory). Define enhanced Brownian motion

$$B_t(\omega) = \left(B_t, \int_0^t B_s \otimes \partial B_s \right)$$

where ∂ indicates (Stratonovich) stochastic integration. Then

$$\mathbb{P}[B \text{ is a geometric rough path}] = 1.$$

In fact, martingale arguments shows that $B(\omega)$ is the limit of piecewise linear approximations (with uniform $(1/2 - \varepsilon)$-Hölder bounds ...).

RDE solution to $dy = V(y) dB$ is solved for fixed ω, depends continuously on B and yields a (classical) Stratonovich SDE solution ...
Caution: topology matters. Possible that, uniformly in t,

$$\left(B_t^{(n)}, \int_0^t B_s^{(n)} \otimes dB_s^{(n)} \right) \to \left(B_t, \int_0^t B_s \otimes \partial B_s \right)$$

while DE solutions converge to the "wrong" limit.
Caution: topology matters. Possible that, uniformly in t,

$$
\left(B_t^{(n)}, \int_0^t B_s^{(n)} \otimes dB_s^{(n)} \right) \rightarrow \left(B_t, \int_0^t B_s \otimes dB_s \right)
$$

while DE solutions converge to the "wrong" limit.

Key to understanding: view B as level-N rough path; [F-Oberhauser, JFA 09]
Caution: topology matters. Possible that, uniformly in t,

$$\left(B_t^{(n)}, \int_0^t B_s^{(n)} \otimes dB_s^{(n)} \right) \rightarrow \left(B_t, \int_0^t B_s \otimes dB_s \right)$$

while DE solutions converge to the "wrong" limit.

Key to understanding: view \mathbb{B} as level-N rough path; [F-Oberhauser, JFA 09]

By rough path continuity, this would *not* happen if, for some $\alpha \in (1/3, 1/2]$,

$$\left| \int_s^t dB_t^{(n)} \right| \vee \left| \int_s^t \int_s^r dB_s^{(n)} \otimes dB_s^{(n)} \right|^{1/2} \leq C(\omega) |t - s|^\alpha.$$
Differential equations with non-Brownian noise

- Recall \(BM = \text{martingale, Gaussian, Markov} \)
Differential equations with non-Brownian noise

- Recall BM = martingale, Gaussian, Markov
- SDE theory with (semi)martingale noise follows Itô’s approach and is well-known

Thanks to rough path theory:
- large and natural classes of the above processes can be lifted to rough paths with resulting path-by-path stochastic differential equations.
Differential equations with non-Brownian noise

- Recall BM = martingale, Gaussian, Markov
- SDE theory with (semi)martingale noise follows Itô’s approach and is well-known
- SDE theory with Gaussian noise is: previous to rough path theory restricted to special examples (e.g. fractional Brownian motion)
Recall BM = martingale, Gaussian, Markov

SDE theory with (semi)martingale noise follows Itô’s approach and is well-known

SDE theory with Gaussian noise is: previous to rough path theory restricted to special examples (e.g. fractional Brownian motion)

SDE theory with Markovian noise: previous to rough path theory, hardly anything
Differential equations with non-Brownian noise

- Recall BM = martingale, Gaussian, Markov
- SDE theory with (semi)martingale noise follows Itô’s approach and is well-known
- SDE theory with Gaussian noise is: previous to rough path theory restricted to special examples (e.g. fractional Brownian motion)
- SDE theory with Markovian noise: previous to rough path theory, hardly anything
- **Thanks to rough path theory:** large and natural classes of the above processes can be lifted to rough paths with resulting path-by-path stochastic differential equations.
For $x \in C^1([0,1], \mathbb{R}^d)$, $x_0 = 0$, define generalized increments

$$x_{s,t} = \left(1, \int_s^t dx, \int_s^t \int_s^r dx \otimes dx\right) \in \mathbb{R} \oplus \mathbb{R}^d \oplus \mathbb{R}^{d \times d}, \ 0 \leq s \leq t \leq 1$$
Rough path spaces

- For \(x \in C^1([0, 1], \mathbb{R}^d) \), \(x_0 = 0 \), define generalized increments
 \[
 x_{s,t} = \left(1, \int_s^t dx, \int_s^t \int_s^r dx \otimes dx \right) \in \mathbb{R} \oplus \mathbb{R}^d \oplus \mathbb{R}^{d \times d}, \ 0 \leq s \leq t \leq 1
 \]

- The (vector) space \(\mathbb{R} \oplus \mathbb{R}^d \oplus \mathbb{R}^{d \times d} \) with basis
 \((1, b^i, b^{jk}; 1 \leq i, j, k \leq d) \) has (truncated tensor) algebra structure; e.g.
 \[
 2b^1 \otimes (4 - 3b^2) = 8b^1 - 6b^{12}
 \]
Rough path spaces

- For $x \in C^1([0, 1], \mathbb{R}^d)$, $x_0 = 0$, define generalized increments

$$x_{s,t} = \left(1, \int_s^t dx, \int_s^t \int_s^r dx \otimes dx \right) \in \mathbb{R} \oplus \mathbb{R}^d \oplus \mathbb{R}^{d \times d}, \quad 0 \leq s \leq t \leq 1$$

- The (vector) space $\mathbb{R} \oplus \mathbb{R}^d \oplus \mathbb{R}^{d \times d}$ with basis $(1, b^i, b^{jk}; 1 \leq i, j, k \leq d)$ has (truncated tensor) algebra structure; e.g.

$$2b^1 \otimes (4 - 3b^2) = 8b^1 - 6b^{12}$$

- $x_{s,t} \in T_1 := \{1\} \oplus \mathbb{R}^d \oplus \mathbb{R}^{d \times d}$ and $(T_1, \otimes, 1)$ is a Lie group

$$T_1 = \exp \left(\mathbb{R}^d \oplus \mathbb{R}^{d \times d} \right)$$
Rough path spaces

- For $x \in C^1([0,1], \mathbb{R}^d)$, $x_0 = 0$, define generalized increments

 $$x_{s,t} = \left(1, \int_s^t dx, \int_s^t \int_s^r dx \otimes dx\right) \in \mathbb{R} \oplus \mathbb{R}^d \oplus \mathbb{R}^{d \times d}, \quad 0 \leq s \leq t \leq 1$$

- The (vector) space $\mathbb{R} \oplus \mathbb{R}^d \oplus \mathbb{R}^{d \times d}$ with basis $(1, b^i, b^{jk}; 1 \leq i, j, k \leq d)$ has (truncated tensor) algebra structure; e.g.

 $$2b^1 \otimes (4 - 3b^2) = 8b^1 - 6b^{12}$$

- $x_{s,t} \in T_1 := \{1\} \oplus \mathbb{R}^d \oplus \mathbb{R}^{d \times d}$ and $(T_1, \otimes, 1)$ is a Lie group

 $$T_1 = \exp \left(\mathbb{R}^d \oplus \mathbb{R}^{d \times d}\right)$$

- Non-linear key identity [Chen '37]

 $$x_{s,t} \otimes x_{t,u} = x_{s,u}, \quad 0 \leq s \leq t \leq u \leq 1.$$
Actually, $x_{s,t} \in G := \exp (\mathbb{R}^d \oplus so(d))$ since (1st order calculus!)

$$\text{Sym} \left(\int_s^t \int_s^r dx \otimes dx \right) = \frac{1}{2} \left(\int_s^t dx \right) \otimes \left(\int_s^t dx \right)$$

$G = \exp (\mathbb{R}^d \oplus so(d))$ is (a realization of) step-2 nilpotent Lie group with d generators.
Actually, \(x_{s,t} \in G := \exp (\mathbb{R}^d \oplus so(d)) \) since (1st order calculus!)

\[
\text{Sym} \left(\int_s^t \int_s^r dx \otimes dx \right) = \frac{1}{2} \left(\int_s^t dx \right) \otimes \left(\int_s^t dx \right)
\]

\(G = \exp (\mathbb{R}^d \oplus so(d)) \) is (a realization of) step-2 nilpotent Lie group with \(d \) generators.

- geometric interpretation of \(\log (x_{s,t}) \): path- and area-increment
Actually, \(x_{s,t} \in G := \exp (\mathbb{R}^d \oplus so (d)) \) since (1st order calculus!)

\[
\text{Sym} \left(\int_s^t \int_s^r dx \otimes dx \right) = \frac{1}{2} \left(\int_s^t dx \right) \otimes \left(\int_s^t dx \right)
\]

\(G = \exp (\mathbb{R}^d \oplus so (d)) \) is (a realization of) step-2 nilpotent Lie group with \(d \) generators

- geometric interpretation of \(\log (x_{s,t}) \): path- and area-increment
- For \(d = 2 \), \(G \) isomorphic to the 3-dimensional Heisenberg group
Actually, $x_{s,t} \in G := \exp (\mathbb{R}^d \oplus so(d))$ since (1st order calculus!)

$$\text{Sym} \left(\left(\int_s^t \int_s^r dx \otimes dx \right) \right) = \frac{1}{2} \left(\int_s^t dx \right) \otimes \left(\int_s^t dx \right)$$

$G = \exp (\mathbb{R}^d \oplus so(d))$ is (a realization of) step-2 nilpotent Lie group with d generators

g geometric interpretation of $\log (x_{s,t})$: path- and area-increment

For $d = 2$, G isomorphic to the 3-dimensional Heisenberg group

Familiar concepts (scalar product, norm) generalize
Actually, $\mathbf{x}_{s,t} \in G := \exp (\mathbb{R}^d \oplus so(d))$ since (1st order calculus!)

$$\text{Sym} \left(\int_s^t \int_s^r dx \otimes dx \right) = \frac{1}{2} \left(\int_s^t dx \right) \otimes \left(\int_s^t dx \right)$$

$G = \exp (\mathbb{R}^d \oplus so(d))$ is (a realization of) step-2 nilpotent Lie group with d generators

group with d generators

- geometric interpretation of $\log (\mathbf{x}_{s,t})$: path- and area-increment
- For $d = 2$, G isomorphic to the 3-dimensional Heisenberg group
- Familiar concepts (scalar product, norm) generalize
 - Dilation $\delta_\lambda (1 + \nu + M) = 1 + \lambda \nu + \lambda^2 M$
Actually, \(x_{s,t} \in G := \exp (\mathbb{R}^d \oplus so(d)) \) since (1st order calculus!)

\[
\text{Sym} \left(\int_s^t \int_s^r dx \otimes dx \right) = \frac{1}{2} \left(\int_s^t dx \right) \otimes \left(\int_s^t dx \right)
\]

\(G = \exp (\mathbb{R}^d \oplus so(d)) \) is (a realization of) step-2 nilpotent Lie group with \(d \) generators.

- geometric interpretation of \(\log (x_{s,t}) \) : path- and area-increment
- For \(d = 2 \), \(G \) isomorphic to the 3-dimensional Heisenberg group
- Familiar concepts (scalar product, norm) generalize
 - Dilation \(\delta_\lambda (1 + v + M) = 1 + \lambda v + \lambda^2 M \)
 - Carnot-Carathöedory norm:
 \[
 \|1 + v + M\|_{CC} \sim |v| \vee |M|^{1/2} \sim |v| \vee |\text{Anti} (M)|^{1/2}
 \]
Actually, $x_{s,t} \in G := \exp(\mathbb{R}^d \oplus so(d))$ since (1st order calculus!)
\[
\text{Sym} \left(\int_s^t \int_s^r dx \otimes dx \right) = \frac{1}{2} \left(\int_s^t dx \right) \otimes \left(\int_s^t dx \right)
\]
$G = \exp(\mathbb{R}^d \oplus so(d))$ is (a realization of) step-2 nilpotent Lie group with d generators
- geometric interpretation of $\log(x_{s,t})$: path- and area-increment
- For $d = 2$, G isomorphic to the 3-dimensional Heisenberg group
- Familiar concepts (scalar product, norm) generalize
 - Dilation $\delta_\lambda (1 + \nu + M) = 1 + \lambda \nu + \lambda^2 M$
 - Carnot-Carathéodory norm:
 \[
 \|1 + \nu + M\|_{CC} \sim |\nu| \vee |M|^{1/2} \sim |\nu| \vee |\text{Anti}(M)|^{1/2}
 \]
- $x_t := x_{0,t}$ defines a G-valued path (which lifts x) and $x_{s,t} = x_s^{-1} \otimes x_t$
Recall our assumption in Davie’s lemma:

$$\left| \int_s^t dx \right| \vee \left| \int_s^t \int_s^r dx \otimes dx \right|^{1/2} \leq c_1 |t - s|^\alpha$$

... this says precisely that $t \mapsto x_t$ is a Hölder continuous path, with exponent α, in the space G with Carnot-Caratheodory metric

$$d_{CC} (x_s, x_t) := \left\| x_s^{-1} \otimes x_t \right\|_{CC} = \left\| x_{s,t} \right\|_{CC}.$$
Recall our assumption in Davie’s lemma:

\[
\left| \int_s^t dx \right| \vee \left| \int_s^t \int_s^r dx \otimes dx \right|^{1/2} \leq c_1 |t - s|^{\alpha}
\]

... this says precisely that \(t \mapsto x_t \) is a Hölder continuous path, with exponent \(\alpha \), in the space \(G \) with Carnot-Caratheodory metric

\[
d_{CC} (x_s, x_t) := \| x_s^{-1} \otimes x_t \|_{CC} = \| x_{s,t} \|_{CC}.
\]

The space of all (\(\alpha \)-Hölder, geometric) rough paths [previously introduced as pointwise limits of \(C^1 \)-paths + iterated integrals subject to uniform \(\alpha \)-Hölder bounds] is precisely

\[
\left\{ x \in C ([0, 1], G) : \sup_{0 \leq s < t \leq 1} \frac{d_{CC} (x_s, x_t)}{|t - s|^{\alpha}} < \infty \right\}
\]
Recall our assumption in Davie’s lemma:

\[
\left| \int_s^t dx \right| \vee \left| \int_s^t \int_s^r dx \otimes dx \right|^{1/2} \leq c_1 |t - s|^\alpha
\]

... this says precisely that \(t \mapsto x_t \) is a Hölder continuous path, with exponent \(\alpha \), in the space \(G \) with Carnot-Caratheodory metric

\[
d_{CC} (x_s, x_t) := \left\| x_s^{-1} \otimes x_t \right\|_{CC} = \left\| x_{s,t} \right\|_{CC}.
\]

The space of all \((\alpha\text{-Hölder, geometric})\) rough paths [previously introduced as pointwise limits of \(C^1 \)-paths + iterated integrals subject to uniform \(\alpha \)-Hölder bounds] is precisely

\[
\left\{ x \in C([0,1], G) : \sup_{0 \leq s < t \leq 1} \frac{d_{CC} (x_s, x_t)}{|t - s|^\alpha} < \infty \right\}
\]

Very convenient! E.g. to show rough path regularity of \(B_t (\omega) \) ...
Theorem [Donsker ’52] Under finite second moment assumptions, renormalized random walk in \mathbb{R}^d converges weakly (in sup-topology) to BM.
Theorem [Donsker ’52] Under finite second moment assumptions, renormalized random walk in \mathbb{R}^d converges weakly (in sup-topology) to BM.

Theorem [Lamperti ’62] Assuming finite moments of all order, convergence holds in α-Hölder topology, any $\alpha < 1/2$.

Corollary: Universal limit theorem for Markov chain approximations to stochastic differential equations.
Donsker’s theorem revisited

- **Theorem [Donsker ’52]** Under finite second moment assumptions, renormalized random walk in \mathbb{R}^d converges weakly (in sup-topology) to BM.

- **Theorem [Lamperti ’62]** Assuming finite moments of all order, convergence holds in α-Hölder topology, any $\alpha < 1/2$.

- **Theorem [Breuillard-F-Huessman, Proc. AMS ’09]** Under previous assumptions, convergence holds in α-Hölder rough path topology, $\alpha < 1/2$.

Corollary: Universal limit theorem for Markov chain approximations to stochastic differential equations.

P. K. Friz (TU Berlin and WIAS)
rough paths, gap ODE/SDEs
December 2009
20 / 22
Donsker’s theorem revisited

- **Theorem [Donsker ’52]** Under finite second moment assumptions, renormalized random walk in \mathbb{R}^d converges weakly (in sup-topology) to BM.

- **Theorem [Lamperti ’62]** Assuming finite moments of all order, convergence holds in α-Hölder topology, any $\alpha < 1/2$.

- **Theorem [Breuillard-F-Huessman, Proc. AMS ’09]** Under previous assumptions, convergence holds in α-Hölder rough path topology, $\alpha < 1/2$.

- **Corollary:** Universal limit theorem for Markov chain approximations to stochastic differential equations.
Sketch of proof:

Random walk can be viewed as random walk \((\xi_i)\) on the step-2 free nilpotent group.
Sketch of proof:

- Random walk can be viewed as random walk \((\xi_i)\) on the step-2 free nilpotent group.
- Convergence of f.d.d. follows from a CLT on free nilpotent groups.
Sketch of proof:

- Random walk can be viewed as random walk \((\xi_i)\) on the step-2 free nilpotent group.
- Convergence of f.d.d. follows from a CLT on free nilpotent groups.
- Remains to establish tightness in \(\alpha\)-Hölder rough path topology:

\[\mathbb{E} h_k \xi_1 \xi_k 4 p CC i = O k 2 p. \]
Sketch of proof:

Random walk can be viewed as random walk \((\xi_i)\) on the step-2 free nilpotent group.

Convergence of f.d.d. follows from a CLT on free nilpotent groups.

Remains to establish tightness in \(\alpha\)-Hölder rough path topology:

Boils down to showing

\[
\forall p < \infty : \mathbb{E} \left[\| \xi_1 \ast \cdots \ast \xi_k \|_{CC}^{4p} \right] = O(k^{2p}).
\]
If you want to read more about this:

- **[Lyons, Qian '02]:** System control and rough paths, Oxford Univ. Press

- [Caruana, Levy, Lyons '05]: Differential equations driven by rough paths, St. Flour lecture...
 - google "st_flour" and find Lyons' handwritten St. Flour notes

- **[Friz, Victoir '10]:** Multidimensional stochastic processes as rough paths, Cambridge Univ. Press
 - download the pdf from my homepage
References

- If you want to read more about this:

- [Lyons, Qian ’02]: System control and rough paths, Oxford Univ. Press

- [Caruana, Levy, Lyons ’05]: Differential equations driven by rough paths, St. Flours lecture
If you want to read more about this:

- **[Lyons, Qian '02]**: System control and rough paths, Oxford Univ. Press
- **[Caruana, Levy, Lyons '05]**: Differential equations driven by rough paths, St. Flours lecture
- ... google "st_flour" and find Lyons’ handwritten St. Flour notes
If you want to read more about this:

[Lyons, Qian ’02]: System control and rough paths, Oxford Univ. Press

[Caruana, Levy, Lyons ’05]: Differential equations driven by rough paths, St. Flours lecture

... google "st_flour" and find Lyons’ handwritten St. Flour notes

[Friz, Victoir ’10]: Multidimensional stochastic processes as rough paths, Cambridge Univ. Press
If you want to read more about this:

[Lyons, Qian ’02]: System control and rough paths, Oxford Univ. Press

[Caruana, Levy, Lyons ’05]: Differential equations driven by rough paths, St. Flours lecture

... google "st_flour" and find Lyons’ handwritten St. Flour notes

[Friz, Victoir ’10]: Multidimensional stochastic processes as rough paths, Cambridge Univ. Press

... download the pdf from my homepage