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The second law of thermodynamics

Joule and Carnot studied ways to improve the
efficiency of steam engines.

Is 1t possible for a thermodynamic system to move from
state A to state B without any net energy being put into the
system from outside?

A single experimental quantity, dubbed entropy, made it
possible to decide the direction of thermodynamic changes.



The second law of thermodynamics

The entropy of a closed system increases with time.

The second law applies to all changes: not just
thermodynamic.

Entropy measures the extent to which energy is dispersed:
so the second law states that energy tends to disperse.



The second law of thermodynamics

We expect that a closed system will approach an
equilibrium with maximum entropy.



Information theory

Shannon showed that a noisy channel can communicate
information with almost perfect accuracy, up to a fixed rate:
the capacity of the channel.

The (Shannon) entropy of a probability distribution: if the
possible states have probabilities p,, p,,..., p, then the
entropy 1s

' p/log p,

Entropy measures the number of (YES/NO) questions that
you expect to have to ask 1n order to find out which state has
occurred.



Information theory

You can distinguish 2* ®
states with £ (YES/NO) O
questions.

If the states are equally
likely, then this is the © ®
best you can do.

It costs k questions to 1dentify a state from among 2 equally
likely states.



Information theory

It costs k questions to 1dentify a state from among 2 equally
likely states.

It costs log, n questions to 1dentify a state from among »
equally likely states: to identify a state with probability //n.

Probability Questions

1/n log, n

P log, (1/p)



The entropy

State  Probability Questions Uncertainty
5, P log, (1/p,) p,log, (1/p,)
5, 2 log, (1/p,) p,log, (1/p,)
55 Ps log, (1/p;) pslog, (1/ps)

Entropy = p, log, (1/p,) + p,log, (1/p,) + p; log, (1/p;) + ...



Continuous random variables

For a random variable X with density f the entropy 1s

Ent(X)=! flogf

The entropy behaves nicely under several natural
processes: for example, the evolution governed by the
heat equation.

10



If the density f measures the distribution of heat in an infinite
metal bar, then f evolves according to the heat equation:

!

. "

't

The entropy increases:

"—t( flogf ) fTQ# 0

T

Fisher information



The central limit theorem

If X are independent copies of a random variable with mean
0 and finite variance, then the normalized sums

Ly Xi

Jn G

converge to a Gaussian (normal) with the same variance.

Most proofs give little intuition as to why.



The central limit theorem

Among random variables with a given variance, the Gaussian
has largest entropy.

Theorem (Shannon-Stam) If X and Y are independent and
1dentically distributed, then the normalized sum

X +Y

J2

has entropy at least that of X and Y.




Idea

The central limit theorem 1s analogous to the second law of
thermodynamics: the normalized sums

_ Ly

| X
" n

-1
have increasing entropy which drives them to an
“equilibrium” which has maximum entropy.
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Problem: (folklore or Lieb (1978)).

Is 1t true that Ent(S,) increases with n?

Shannon-Stam shows that it increases as n goes from 1 to 2
(hence 2 to 4 and so on). Carlen and Soffer found uniform
estimates for entropy jump from 1 to 2.

It wasn’t known that entropy increases from 2 to 3.

The difficulty 1s that you can't express the sum of 3

independent random variables 1n terms of the sum of 2: you
can't add 3/2 independent copies of X.
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The Fourier transform?

The simplest proof (conceptually) of the central limit theorem
uses the FT. If X has density f whose FT is ! then the FT of
the density of ! X; is /",

The problem 1s that the entropy cannot easily be expressed 1n
terms of the FT. So we must stay 1n real space instead of
Fourier space.



Example:

Suppose X 1s uniformly
distributed on the interval
between 0 and 1. Its density
1S:

When we add two copies the
density 1is:




For 9 copies the density 1s
a spline defined by 9
different polynomials on
different parts of the
range.

The central polynomial (for example) 1s:

3 (857291 — 5027400 x + 12800340 x~ — 18438840 x° +
16391970 x*! — 9185400 x° + 3163860 x° — 612360 x + 51030 x°) / 4480

and 1ts logarithm 1s?



The second law of probability

A new variational approach to entropy gives quantitative
measures of entropy growth and proves the “second law”.

Theorem (Artstein, Ball, Barthe, Naor) If X. are independent
copies of a random variable with finite variance, then the
normalized sums

Ly Xi

Jn G

have increasing entropy.



Starting point: used by many authors. Instead of
considering entropy directly, we study the Fisher information:

_y L
J(X)=1

Among random variables with variance 1, the Gaussian
has the smallest Fisher information, namely 1.

The Fisher information should decrease as a process evolves.



The connection (we want) between entropy and Fisher
information 1s provided by the Ornstein-Uhlenbeck process
(de Bruin, Bakry and Emery, Barron).

Recall that 1f the density of X evolves according to the heat
equation then

|
'—tEnt(X(”) =J(X")

The heat equation can be solved by running a Brownian
motion from the initial distribution. The Ornstein-Uhlenbeck
process 1s like Brownian motion but run in a potential which
keeps the variance constant.



The Ornstein-Uhlenbeck process

A discrete analogue:

You have 7 sites, each of which can be ON or OFF. At each
time, pick a site (uniformly) at random and switch it.

X9 = (number on)-(number off).



The Ornstein-Uhlenbeck process

A typical path of the process.



The Ornstein-Uhlenbeck evolution

The density evolves according to the modified diffusion
equation:

!

= )
From this:
! (1) (1)
T Ent(xX ) =J(x) 1
As t! the evolutes approach the Gaussian of the same

variance.



The entropy gap can be found by integrating the information
gap along the evolution.

Ent(G) Ent(X®)=# (J(X*) 1)

In order to prove entropy increase, it suffices to prove that the

information
11 7
i=1 '

decreases with ».

It was known (Blachman-Stam) that J(2) ! J(1) .

25



Main new tool: a variational description of the

information of a marginal density.

If wis a density on " and e is a unit vector, then the marginal
in direction e has density

h(t) =
( ) te+<e>! W




Main new tool:

The density /4 1s a marginal of w and

AGH h'(t)z' o "
o = o L h't) = h(! logh)

J(h) =

The integrand 1s non-negative if 4 has concave logarithm.

Densities with concave logarithm have been widely studied in
high-dimensional geometry, because they naturally generalize
convex solids.



The Brunn-Minkowski inequality

Let A(x) be the cross-sectional area of a convex body at
position Xx.

Then log A4 1s concave.

The function A4 i1s a marginal of the body.



The Brunn-Minkowski inequality

We can replace the body by a function with concave
logarithm. If w has concave logarithm, then so does each of
1ts marginals.

If the density /4 1s a marginal of w, the inequality tells us
something about (! logh)" in terms of Hess(! log w)



The Brunn-Minkowski inequality

If the density /4 1s a marginal of w, the inequality tells us
something about (! logh)" in terms of Hess(! log w)

We rewrite a proof of the Brunn-Minkowski inequality so
as to provide an explicit relationship between the two. The
expression involving the Hessian 1s a quadratic form
whose minimum 1s the information of 4.

This gives rise to the variational principle.
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The variational principle

Theorem If w 1s a density and e a unit vector then the
information of the marginal in the direction e 1s

T(h) = 'h'(t) / =min' div(pw)
e h(t) o N W

where the minimum is taken over vector fields p satisfying

'p,e #1.



J(h) = '—dh )t = min | divpw)
o h(l‘) o w

Technically we have gained because 4(?) 1s an integral: not
good 1n the denominator.

The real point 1s that we get to choose p. Instead of
choosing the optimal p which yields the intractable
formula for information, we choose a non-optimal p with
which we can work.



Proof of the variational principle.

ht)= W

te+<e
SO

hi(t) = 5%4@’ W

If p satisfies ! p,e # 1 at each point, then we can realise
the derivative as

R = divew

since the part of the divergence perpendicular to e
integrates to 0 by the Gauss-Green (divergence) theorem.



Hence

'(t)2 . Og% » le(pW)jdt diV(pW)2
@(z‘) /0 % % w

There 1s equality 1f

div(pw) = hh'((;)) w

This divergence equation has many solutions: for example
we might try the electrostatic field solution. But this does not
decay fast enough at infinity to make the divergence theorem
valid.




div(pw) = % w

The right solution for p 1s a flow 1n the direction of e
which transports between the probability measures
induced by w on hyperplanes perpendicular to e.

For example, if w 1s 1 on a triangle
and 0 elsewhere, the flow 1s as
shown. (The flow 1s 1rrelevant
where w = 0.)




The second law of probability

Theorem If X are independent copies of a random variable
with variance, then the normalized sums

L' Xi

Jn G

have increasing entropy.



