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The second law of thermodynamics

Joule and Carnot studied ways to improve the
efficiency of steam engines.

Is it possible for a thermodynamic system to move from
state A to state B without any net energy being put into the
system from outside?

A single experimental quantity, dubbed entropy, made it
possible to decide the direction of thermodynamic changes.



The second law of thermodynamics

The entropy of a closed system increases with time.

The second law applies to all changes: not just
thermodynamic.

Entropy measures the extent to which energy is dispersed:
so the second law states that energy tends to disperse.



The second law of thermodynamics

Closed systems become progressively more featureless.

We expect that a closed system will approach an
equilibrium with maximum entropy.



Information theory

Shannon showed that a noisy channel can communicate
information with almost perfect accuracy, up to a fixed rate:
the capacity of the channel.

The (Shannon) entropy of a probability distribution: if the
possible states have probabilities                        then the
entropy is

Entropy measures the number of (YES/NO) questions that
you expect to have to ask in order to find out which state has
occurred.
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Information theory

You can distinguish 2k

states with k (YES/NO)
questions.

If the states are equally
likely, then this is the
best you can do.

It costs k questions to identify a state from among 2k equally
likely states.



Information theory
It costs k questions to identify a state from among 2k equally
likely states.

It costs log2 n questions to identify a state from among n
equally likely states: to identify a state with probability 1/n.

   log2 (1/p)            p

     log2 n          1/n

   Questions    Probability



   p3 log2 (1/p3)  log2 (1/p3)      p3   S3

   p2 log2 (1/p2)  log2 (1/p2)      p2   S2

   p1 log2 (1/p1)  log2 (1/p1)      p1   S1

     Uncertainty   Questions ProbabilityState

Entropy = p1 log2 (1/p1) + p2 log2 (1/p2) + p3 log2 (1/p3) + …

The entropy



Continuous random variables

For a random variable X with density f the entropy is

The entropy behaves nicely under several natural
processes: for example, the evolution governed by the
heat equation.

( )Ent logX f f= !   
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If the density f measures the distribution of heat in an infinite
metal bar, then f evolves according to the heat equation:

The entropy increases:
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Fisher information



The central limit theorem

If Xi are independent copies of a random variable with mean
0 and finite variance, then the normalized sums

converge to a Gaussian (normal) with the same variance.

Most proofs give little intuition as to why.
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The central limit theorem
Among random variables with a given variance, the Gaussian
has largest entropy.

Theorem (Shannon-Stam) If X and Y are independent and
identically distributed, then the normalized sum

has entropy at least that of X and Y.
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Idea

The central limit theorem is analogous to the second law of
thermodynamics: the normalized sums

have increasing entropy which drives them to an
“equilibrium” which has maximum entropy.
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Problem: (folklore or Lieb (1978)).

Is it true that Ent(Sn) increases with n?

Shannon-Stam shows that it increases as n goes from 1 to 2
(hence 2 to 4 and so on). Carlen and Soffer found uniform
estimates for entropy jump from 1 to 2.

It wasn’t known that entropy increases from 2 to 3.

The difficulty is that you can't express the sum of 3
independent random variables in terms of the sum of 2: you
can't add 3/2 independent copies of X.
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The Fourier transform?

The simplest proof (conceptually) of the central limit theorem
uses the FT. If X has density f whose FT is       then the FT of
the density of           is      .

The problem is that the entropy cannot easily be expressed in
terms of the FT. So we must stay in real space instead of
Fourier space.
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Example:

Suppose X is uniformly
distributed on the interval
between 0 and 1. Its density
is:

When we add two copies the
density is:



For 9 copies the density is
a spline defined by 9
different polynomials on
different parts of the
range.

The central polynomial (for example) is:

and its logarithm is?



A new variational approach to entropy  gives quantitative
measures of entropy growth and proves the “second law”.

Theorem (Artstein, Ball, Barthe, Naor) If Xi  are independent
copies of a random variable with finite variance, then the
normalized sums

have increasing entropy.
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The second law of probability



Starting point: used by many authors. Instead of
considering entropy directly, we study the Fisher information:

Among random variables with variance 1, the Gaussian
has the smallest Fisher information, namely 1.

The Fisher information should decrease as a process evolves.
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The connection (we want) between entropy and Fisher
information is provided by the Ornstein-Uhlenbeck process
(de Bruijn, Bakry and Emery, Barron).

Recall that if the density of X(t) evolves according to the heat
equation then

The heat equation can be solved by running a Brownian
motion from the initial distribution. The Ornstein-Uhlenbeck
process is like Brownian motion but run in a potential which
keeps the variance constant.
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The Ornstein-Uhlenbeck process

A discrete analogue:

You have n sites, each of which can be ON or OFF. At each
time, pick a site (uniformly) at random and switch it.

                         X(t) = (number on)-(number off).



The Ornstein-Uhlenbeck process

A typical path of the process.



The Ornstein-Uhlenbeck evolution

The density evolves according to the modified diffusion
equation:

From this:

As                the evolutes approach the Gaussian of the same
variance.
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The entropy gap can be found by integrating the information
gap along the evolution.

In order to prove entropy increase, it suffices to prove that the
information

decreases with n.

It was known (Blachman-Stam) that                      .
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Main new tool: a variational description of the
information of a marginal density.

If w is a density on        and e is a unit vector, then the marginal
in direction e has density

n 
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Main new tool:
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The density h is a marginal of w and

The integrand is non-negative if h has concave logarithm.

Densities with concave logarithm have been widely studied in
high-dimensional geometry, because they naturally generalize
convex solids.



The Brunn-Minkowski inequality

Let A(x) be the cross-sectional area of a convex body at
position x.

Then log A is concave.

The function A is a marginal of the body.

x



The Brunn-Minkowski inequality

We can replace the body by a function with concave
logarithm. If w has concave logarithm, then so does each of
its marginals.

x

If the density h is a marginal of w, the inequality tells us
something about                  in terms of( log ) ''h! Hess( log )w!



The Brunn-Minkowski inequality

If the density h is a marginal of w, the inequality tells us
something about                  in terms of( log ) ''h! Hess( log )w!

We rewrite a proof of the Brunn-Minkowski inequality so
as to provide an explicit relationship between the two. The
expression involving the Hessian is a quadratic form
whose minimum is the information of h.

This gives rise to the variational principle.
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The variational principle

Theorem  If w is a density and e a unit vector then the
information of the marginal in the direction e is

where the minimum is taken over vector fields p satisfying
, 1.p e!  #
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Technically we have gained because h(t) is an integral: not
good in the denominator.

The real point is that we get to choose p. Instead of
choosing the optimal p which yields the intractable
formula for information, we choose a non-optimal p with
which we can work.
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Proof of the variational principle.

so

If p satisfies                    at each point, then we can realise
the derivative as

since the part of the divergence perpendicular to e
integrates to 0 by the Gauss-Green (divergence) theorem.
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Hence

There is equality if

This divergence equation has many solutions: for example
we might try the electrostatic field solution. But this does not
decay fast enough at infinity to make the divergence theorem
valid.
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'( )div( ) ( )
h tpw wh t=

The right solution for p is a flow in the direction of e
which transports between the probability measures
induced by w on hyperplanes perpendicular to e.

For example, if w is 1 on a triangle
and 0 elsewhere, the flow is as
shown. (The flow is irrelevant
where w = 0.)

e



Theorem If Xi  are independent copies of a random variable
with variance, then the normalized sums

have increasing entropy.
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The second law of probability


