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Part I

Abstract

Polytopes are a classical object of convex geometry.

They play a key role in many modern fields of research,

such as algebraic and symplectic geometry, toric

geometry and toric topology, enumerative combinatorics,

and mathematical physics.

We describe the results of a new approach based on

a differential ring of combinatorial polytopes.

This approach allows to apply the theory of

differential equations to the study of polytopes.

As an application we consider the differential subrings

of nestohedra and describe explicitly the generating

functions of important families of graph­associahedra.
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Basic definitions

Let us consider the n­dimensional Euclidean space Rn.

A point x ∈ Rn is x = (x1, . . . , xn), where xk ∈ R,

k = 1, . . . , n, is a real number.

Definition 1. A convex hull of a finite set {v1, . . . , vN}
of points in Rn is

conv(v1, . . . , vN) =

{
x ∈ Rn : x =

N∑

i=1

tivi, ti > 0,

N∑

i=1

ti = 1

}
.

Definition 2. For some set {v1, . . . , vN} of points

a convex polytope in Rn is

P = conv(v1, . . . , vN).

We will speak about polytopes without including the

word “convex”.

Example. Polytopes in R2
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Definition 3. An n­dim convex polyhedron P is

an intersection of finitely many half­spaces in Rn:

P =
{
x ∈ Rn : 〈li, x〉 + ai > 0, i = 1, . . . ,m

}
, (1)

where 〈·, ·〉 is the canonical scalar product in Rn

and li ∈ Rn, ai ∈ R, i = 1, . . . ,m.

A polytope is a bounded convex polyhedron.

Agreement. Suppose that a polytope Pn is represented

as an intersection of half­spaces as in (1).

In the sequel we assume that there are no redundant

inequalities 〈li, x〉 + ai > 0 in such a representation.

That is, no inequality can be removed from (1) without

changing the polytope Pn.
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In this case Pn has exactly m facets which are

the intersections of the hyperplanes 〈li, x〉 + ai = 0,

i = 1, . . . ,m, with Pn.

The vector li is orthogonal to the corresponding facet

and points towards the interior of the polytope.

Definitions 2 and 3 produce the same geometrical

object, i.e. a subset of Rn is a convex hull of a finite

point set if and only if it is a bounded intersection

of finitely many half­spaces.
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The notion of generic polytope depends on the choice

of definition of convex polytope.

A set of m > n points in Rn is in general position

if no (n + 1) of them lie in a common affine hyperplane.

Now Definition 2 suggests to call a convex polytope

generic if it is the convex hull of a set of general

positioned points.

This implies that all proper faces of the polytope

are simplices, i.e. every facet has the minimal

number of vertices (namely, n).

Such polytopes are called simplicial.
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On the other hand, a set of m > n hyperplanes

〈li, x〉+ai = 0, li ∈ Rn, x ∈ Rn, ai ∈ R, i = 1, . . . ,m,

is in general position if no point belongs to more than

n hyperplanes.

From the viewpoint of Definition 3, a convex polytope

Pn is generic if its bounding hyperplanes are in general

position.

That is, there are exactly n facets meeting at each

vertex of Pn. Such polytopes are called simple.

Note that each face of a simple polytope is again

a simple polytope.
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Differential ring of combinatorial polytopes

Definition. Two polytopes P1 and P2 of the same

dimension are said to be combinatorially equivalent

if there is a bijection between their sets of faces

that preserves the inclusion relation.

Definition. A combinatorial polytope is a class

of combinatorial equivalent polytopes.

Denote by P2n the free abelian group generated by all

n­dimensional combinatorial polytopes.

For n > 1 we have the direct sum

P
2n =

∑

m>n+1

P
2n,2(m−n),

where Pn ∈P2n,2(m−n) if it is a polytope with m facets

and rankP2n,2(m−n) <∞ for any fixed n and m.
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Definition. The product of polytopes turns the direct

sum

P =
∑

n>0

P
2n = P

0 +
∑

m>2

m−1∑

n=1

P
2n,2(m−n)

into a bigraded commutative associative ring,

the ring of polytopes. The unit is P0, a point.

The direct product Pn
1 × Pm

2 of simple polytopes

Pn
1 and Pm

2 is a simple polytope as well.

Thus the ring Ps generated by simple polytopes is

a subring in P.

A polytope is indecomposable if it can not be repre­

sented as a product of two other polytopes of positive

dimension.

Theorem. The ring P is a polynomial ring generated

by indecomposable combinatorial polytopes.
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Let Pn be a polytope. Denote by dPn the disjoint union

of all its facets.

Lemma. There is a linear operator of degree −2

d : P −→P,

such that

d(P
n1
1 P

n2
2 ) = (dP

n1
1 )P

n2
2 + P

n1
1 (dP

n2
2 ).

Thus, P is a differential ring, and Ps is a differential

subring in P.

Examples:

dIn = n(dI )In−1 = 2nIn−1,

d∆
n = (n + 1)∆n−1,

where ∆n is the standard n­simplex and

In = I × · · · × I is the standard n­cube.
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f­polynomial (face­polynomial)

Consider the linear map

f : P −→ Z[α, t],

which sends a polytope Pn to the homogeneous

face­polynomial

f (Pn) = αn+ fn−1,1α
n−1t+ · · ·+ f1,n−1αt

n−1+ f0,nt
n,

where fk,n−k = fk,n−k(Pn) is the number of its k­dim

faces.

Thus fn−1,1 is the number of facets and f0,n is the

number of vertices.

Theorem.

1. The mapping f is a ring homomorphism.

2. Let P be a polytope, then

f (dP) = ∂
∂tf (P)

if and only if P is simple.

Theorem. Let f̂ : Ps → Z[t,α] be a linear map such that

f̂ (dPn) =
∂

∂t
f̂ (Pn) and f̂ (Pn)|t=0 = αn.

Then f̂ (Pn) = f (Pn).
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Dehn–Sommerville relations

Theorem. For any simple polytope Pn we have

f (Pn)(α, t) = f (Pn)(−α,α + t).

Proof. We have

f (P0)(α, t) = 1 = f (P0)(−α,α + t).

By induction let it be true for all k 6 n. Then

f (dPn+1)(α, t) = f (dPn+1)(−α,α + t).

Thus

∂

∂t
f (Pn+1)(α, t) =

∂

∂t
f (Pn+1)(−α,α + t).

Hence,

f (Pn+1)(α, t)− f (Pn+1)(−α,α + t) = c(α).
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The simple polytope Pn+1 has the canonical structure

of a cellular complex, where faces are cells. Thus,

f (−α,α) =
(
(−1)n+1 + (−1)nfn,1 + · · · + f0,n+1

)
αn+1 =

= χ(Pn+1)αn+1 = αn+1.

Here χ(Pn+1) is the Euler characteristic of Pn+1.

Therefore,

c(α) = f (Pn+1)(α, 0)− f (Pn+1)(−α,α) = 0.

The Dehn–Sommerville relations were established

by Dehn for n 6 5 in 1905 and by Sommerville in the

general case in 1927 in the form of equations

fk,n−k =
k∑

j=0

(−1)j
(n− j

k− j

)
fj,n−j

which are equivalent to the formula

f (Pn)(α, t) = f (Pn)(−α,α + t).
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h­polynomial (height­polynomial)

Set h(Pn)(α, t) = αn+h1α
n−1t+· · ·+hn−1αtn−1+tn,

where h(Pn)(α, t) = f (Pn)(α− t, t).

From Dehn–Sommerville relations we obtain

h(Pn)(α, t) = h(Pn)(t,α).

For example,

h(In)(α, t) = (α + t)n =
n∑

k=0

(n
k

)
αn−ktk,

h(∆n)(α, t) =
αn+1 − tn+1

α− t
=

n∑

k=0

αn−ktk.

Corollary. Set ∂ = ∂
∂α

+ ∂
∂t.

1. The mapping h : P → Z[α, t] is the ring homomor­

phism such that h(Pn)(α, 0) = αn.

2. h(dPn) = ∂h(Pn) if and only if Pn is simple.

3. Let ĥ : Ps −→ Z[α, t] be a linear mapping such that

ĥ(dPn) = ∂ĥ(Pn), ĥ(Pn)(α, 0) = αn.

Then ĥ(Pn) = h(Pn).
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The Dehn–Sommerville relations did not become well­

known until V. Klee reproved them in a more general

context and obtained the following result.

Proposition. (Klee, 1964)

The Dehn–Sommerville relations are the most general

linear relations satisfied by f ­vectors of all simple poly­

topes.

Proof. Set Qk = ∆k ×∆n−k, k = 0, 1 . . . , [n2].

We have

h(Qk) =
αk+1 − tk+1

α− t
· α

n−k+1 − tn−k+1

α− t

and h(Qk+1)−h(Qk) = αn−k−1tk+1+. . .+αk+1tn−k−1.
Therefore the polynomials h(Qk), k = 0, 1 . . . , [n2],

are affinely independent.

In the Klee’s paper this statement was proved directly

in terms of f ­vectors. The usage of the ring homomor­

phism h : Ps → Z[α, t] significantly simplifies the proof.
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Minkowski sum

Let M1 and M2 be subsets in Rn.

Definition. A Minkowski sum of M1 and M2 is the set

{x ∈ Rn : x = x1 + x2, x1 ∈ M1, x2 ∈ M2}.

Lemma. If M1 and M2 are convex polytopes then

M1 +M2 is again a convex polytope.

The collection of all convex polytopes in Rn is denoted

by Mn.

The Minkowski sum gives an abelian monoid structure

on Mn, where zero 0 is the point 0 = (0, . . . , 0) ∈ Rn.

Proposition. Minkowski sum of two polytopes is

a polytope. Moreover, if P = conv(v1, . . . , vk) and

Q = conv(w1, . . . ,wl), then

P +Q = conv(v1 + w1, . . . , vi + wj, . . . , vk + wl).
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Minkowski sum of simplices

Let ei, i = 1, . . . , n+1, be the endpoints of the standard

basis vectors in Rn+1.

The Minkowski sum of the segments [0, ei], i = 1, 2, 3,

in R3 is the standard cube I 3.

More generally, in Rn the Minkowski sum of line

segments forms a polytope known as a zonotope.

The Minkowski sum of four edges of an octahedron with

a common vertex is a rhombic dodecahedron.

It is a convex polyhedron with 12 rhombic faces,

24 edges and 14 vertices.

Some minerals such as garnet form a rhombic dodeca­

hedral crystal habit. Honeybees use the geometry

of rhombic dodecahedra to form honeycomb.

It gives an example when a Minkowski sum of the simple

polytopes forms a nonsimple polytope.
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For every subset S ⊂ [n+1] = {1, . . . , n+1} consider

the regular simplex

∆S = conv(ei : i ∈ S) ⊂ Rn+1.

Let F be a collection of subsets S of [n + 1].

We assume that F contains all singletons {i},
1 6 i 6 n + 1.

Consider the convex polytope

PF =
∑

S∈F

∆S ⊂ Rn+1.

As usual, denote by |F | the number of elements in F .

Proposition. (E.­M. Feichtner, B. Sturmfels, 2005)

PF can be described as the intersection of the

hyperplane

HF =
{
x ∈ Rn+1 :

n+1∑

i=1

xi = |F |
}

with the halfspaces

HT ,> =
{
x ∈ Rn+1 :

∑

i∈T
xi >

∣∣∣F |T
∣∣∣
}

corresponding to all subsets T ⊂ [n + 1].
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Building sets

Definition. A collection B of non­empty subsets of

the set [n+ 1] = {1, . . . , n+ 1} is called a building set

if:

­ S′,S′′ ∈ B and S′ ∩ S′′ 6= ∅ ⇒ S′ ∪ S′′ ∈ B,

­ {i} ∈ B for all i ∈ [n + 1].

A building set B on [n+ 1] is said to be connected if

[n + 1] ∈ B.

Theorem. ( A. Postnikov, 2005, E.­M. Feichtner, B. Sturm­

fels, 2005) PB can be described as the intersection

of the hyperplane

PB =
{
x ∈ Rn+1 :

∑n+1
i=1 xi = |B|

}

with the halfspaces

HS =
{
x ∈ Rn+1 :

∑

i∈S
xi >

∣∣∣B|S
∣∣∣ for every S ∈ B

}
.

If B is connected, then this representation is irredun­

dant, that is, every hyperplane ∂HS with S 6= [n + 1]

defines a facet FS of PB
(so there are |B| − 1 facets in total).
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Theorem. The intersection of facets FS1 ∩ . . . ∩ FSk is

nonempty (and therefore gives a face of PB) if and only

if the following two conditions are satisfied:

(a) for any i, j, 1 6 i < j 6 k, either Si ⊂ Sj,

or Sj ⊂ Si, or Si ∩ Sj = ∅;

(b) if the sets Si1, . . . ,Sik are pairwise nonintersecting,

then Si1 ∪ . . . ∪ Sik /∈ B.

Definition. For any building set B the polytope PB
is called a nestohedron.

Corollary. The nestohedron PB is a simple polytope.

Definition. Let Γ be a simple graph (no loops, no

multiple edges) with vertex set [n+1] = {1, . . . , n+1}.
A graphical building set B(Γ) is the set of all

non­empty subsets S ⊂ [n+1] such that the graph Γ|S
is connected.

Lemma. The graphical building set B(Γ) is a building

set.

Definition. For any simple graph Γ the polytope PB(Γ)
is called a graph­associahedron.

21



Ring of building sets

Definition. Let Bi, i = 1, 2, be the building sets on

[ni + 1]. A map

ξ :
(
B1, [n1 + 1]

) −→ (
B2, [n2 + 1]

)

of the building sets is a map

ξ : [n1 + 1] −→ [n2 + 1]

such that ξ−1(S) ∈ B1 for any S ∈ B2.

Two building sets B1 and B2 on [n + 1] are said to be

equivalent, if there exists a permutation σ of [n + 1]

such that σ defines a map B1→ B2 and σ−1 defines

a map B2→ B1.

Denote by Bn the abelian group generated by the

equivalence classes of building sets on [k + 1], k 6 n.

Define the product of building sets Bl on [nl + 1], l = 1, 2,

as the building set B = B1 ·B2 on [n1+n2+2] induced

by joining the interval [n1 + 1] to the interval [n2 + 1].

Thus we introduce the structure of a commutative

associative ring B on the set
⋃

Bn.
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If B is a connected building set on [n + 1], then PB is

an n­dimensional simple polytope in Rn+1.

The ring B is multiplicatively generated by connected

building sets.

Let B be a building set on [n + 1], and let S ∈ B.

For every S ⊂ [n + 1], we set

B|S = {S′ ∈ B; S′ ⊆ S}

B/S = {S′ ⊂ [n + 1]\S; S′ ∈ B or S′ ∪ S ∈ B}.

If B is a connected building set on [n + 1], then B|S is

a connected building set on |S| and B/S is a connected

building set on [n+1−|S|] for any S ∈ B, S 6= [n+1].
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Consider the linear mapping d : B → B defined as

dB =
∑

S∈B\[n+1]

B|S · B/S,

if B is a connected building set on [n+1], and extended

to the whole ring B by the Leibnitz law

d(B1 · B2) = (dB1) · B2 + B1 · (dB2).

Theorem. The correspondence B→ PB defines the ring

homomorphism β : B →P such that β(dB) = dβ(B).

The graphical building sets PB(Γ) generate the differen­

tial subring T ⊂ B.
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Graph­associahedra

Let Γ be a finite simple graph.

When Γ is:
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the polytope PB(Γ) results in the:

­ associahedron (Stasheff polytope) Asn,

­ cyclohedron (Bott–Taubes polytope) Cyn,

­ permutohedron Pen,

­ stellohedron Stn, respectively.

As2 = St2 is a 5 gon and Cy2 = Pe2 is a 6 gon.
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Let Γ be a path with n edges {i, i + 1} for 1 6 i 6 n.

Then B(Γ) consists of all segments of the form

[i, j] = {i, i + 1, . . . , j} where 1 6 i 6 j 6 n + 1,

and PB(Γ) is associahedron Asn.

Associahedron As3 and 3­path.
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Let Γ be a cycle consisting of n + 1 edges {i, i + 1}
for 1 6 i 6 n and {n + 1, 1}. The corresponding

PB(Γ) is known as the cyclohedron Cyn or Bott–Taubes

polytope.
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Cyclohedron Cy3 and the corresponding graph
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Let Γ be a complete graph; then B(Γ) is the complete

building set on [n + 1] and PB(Γ) is the permutohedron

Pen.
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Permutohedron Pe3 and the corresponding graph
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Let Γ be a star consisting of n edges {i, n + 1}, 1 6 i 6 n,

emanating from one point. The corresponding PB(Γ)
is known as the stellohedron Stn

Stellohedron St3 and the corresponding 3­star graph

29



Using the general formula for dB, one can obtain

the explicit formulas for dPB(Γ):

dAsn =
∑

i+j=n−1
(i + 2)Asi × Asj

dCyn = (n + 1)
∑

i+j=n−1
Asi × Cyj

dPen =
∑

i+j=n−1

(n + 1

i + 1

)
Pei × Pej

dStn = n · Stn−1 +
n−1∑

i=0

(n
i

)
Sti × Pen−i−1

For example (see pictures),

dAs3 = 2As0 × As2 + 3As1 × As1 + 4As2 × As0 ;

dCy3 = 4(As0 × Cy2 + As1 × Cy1 + As2 × Cy0) ;

dPe3 = 4Pe0 × Pe2 + 6Pe1 × Pe1 + 4Pe2 × Pe0k ;

dSt3 = 3St2 + St0 × Pe2 + 3St1 × Pe1 + 3St2 × Pe0 .
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Families of polytopes and differential equations

We consider the following generating series of the six

sequences of nestohedra:

∆(x) =
∑

n>0

∆
n xn+1

(n + 1)!
;

I (x) =
∑

n>0

In
xn

n!
;

Pe(x) =
∑

n>0

Pen
xn+1

(n + 1)!
;

St(x) =
∑

n>0

Stn
xn

n!
;

As(x) =
∑

n>0

Asnxn+2 ;

Cy(x) =
∑

n>0

Cyn
xn+1

n + 1
.
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Lemma. The following relations hold:

d∆(x) = x∆(x) ;

dI (x) = 2xI (x) ;

dPe(x) = Pe2(x) ;

dSt(x) =
(
x + Pe(x)

)
St(x) ;

dAs(x) = As(x)
d

dx
As(x) ;

dCy(x) = As(x)
d

dx
Cy(x) .
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Theorem. Let F : P →P[t] : P 7→ F(P; t) be

a linear map such that

F(dPn; t) =
∂

∂t
F(Pn; t) and F(Pn; 0) = Pn

for any polytope Pn. Then

F(Pn; t) =
n∑

k=0

dkPnt
k

k!
.

Let P(x) =
∑

n>0
λnPnxn ∈P ⊗Q[[x]] be a generating

series of a family {Pn} of polytopes. Set

P(t, x) =
∑

n>0

λnF(P
n; t)xn.

We have P(0, x) = P(x).

Thus, for the series

∆(x), I (x), Pe(x), St(x), As(x), Cy(x)

we obtain the series

∆(t, x), I (t, x), Pe(t, x), St(t, x), As(t, x), Cy(t, x).
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Theorem.

∂

∂t
∆(t, x) = x∆(t, x) ;

∂

∂t
I (t, x) = 2xI (t, x) ;

∂

∂t
Pe(t, x) = Pe2(t, x) ;

∂

∂t
St(t, x) =

(
x + Pe(t, x)

)
St(t, x) ;

∂

∂t
As(t, x) = As(t, x)

∂

∂x
As(t, x) ;

∂

∂t
Cy(t, x) = As(t, x)

∂

∂x
Cy(t, x) .

Four of these equations, namely those corresponding to

the series ∆, I , Pe and St, are ordinary differential

equations. Their solutions are completely determined by

the initial data P(0, x) = P(x) and are given by explicit

formulae

∆(t, x) = ∆(x)etx ; I (t, x) = I (x)e2tx ;

Pe(t, x) =
Pe(x)

1− tPe(x)
; St(t, x) = St(x)

etx

1− tPe(x)
.
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Quasilinear Burgers–Hopf Equation

The Hopf equation (Eberhard F.Hopf, 1902–1983)

is the equation

Ut + ϕ(U)Ux = 0.

The Hopf equation with ϕ(U ) = U is a limit case

of the following equations:

Ut +UUx = µaUxx (the Burgers equation),

Ut +UUx = εaUxxx (the Korteweg–de Vries equation).

The Burgers equation (Johannes M.Burgers, 1895–1981)

occurs in various areas of applied mathematics

(fluid and gas dynamics, acoustics, traffic flow). It used

for describing of wave processes with velocity U and

viscosity coefficient µ. The case µ = 0 is a prototype

of equations whose solution can develop discontinuities

(shock waves).

K­d­V equation (Diederik J.Korteweg, 1848–1941 and

Hugo M. de Vries, 1848–1935) was introduced

as equation for the long waves over water (in 1895).

It appears also in plasma physics. Today K­d­V equation

is a most famous equation in soliton theory.
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Consider the ring homomorphism

ξ : P −→ Z[α] : ξ(Pn) = αn.

Then

ξF(Pn; t) =
n∑

k=0

ξ(dkPn)
tk

k!
= f (Pn)(α, t)

is the face­polynomial.

Set U(t, x;α,As) = ξAs(t, x).

Theorem. The function U (t, x;α,As) is the solution

of the Hopf equation

∂

∂t
U = U

∂

∂x
U

with the initial condition U(0, x) = x2

1−αx.

Corollary. The function U (t, x;α,As) satisfies

the equation

t(α + t)U2 − (1− (α + 2t)x)U + x2 = 0.
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Let us consider the Burgers equation

∂

∂t
U = U

∂

∂x
U − µa ∂

2

∂x2
U .

Set U =
∑

k>0
µkUk. Then

∑

k>0

µk
( ∂
∂t
Uk

)
=

(∑

k>0

µkUk

)(∑

k>0

µk
∂

∂x
Uk

)
−µa

∑

k>0

µk
∂2

∂x2
Uk.

Thus we obtain:

∂

∂t
U0 = U0

∂

∂x
U0,

∂

∂t
U1 =

∂

∂x
(U0U1)− a

∂2

∂x2
U0.

Lemma. The general solution to the equation

∂

∂t
V =

∂

∂x
(UV )− a

∂2

∂x2
U with V (0, x) = ψ(x)

have the form V = V0 +V1 where

∂

∂t
V0 =

∂

∂x
(UV0)− a

∂2

∂x2
U with V0(0, x) = 0,

∂

∂t
V1 =

∂

∂x
(UV1) with V1(0, x) = ψ(x).
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Set

U =
∑

l>0

bl(x)
tl

l!
, V0 =

∑

k>1

ck(x)
tk

k!
.

Then we obtain

c1(x)= −ab′′0 (x),

cn(x)=
∂

∂x




n−1∑

l=1

(n− 1

l

)
bl(x)cn−1−l(x)



−ab′′n−1(x), n > 1.

Set V (t, x;α,Cy) =
x∫

0
ξCy(t, x)dx.

Theorem. The function V (t, x;α,Cy) is the solution

of the equation

∂

∂t
V =

∂

∂x
(UV ) with V (0, x) = −1

α
ln(1− αx),

where U is the solution of the Hopf equation

∂

∂t
U = U

∂

∂x
U with U(0, x) =

x2

1− αx.
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Part II

Abstract

We construct a homomorphism from the ring of convex

polytopes to the ring of quasisymmetric functions over

integers. Two polytopes have the same image if and

only if their flag­vectors coincide.

We describe the image of this homomorphism in terms

of functional equations, which are perfected form of the

Bayer­Billera relations (generalized Dehn­Sommerville re­

lations).
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Quasisymmetric functions form a ring containing the ring

of classical symmetric functions. They are indexed

by compositions of positive integers in the way similar

to how symmetric functions are indexed by partitions.

Quasisymmetric functions arise naturally in diverse

areas of mathematics such as combinatorics, noncom­

mutative geometry, algebraic topology, Hecke algebras

and quantum groups.

We construct a homomorphism from the ring of convex

polytopes to the ring of quasisymmetric functions over

integers. Two polytopes have the same image if and

only if their flag­vectors coincide.

We show that the image over the rational numbers

of this homomorphism is a free commutative polynomial

algebra and describe this image over the integers

in terms of functional equations.
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Flag f ­vectors

For an n­dim polytope Pn the faces of all dimensions i,

0 6 i 6 n− 1, form a partially ordered set called

a face poset f p(Pn).

Let ω = (i1 < . . . < ik), where i1 > 0 and ik 6 n − 1.

Define fω(Pn) as the number of all chains

{Pi1 ⊂ . . . ⊂ Pik} in f p(Pn).

Definition. flag(Pn) = (fω : ω ⊆ [0, n − 1]), where

f∅ = 1.

Theorem. (M.Bayer, L.Billera, 1985)

For n­dim polytopes

dim aff{flag(Pn)} = cn − 1, n > 1,

where cn is the n­th Fibonacci number.

Note: For simple n­dim polytopes

dim aff{flag(Pn)} = [n2].

By definition cn = cn−1 + cn−2, n > 1, c0 = 1, c1 = 1.

The first Fibonacci numbers are:

1, 1, 2, 3, 5, 8, 13, 21
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Faces­operator

Let Pn be a polytope. Denote by dkP
n, k > 0,

the disjoint union of all its (n− k)­dimensional faces.

Lemma. There is a linear operator of degree −2k
dk : P −→P

such that

dkP
n1
1 P

n2
2 =

∑

i+j=k
(diP

n1
1 )(djP

n2
2 ).

Definition. The faces­operator is the linear map

Φ(t) : P −→P[t] : Φ(t)(Pn) =
∞∑
k=0

dkP
ntk.

Theorem.

1. Φ(t) is a ring homomorphism.

2. Φ(t)(Pn) = etd(Pn) if and only if Pn is simple.

3. The composition

Φ(α, t) : P
Φ(t)−→P[t]

ξ(α)−→ Z[α, t],

where ξ(α)(Pn) = αn and ξ(α)t = t, is the face­

polynomial ring homomorphism f .
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Flag­vector polynomial

Let Φ(t1) be a faces­operator.

Consider the extension of the faces­operator Φ(tm)

Φ̂(tm) : P[t1, . . . , tm−1] −→P[t1, . . . , tm], m > 1,

such that Φ̂(tm)(ti) = ti, 1 6 i < m.

Introduce the ring homomorphisms

F (t1, . . . , tm) : P −→P[t1, . . . , tm], m > 1,

by induction as the compositions

P
F (t1,...,tm−1)−→ P[t1, . . . , tm−1]

Φ̂(tm)−→ P[t1, . . . , tm].

We obtain the operator

F (t1, . . . , tm) = 1 +
∑

q>1

∑

|J |=q

dJ ζ(t
J)

where J = (j1, . . . , jk), ji 6= 0, i = 1, . . . , k, 1 6 k 6 m,

|J | = j1+· · ·+jk, dJ = djk · · · dj1, tJ = t
j1
1 · · · t

jk
k and

ζ(tJ) =
∑

16l1<···<lk6m
t
j1
l1
· · · tjklk.
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Application of quasisymmetric functions

Definition. A composition J of a number n is

an ordered set J = (j1, . . . , jk), ji > 1, such that

n = j1 + j2 + · · · + jk. Let us denote |J | = n.

The number of compositions of n into exactly k parts

is given by the binomial coefficient
(
n−1
k−1

)
.

Definition. A quasisymmetric monomial in m variables

for a composition J is the polynomial

ζ(tJ) =
∑

16l1<···<lk6m

t
j1
l1
. . . t

jk
lk

Lemma. The polynomial f ∈ Z[t1, . . . , tm] is a linear

combination of quasisymmetric monomials if and only if

f (t1, . . . , tm) satisfies the following conditions:

f (0, t1, t2, . . . , tm−1) = f (t1, 0, t2, . . . , tm−1) =

= f (t1, t2, 0, . . . , tm−1) = · · · = f (t1, t2, t3, . . . , tm−1, 0).
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Let QSym2n(m) ⊂ Z[t1, . . . , tm] be the subgroup

generated by the quasisymmetric monomials ζ(tJ)

corresponding to all compositions J = (j1, . . . , jk) of n,

where k 6 m. It is easy to see that for k 6 m− 1

ζ(tJ)(t1, . . . , tm−1, 0) = ζ(tJ)(t1, . . . , tm−1).

Set QSym2n = lim←−
m

QSym2n(m).

Lemma. QSym =
∑

n>0
QSym2n is a graded subring in

V =
∑

n>0

V2n = lim←−
m

Z[t1, . . . , tm],

where deg tk = 2.

Theorem. (M.Hazewinkel, 2001)

The algebra of quasisymmetric functions QSym is a free

commutative algebra of polynomials over the integers.

Since dimQSym2n = 2n−1, n > 1, the numbers βi of

the multiplicative generators of degree 2i of QSym can

be found by a recursive relation:

1− t

1− 2t
=
∞∏

i=1

1

(1− ti)βi
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Denote by F (α; t) the ring homomorphism

P
F (t)−→ P ⊗ QSym

ε̂(α)−→ QSym[α] ⊂ Z[α; t],

where ε̂(α) is the extension of the ring homomorphism

ε(α) : P −→ Z[α] : ε(α)(Pn) = αn, n > 0,

such that ε̂(α)(ti) = ti.

Lemma. Let Pn be an n­dim polytope. Then

F (Pn)(α; t) = αn +
n∑

q=1

αn−q
∑

|J |=q

fω(J)(P
n)ζ(tJ)

is a homogeneous polynomial of degree 2n.

Here fω(J)(P
n) for J = (j1, . . . , jk) is the ω­flag number

of Pn with ω = ω(J) = (i1 < · · · < ik), where

i1 = n− q, . . . , il = il−1 + jk−l+2, . . . , ik = ik−1 + j2

and q = |J |.
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Theorem. The image of the ring homomorphism

F (α, t) : P
2n −→ QSym(m)[α], m > n,

consists of all homogeneous polynomials f (α, t1, . . . , tm)

of degree n satisfying the equations:

1. f (α, t1,−t1, t3, . . . , tm) = f (α, 0, 0, t3, . . . , tm);

f (α, t1, t2,−t2, t4, . . . , tm) = f (α, t1, 0, 0, t4 . . . , tm);

. . .

f (α, t1, . . . , tm−2, tm−1,−tm−1) = f (α, t1, . . . , tm−2, 0, 0);

2. f (−α, t1, . . . , tm−1,α) = f (α, t1, . . . , tm−1, 0);

These equations are a perfected form of the Bayer­

Billera (generalized Dehn­Semmerville) relations.

Corollary. The image of the restriction of F (α, t)

on P2n
S consists of all homogeneous polynomials

f (α, t1, . . . , tm) = f1(α, t1 + . . . + tm)

where f1(α, t) is a homogeneous polynomial in two

variables of degree n satisfying the equations

f1(−α,α + t) = f1(α, t).

This equation is a perfected form of the classical

Dehn­Sommerville relations (see slide 13).
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Theorem. The image of the ring homomorphism

F (α, t) : P ⊗Q −→ QSym(m)[α]⊗Q

is a free polynomial algebra with the structure

of the graded Hopf algebra dual to the free associative

Lie­Hopf algebra Q〈u1, u2〉, where deg ui = 2i and

∆ui = ui ⊗ 1 + 1⊗ ui, i = 1, 2.

Since dimension of the 2n­th graded component of the

ring F (α, t)(P ⊗ Q) is equal to the n­th Fibonacci

number cn, there is a representation of the generating

series of Fibonacci numbers as an infinite product:

1

1− t − t2
=
∞∑

n=0

cnt
n =

∞∏

i=1

1

(1− ti)ki
,

where ki is the number of multiplicative generators

of degree 2i in the polynomial ring F (α, t)(P ⊗Q).

The infinite product converges absolutely in the interval

|t| <
√
5−1
2 . The numbers kn satisfy the inequalities

kn+1 > kn > Nn − 2, where Nn is the number of

the decompositions of n into the sum of odd numbers.
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