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Community structure in networks

Friend circles in social networks

Wikipedia pages of similar topics

Proteins with similar functionality inside a biological cell
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Network polarization

Division of the nodes of the network in response to a yes-no type question

1 To vote for candidate A or candidate B?

2 Should the capital punishment be practiced or not?

3 Should taxes be raised or not?
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How does a community structure affect the
polarization of a network?
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Zachary’s karate club

Network of members of a karate club with 34 nodes

A dispute about raising of the fees of the club

Club broke into two parts: President/Coach
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Zachary’s karate club

 

    Figure 2.5 Zachary's Karate Club
  

 
Having looked at a variety of networks and informally i
now develop the mathematical ideas and to
rigorously and understand the mathematics behind
 
 
3. Graph Theory Preliminaries
 
Networks are represented by mathematical models called 
word network is often used when the focus is on a 
usually refers to the mathematical model and its properties. 
 
A graph is an ordered pair (V, E), where V is a set of 
edges (links) between the vertices in V. Throughout this module we let N 
vertices in V which are denoted
 
Example 3.1 The graph G = (V, E) in Figure 3.1
E = {{1, 1}, {2, 1}, {1, 3}, {1, 3}, {2, 3}}. 
The graph has a loop from vertex 1 to itself.
 

                                  
    
   Figure 3.1 A graph with a repeated edge and a loop

Figure 2.5 Zachary's Karate Club before splitxx           Figure 2.6 Karate Club after the split

ooked at a variety of networks and informally introduced the notion of 
develop the mathematical ideas and tools that will help us to approach

rigorously and understand the mathematics behind community detection. 

Graph Theory Preliminaries 

Networks are represented by mathematical models called graphs. Regarding terminology, the 
is often used when the focus is on a real-world, complex system

the mathematical model and its properties.  

is an ordered pair (V, E), where V is a set of vertices (nodes) and E is a multiset of 
the vertices in V. Throughout this module we let N be 

which are denoted 1, 2, 3, ..., N. Also, we let L be the number of edges in E.  

graph G = (V, E) in Figure 3.1 has vertex set, V = {1, 2, 3} and multiset 
E = {{1, 1}, {2, 1}, {1, 3}, {1, 3}, {2, 3}}. A loop is an edge that begins and ends at itself.
The graph has a loop from vertex 1 to itself. 

 

A graph with a repeated edge and a loop 

11 

 
after the splitxxi   

the notion of community, we 
will help us to approach community more 

Regarding terminology, the 
system, while graph 

and E is a multiset of 
be the number of 

the number of edges in E.   

has vertex set, V = {1, 2, 3} and multiset  
an edge that begins and ends at itself. 

Credit: Dona Beers
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Zachary’s karate club

What led to the splitting of the
Zachary karate network?
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Zachary’s karate club
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Standard answer

Underlying community structure caused the
breaking!

Find an algorithm which produces the split
communities..
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If your method doesn’t work on this network, go home!
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Stochastic Block Model

6

given i and r can thus be done in time O(K(K + 〈k〉)).
Because these computations can be done quickly for a
reasonable number of communities, local vertex switch-
ing algorithms, such as single-vertex Monte Carlo, can be
implemented easily. Monte Carlo, however, is slow, and
we have found competitive results using a local heuristic
algorithm similar in spirit to the Kernighan–Lin algo-
rithm used in minimum-cut graph partitioning [27].
Briefly, in this algorithm we divide the network into

some initial set of K communities at random. Then we
repeatedly move a vertex from one group to another, se-
lecting at each step the move that will most increase the
objective function—or least decrease it if no increase is
possible—subject to the restriction that each vertex may
be moved only once. When all vertices have been moved,
we inspect the states through which the system passed
from start to end of the procedure, select the one with the
highest objective score, and use this state as the starting
point for a new iteration of the same procedure. When
a complete such iteration passes without any increase in
the objective function, the algorithm ends. As with many
deterministic algorithms, we have found it helpful to run
the calculation with several different random initial con-
ditions and take the best result over all runs.

IV. RESULTS

We have tested the performance of the degree-
corrected and uncorrected blockmodels in applications
both to real-world networks with known community as-
signments and to a range of synthetic (i.e., computer-
generated) networks. We evaluate performance by quan-
titative comparison of the community assignments found
by the algorithms and the known assignments. As a met-
ric for comparison we use the normalized mutual infor-
mation, which is defined as follows [7]. Let nrs be the
number of vertices in community r in the inferred group
assignment and in community s in the true assignment.
Then define p(X = r, Y = s) = nrs/n to be the joint
probability that a randomly selected vertex is in r in the
inferred assignment and s in the true assignment. Using
this joint probability over the random variables X and
Y , the normalized mutual information is

NMI(X,Y ) =
2MI(X,Y )

H(X) +H(Y )
, (26)

where MI(X,Y ) is the mutual information and H(Z) is
the entropy of random variable Z. The normalized mu-
tual information measures the similarity of the two com-
munity assignments and takes a value of one if the as-
signments are identical and zero if they are uncorrelated.
A discussion of this and other measures can be found in
Ref. [28].

(a) Without degree correction

(b) With degree-correction

FIG. 1: Divisions of the karate club network found using the
(a) uncorrected and (b) corrected blockmodels. The size of a
vertex is proportional to its degree and vertex color reflects
inferred group membership. The dashed line indicates the
split observed in real life.

A. Empirical networks

We have tested our algorithms on real-world networks
ranging in size from tens to tens of thousands of ver-
tices. In networks with highly homogeneous degree distri-
butions we find little difference in performance between
the degree-corrected and uncorrected blockmodels, which
is expected since for networks with uniform degrees the
two models have the same likelihood up to an additive
constant. Our primary concern, therefore, is with net-
works that have heterogeneous degree distributions, and
we here give two examples that show the effects of het-
erogeneity clearly.
The first example, widely studied in the field, is the

“karate club” network of Zachary [29]. This is a social
network representing friendship patterns between the 34
members of a karate club at a US university. The club
in question is known to have split into two different fac-
tions as a result of an internal dispute, and the members
of each faction are known. It has been demonstrated
that the factions can be extracted from a knowledge
of the complete network by many community detection
methods.
Applying our inference algorithms to this network, us-

Credit: Karrer, Newman, Phys. Rev. E, 2011

Snehal Shekatkar (Centre for modeling and simulation, SP Pune University, Pune, India)Role of community structure on network polarization 13 / 28



Degree-corrected stochastic block model

6

given i and r can thus be done in time O(K(K + 〈k〉)).
Because these computations can be done quickly for a
reasonable number of communities, local vertex switch-
ing algorithms, such as single-vertex Monte Carlo, can be
implemented easily. Monte Carlo, however, is slow, and
we have found competitive results using a local heuristic
algorithm similar in spirit to the Kernighan–Lin algo-
rithm used in minimum-cut graph partitioning [27].
Briefly, in this algorithm we divide the network into

some initial set of K communities at random. Then we
repeatedly move a vertex from one group to another, se-
lecting at each step the move that will most increase the
objective function—or least decrease it if no increase is
possible—subject to the restriction that each vertex may
be moved only once. When all vertices have been moved,
we inspect the states through which the system passed
from start to end of the procedure, select the one with the
highest objective score, and use this state as the starting
point for a new iteration of the same procedure. When
a complete such iteration passes without any increase in
the objective function, the algorithm ends. As with many
deterministic algorithms, we have found it helpful to run
the calculation with several different random initial con-
ditions and take the best result over all runs.

IV. RESULTS

We have tested the performance of the degree-
corrected and uncorrected blockmodels in applications
both to real-world networks with known community as-
signments and to a range of synthetic (i.e., computer-
generated) networks. We evaluate performance by quan-
titative comparison of the community assignments found
by the algorithms and the known assignments. As a met-
ric for comparison we use the normalized mutual infor-
mation, which is defined as follows [7]. Let nrs be the
number of vertices in community r in the inferred group
assignment and in community s in the true assignment.
Then define p(X = r, Y = s) = nrs/n to be the joint
probability that a randomly selected vertex is in r in the
inferred assignment and s in the true assignment. Using
this joint probability over the random variables X and
Y , the normalized mutual information is

NMI(X,Y ) =
2MI(X,Y )

H(X) +H(Y )
, (26)

where MI(X,Y ) is the mutual information and H(Z) is
the entropy of random variable Z. The normalized mu-
tual information measures the similarity of the two com-
munity assignments and takes a value of one if the as-
signments are identical and zero if they are uncorrelated.
A discussion of this and other measures can be found in
Ref. [28].

(a) Without degree correction

(b) With degree-correction

FIG. 1: Divisions of the karate club network found using the
(a) uncorrected and (b) corrected blockmodels. The size of a
vertex is proportional to its degree and vertex color reflects
inferred group membership. The dashed line indicates the
split observed in real life.

A. Empirical networks

We have tested our algorithms on real-world networks
ranging in size from tens to tens of thousands of ver-
tices. In networks with highly homogeneous degree distri-
butions we find little difference in performance between
the degree-corrected and uncorrected blockmodels, which
is expected since for networks with uniform degrees the
two models have the same likelihood up to an additive
constant. Our primary concern, therefore, is with net-
works that have heterogeneous degree distributions, and
we here give two examples that show the effects of het-
erogeneity clearly.
The first example, widely studied in the field, is the

“karate club” network of Zachary [29]. This is a social
network representing friendship patterns between the 34
members of a karate club at a US university. The club
in question is known to have split into two different fac-
tions as a result of an internal dispute, and the members
of each faction are known. It has been demonstrated
that the factions can be extracted from a knowledge
of the complete network by many community detection
methods.
Applying our inference algorithms to this network, us-

Credit: Karrer, Newman, Phys. Rev. E, 2011
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Likelihood’s of the partitions: splitting/leader-follower

reasons: (i) These particular metadata are irrelevant to the structure of
the network, (ii) the detected communities and the metadata capture
different aspects of the network’s structure, (iii) the network contains
no communities as in a simple random graph (7) or a network that is
sufficiently sparse that its communities are not detectable (8), or (iv) the
community detection algorithm performed poorly.

In the above, we refer to the observed network and metadata and
note that noise in either could lead to one of the reasons above. For in-
stance, measurement error of the network structure may make our ob-
servations unreliable and, in extreme cases, can obscure the community
structure entirely, resulting in case (iii). It is also possible that human
errors are introducedwhen handling the data, exemplified by thewidely
used American college football network (9) of teams that played each
other in one season, whose associated metadata representing each
team’s conference assignment were collected during a different season
(10). Large errors in the metadata can render them irrelevant to the
network [case (i)].

Most work on community detection assumes that failure to find
communities that correlate with metadata implies case (iv), algorithm
failure, although some critical work has focused on case (iii), difficult or
impossible to recover communities. The lack of consideration for cases
(i) and (ii) suggests the possibility for selection bias in the published
literature in this area [a point recently suggested by Hric et al. (11)].
Recent critiques of the general utility of community detection in net-
works (11–13) can be viewed as a side effect of confusion about the role
of metadata in evaluating algorithm results. For these reasons, using
metadata to assess the performance of community detection algorithms
can lead to errors of interpretation, false comparisons betweenmethods,
and oversights of alternative patterns and explanations, including those
that do not correlate with the known metadata.

For example, Zachary’s Karate Club (14) is a small real-world
network with compelling metadata frequently used to demonstrate
community detection algorithms. The network represents the observed
social interactions of 34 members of a karate club. At the time of study,
the club fell into a political dispute and split into two factions. These
faction labels are the metadata commonly used as ground truth com-
munities in evaluating community detection methods. However, it is
worth noting at this point that Zachary’s original network andmetadata
differ from those commonly used for community detection (9). Links in
the original network were by the different types of social interaction
that Zachary observed. Zachary also recorded twometadata attributes:
the political leaning of each of the members (strong, weak, or neutral
support for one of the factions) and the faction they ultimately joined
after the split. However, the community detection literature uses only
themetadata representing the faction each node joined, oftenwith one
of the nodes mislabeled. This node (“Person number 9”) supported
the president during the dispute but joined the instructor’s faction
because joining the president’s faction would have involved retrain-
ing as a novice when he was only 2 weeks away from taking his black
belt exam.

The division of the Karate Club nodes into factions is not the only
scientifically reasonable way to partition the network. Figure 1 shows
the log-likelihood landscape for a large number of two-group partitions
(embedded in two dimensions for visualization) of the Karate Club, un-
der the stochastic blockmodel (SBM) for community detection (15, 16).
Partitions that are similar to each other are embedded nearby in the
horizontal coordinates, meaning that the two broad peaks in the land-
scape represent two distinct sets of high-likelihood partitions: one
centered around the faction division and one that divides the network

into leaders and followers. Other common approaches to community
detection (9, 17) suggest that the best divisions of this network have
more than two communities (10, 18). The multiplicity and diversity
of good partitions illustrate the ambiguous status of the faction meta-
data as a desirable target.

The Karate Club network is among many examples for which
standard community detectionmethods return communities that either
subdivide the metadata partition (19) or do not correlate with the meta-
data at all (20, 21).More generally, most real-world networks havemany
good partitions, and there are many plausible ways to sort all partitions
to find good ones, sometimes leading to a large number of reasonable
results. Moreover, there is no consensus on which method to use on
which type of network (21, 22).

In what follows, we explore both the theoretical origins of these pro-
blems and the practical means to address the confounding cases de-
scribed above. To do so, we make use of a generative model perspective
of community detection. In this perspective, we describe the relation-
ship between community assignments C and graphs G via a joint dis-
tribution P(C,G) over all possible community assignments and graphs
that wemay observe.We take this perspective because it provides a pre-
cise and interpretable description of the relationship between commu-
nities andnetwork structure. Although generativemodels, like the SBM,
describe the relationship between networks and communities directly
via a mathematically explicit expression for P(C,G), other methods for
community detection nevertheless maintain an implicit relationship
between network structure and community assignment. Hence, the
theorems we present, as well as their implications, are more generally
applicable across all methods of community detection.

In the next section,we present rigorous theoretical results with direct
implications for cases (i) and (iv), whereas the remaining sections intro-
duce two statistical methods for addressing cases (i) and (ii). These con-
tributions do not address case (iii), when there is no structure to be
found, which has been previously explored by other authors, for exam-
ple, for the SBM (8, 23–27) and modularity (28, 29).
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Fig. 1. The stochastic blockmodel log-likelihood surface for bipartitions of the
KarateClubnetwork (14). Thehigh-dimensional spaceof all possiblebipartitionsof the
network has been projected onto the x, y plane (using a method described in Supple-
mentary TextD.4) such that points representing similar partitions are closer together. The
surface shows two distinct peaks that represent scientifically reasonable partitions. The
lower peak corresponds to the social grouppartitiongivenby themetadata—often treated
as ground truth—whereas the higher peak corresponds to a leader-follower partition.
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Structure isn’t sufficient: Look at the dynamics!

Raising of fees is a “Yes-no” question

An opinion of a node is affected by its neighbors

What if the opposite answers emerge on two different nodes?
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Look at the dynamics!

xi (t) : state (opinion) of node i at time t, x ∈ {−1, 0, 1}

xi (t + 1) = fi (xi (t),
∑
j

Aijxj(t)) = sgn

xi (t) +
∑
j

Aijxj(t)



Snehal Shekatkar (Centre for modeling and simulation, SP Pune University, Pune, India)Role of community structure on network polarization 17 / 28



Initial conditions

Start with neutral (x = 0) opinions on all nodes except two of them

Infect the remaining two nodes (seed nodes) with opposite opinions
(x = +1 and x = −1) and run the dynamics

The system quickly reaches a steady state
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Quantification of the polarization

Assortativity coefficient

r =

∑
ij(Aij − kikj/2m)xixj∑
ij(kiδij − kikj/2m)xixj

r is close to 1 for highly polarized states and close to 0 for unpolarized
states
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Network of dolphins

Look for the triangular node!
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Network of dolphins

Look for the triangular node!
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Popular theory

Disappearance caused splitting..
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Polarization theory
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Dependence on the distance between the seed nodes
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Network polarization may not be understood solely using the
structure of the network

Different initial conditions can lead to different polarized/unpolarized
states in networks

Distance between the seed nodes is a strong predictor of the network
polarization
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Thank You
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