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CHAPTER 1

Branching processes with reinforcement: Definition and Examples

This course is about a class of models for the growth of a stochastic system which accelerates through
a mechanism of reinforcement. We call these models branching processes with reinforcement or simply
reinforced branching processes. We shall see that, due to the reinforcement, these systems display
rather complex behaviour and interesting phenomena such as

• phase transitions,
• self-organised criticality,
• condensation,
• travelling waves,. . .

may occur. Some of these phenomena can be explained by techniques from the classical theory of
branching processes (and we shall explore this in the first half of the course) others require new ideas
and several problems are unsolved today.

Although our models can describe a variety of objects, see the examples below, we shall describe them
as a structured population. Parameters of our model are a probability distribution µ on the positive
reals, and positive numbers β, γ ≤ 1 with β + γ ≥ 1. At any time t the population consists of a finite
number N(t) of immortal individuals. Each individual in the population has a fitness, and individuals
are organised into families, such that all members of a family have the same fitness.

The process is started with one family of one individual, whose fitness is drawn from the distribution µ.
Suppose, at time t ≥ 0, the population consists of M(t) families, and there are Zn(t) individuals of
fitness Fn in the nth family, for 1 ≤ n ≤ M(t). Independently, every individual gives birth with
a rate given by its fitness, or equivalently in every family birth events occur with a time-dependent
rate FnZn(t). When a birth event occurs in the nth family, independently of everything else, one or
both of the following happen,

• with probability β a new family is founded, initially consisting of one individual equipped
with a fitness drawn, independently of everything else, from the distribution µ;
• with probability γ a new individual with fitness Fn is added to the nth family.

Note that both things happen simultaneously with probability β+γ−1 ≥ 0, the probability that only
a new family is founded is 1−γ, and the probability that only a new individual is added to the family
is 1− β. Under mild conditions on µ the total number N(t) of individuals in the population remains
finite at all times (see [19] for details) and this is the case we will be interested in. It would be easy
to generalise this to the case where more than two particles can be born at a time, but we prefer to
focus on the basic case which already contains all relevant features.

The reinforced branching process is described by the following family of random variables. For t ≥ 0
we denote by

• N(t) the total size of the population at time t,
• M(t) the number of different families at time t,
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6 1. BRANCHING PROCESSES WITH REINFORCEMENT: DEFINITION AND EXAMPLES

• σn the time of the nth birth event,
• τn the time of the foundation of the nth family,
• Zn(t) the size of the nth family at time t (if n > M(t) we set Zn(t) = 0), and
• Fn the fitness of the nth family.

The empirical fitness distribution at time t is defined as the measure

Ξt =
1

N(t)

M(t)∑
n=1

Zn(t) δFn . (1.1)

We now describe our three main examples motivating this definition.

Example 1: Branching process with selection and mutation.

This model is a stochastic house-of-cards model in a similar vein as Kingman’s model (which is
deterministic and much easier to analyse, see [18, 13]). We start with a single individual with a
genetic fitness chosen according to µ. Individuals never die and give birth to new individuals with a
rate equal to their genetic fitness. When a new individual is born it is a mutant with probability β,
in which case it gets a fitness drawn independently of everything else from µ. If the new individual is
not a mutant, it inherits the fitness of its parent. Note that when a new individual is born its parent
is chosen from the individuals in the population with a probability proportional to their fitness. In
other words the different reproduction rates cause the selection effect. The number of families M(t)
corresponds to the number of mutants in the population at time t.

The model corresponds to the parameter choice γ = 1−β in our framework. Observe that a mutation
causes the complete loss of genetic information in the affected individual’s ancestry, pictorially speaking
‘the genetic house of cards collapses’. This is why the term house-of-cards model is used for this process,
see [16] for a discussion of the relevance of these models in the theory of evolution.

Example 2: Preferential attachment tree of Bianconi and Barabasi.

This model is originally a discrete time network model. Putting it into our framework means embed-
ding it into continuous time, a technique heavily advocated by Janson [17], who attributes the method
to Athreya and Karlin [1], and by Bhamidi [6]. The network is constructed successively, starting with
one vertex which is formally given degree one. The vertex is given a fitness, randomly chosen accord-
ing to µ. At every time step a new vertex is introduced, equipped with a fitness, randomly chosen
according to µ, and linked to one of the existing vertices. The probability of an existing vertex being
chosen is proportional to the product of its fitness and its degree at the time when the new vertex is
introduced. As new vertices prefer to attach to existing vertices of high degree and high fitness, this
is called a preferential attachment model.

In our representation we choose β = γ = 1 and observe the system at the birth times of individuals.
We think of every family as a vertex in the network, and of the size of a family as its degree. Note
that when the nth birth event takes place, it arises in each of the existing families with a probability
proportional to the product of its fitness and its degree. At the birth event a new family is founded, i.e.
a new vertex is introduced, and simultaneously the family that has given birth is increased in size by
one, meaning that the degree of the corresponding vertex is incremented by one. Our representation
only keeps track of the vertices and their degrees, not of the actual edges. But this does not matter as
the main object of interest for us is the long-term behaviour of the degree-weighted fitness distribution,
which coincides with the empirical fitness distribution in our framework. This model was introduced
by Bianconi and Barabasi in [4] and further analysed by Borgs et al. [7].
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Example 3: Generalised Pólya urns.

A class of generalised Pólya urns also falls into our framework, with general parameters β, γ > 0 and µ
as above. It can be described as an urn containing balls of different colours. Every colour has a given
activity chosen independently according to µ. At time zero, the urn contains one ball of colour 1. At
every time step, a ball is drawn at random from the urn with probability proportional to its activity.
Then the drawn ball is put back into the urn together with one or two new balls, at most one ball
of the same and one of a new colour. A ball with the same colour is chosen with probability γ, and
a ball of a new colour with probability β. New colours are chosen independently according to µ. To
embed the urn model into our framework we again look at the times of birth events. Observe that Ξt
is now the empirical distribution of activities in the urn at time t.

Such generalised Pólya urns have apparently not been studied so far in full generality. Janson [17]
is looking at the case where µ is finitely supported. A related model has been studied by Chung et
al. [8] who draw balls depending in a non-linear way on the distribution of colours in the urn, and
by Collevecchio et al. [9] who allow for a time-dependent replacement rule. Their main focus is on
the question whether there can be an unbounded number of balls of more than one colour, and if not
which colour eventually dominates. In our setup all colours will have an unbounded number of balls.

We now give a construction of our model on an explicit probability space. Let

• F be a µ-distributed random variable,
• given F the process Y = (Y (t) : t ≥ 0) be an independent Yule process with rate Fγ,
• given F, Y two independent point processes Π(1) and Π(2) where

– Π(1) jumps at every jump of Y independently with probability β+γ−1
γ and

– Π(2) is an inhomogeneous Poisson process with intensity measure (1− γ)FY (t) dt.
Denote Π = Π(1) + Π(2).

We let (Ω,F ,P) be the countable product of the joint law of (F, Y,Π) and denote the coordinate
process by (Fn, Yn,Πn), for n ∈ N. We let τ1 = 0 and Z1(t) = Y1(t) and iteratively define

τn = inf{t > τn−1 : ∃m ∈ {1, . . . , n− 1} with ∆Πm(t− τm) = 1}, (1.2)

for n ∈ {2, 3, . . . }, and

Zn(t) =

{
Yn(t− τn), if t ≥ τn
0, otherwise.

We let M(t) = max{n : τn ≤ t}, set

N(t) =

M(t)∑
n=1

Zn(t),

and denote by σ1, σ2, . . . the jump times of (N(t) : t ≥ 0). It is obvious that this construction defines
the reinforced branching process as described in the introduction.
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Tutorial : The Yule process

The Yule process (Yt : t ≥ 0) with rate η is a process of immortal particles starting with one particle.
At any time every particle independently gives birth to a new particle with rate η. Yt is the number
of particles alive at time t. The Yule process of parameter η is characterised as follows: Let τ be
an exponential random variable of parameter η, then Y (t) = 1 for all t < τ , and for all t ≥ τ ,
Yt = Y (1)

t−τ + Y (2)

t−τ where Y (1) and Y (2) are two independent copies of Y .

Problem: Let (Yt : t ≥ 0) be a Yule process with rate η.

(a) Let a > 0 and show that (Yat : t ≥ 0) is a Yule process with rate aη.
(b) Show that (e−ηtYt : t ≥ 0) is a martingale.
(c) Infer that there exists a random variable ξ such that, almost surely,

lim
t↑∞

e−ηtYt = ξ.

(d) Show that ξ is exponentially distributed with parameter one.
(e) Show that supt≥0 Ee−2ηtY 2

t <∞.

Solution:

(a) Fix a > 0 and let Ŷt := Yat. Then, for all t < τ/a, we have Ŷt = 1, and for all t ≥ τ/a,

Ŷt = Yat = Y (1)

at−τ + Y (2)

at−τ = Ŷ (1)

a(t−τ/a) + Ŷ (2)

a(t−τ/a),

where Ŷ (1) and Ŷ (2) are two independent copies of Ŷ . Note that the random variable τ̂ = τ/a is

exponentially distributed of parameter aη, implying that Ŷ is indeed a Yule process of parameter aη.

(b) Let us first calculate the expectation of Yt for all t ≥ 0. Using that, by definition,

Yt = 1t<τ +
(
Y (1)

t−τ + Y (2)

t−τ
)
1t>τ ,

where τ is exponentially distributed of parameter η, we get that

EYt = e−ηt +

∫ t

0
2EYt−u ηe−ηu du = e−ηt + 2ηe−ηt

∫ t

0
EYs eηs ds.

Thus, if we denote by y(t) = eηtEYt, we get, for all t ≥ 0, y′(t) = 2ηy(t), implying that, since y(0) = 1,
y(t) = e2ηt for all t ≥ 0. Thus, for all t ≥ 0, EYt = eηt.

For all s, t ≥ 0, using the Markov property,

E [Yt+s | Fs] = E

[
Ys∑
i=1

Y
(i)
t

∣∣∣Fs] ,
where the Y (i) are independent copies of Y , independent of Ys. Thus,

E [Yt+s | Fs] = YsEYt = Yse
ηt,

implying that (e−ηtYt)t≥0 is indeed a martingale.

(c) The martingale (e−ηtYt)t≥0 is non-negative and thus converges almost surely to a random variable ξ.
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(d) We define the random variables Ti as the succesive distances between successive jump times of
the Yule process (Yt)t≥0. Then at time T1 + · · ·+ Ti−1, the Yule process is the sum of i independent
copies of itself and each of them thus jumps after a random time of exponential law of parameter η.
Thus, the time to wait before the next jump time is the minimum of these i random variables. Ti is
thus exponentially distributed of parameter iη.

E1 E2 E3 Ek

Tk

Tk−1

Tk−2

T1

Figure 1. The k i.i.d. random variables E1, . . . , Ek are represented by the length of
the vertical sticks. The Ti are independent random variables exponentially distributed,
of respective parameters iη.

For all t ≥ 0 and k ∈ N, we have

P(Yt ≥ k) = P(T1 + T2 + · · ·+ Tk ≤ t) = P (max(E1, . . . , Ek) ≤ t) ,
where (Ei)i≥1 is a sequence of i.i.d. exponential random variables of parameter η (see Figure 1 for an
explanation of the last equality). Thus, P(Yt ≥ k) = (1− e−ηt)k for all integers k and for all t ≥ 0. It
implies that

P(e−ηtYt ≥ x) = P(Yt ≥ xeηt) = (1− e−ηt)bxeηtc → e−x,

when t goes to infinity, which concludes the proof.

(e) Using again the fact that Yt = 1t<τ +
(
Y (1)

t−τ + Y (2)

t−τ
)
1t>τ , we get that (we skip the details since it

is very similar to the calculation of Yt in the solution of (b))

y2(t) := eηtEY 2
t = 1 +

∫ t

0

(
2EY 2

s + 2
(
EYs

)2)
ηeηsds =

1

3
+

2e3ηt

3
+ 2η

∫ t

0
y2(s) ds,

because EYs = eηs for all s ≥ 0. We thus get that

y′2(t) = 2ηy2(t) + 2ηe3ηt, and y2(0) = 1.

Solving this equation gives

y2(t) = eηtEY 2
t = e2ηt

(
1 + 2

(
eηt − 1

))
,

and thus
e−2ηtEY 2

t = e−ηt
(

1 + 2
(
eηt − 1

))
→ 2,

when t goes to infinity, which implies the result.





CHAPTER 2

How fast does the system grow?

We let
w(µ) := sup{x : µ(−∞, x) < 1}

be the upper end point of µ. This value can be finite or infinite. To focus on the interesting cases we
assume from now on that µ({w(µ)}) = 0, i.e. there is no atom at the upper end point of µ.

There are two plausible scenarios for the growth of a reinforced branching process:

• Growth driven by extremal behaviour
The size of a family with fitness Fn grows like a Yule process with rate γFn. Hence

lim
t→∞

1

t
logZn(t) = γFn,

and the growth of the overall system is bounded from below by

lim
t→∞

1

t
logN(t) ≥ sup

n
lim
t→∞

1

t
logZn(t) = sup

n
γFn = γw(µ).

In particular, if w(µ) =∞ the system grows superexponentially fast. But even if w(µ) <∞
the lower bound may be accurate and the growth of the system hence determined by the
families with record fitness. Note that it is unclear at which time a family born at τn with
a record fitness will have grown to contribute the largest proportion in the overall population.

• Growth driven by bulk behaviour
The alternative scenario is that the empirical fitness distribution Ξt stabilizes near some
probability distribution fdµ. For this to happen we need w(µ) < ∞ and also f to satisfy
an eigenvalue equation characterising how the fitness distribution is maintained in an
infinitesimal step of the Markov process. We now give a heuristic calculation which shows
how this could happen. We assume without loss of generality that w(µ) = 1.

The operator A : C(0, 1)→ C(0, 1) which describes how the fitness distribution is moved in
an infinitesimal step is given by

Af(x) = x
(
γf(x) + β

∫
f(y)µ(dy)

)
.

We have the eigenvalue equation

Af = λ∗f⇔ f(x) =
βx

λ∗ − γx

∫
f dµ

⇒ λ∗ ≥ γ with 1 = β

∫
x

λ∗ − γx µ(dx)

⇔ β

γ

∫
x

1− x µ(dx) ≥ 1 ⇔ β

β + γ

∫
1

1− x µ(dx) ≥ 1.

11



12 2. HOW FAST DOES THE SYSTEM GROW?

Hence we expect growth driven by bulk behaviour only under the condition

β

β + γ

∫
1

1− x µ(dx) ≥ 1,

and in this case the process grows with rate λ∗ given as the unique solution of the equation

1 = β

∫
x

λ∗ − γx µ(dx).

The eigenfunction is

f(x) =
βx

λ∗ − γx,
but the density of the asymptotic fitness distribution is given by the eigenmeasure

ν(dx) =
β

β + γ

λ∗

λ∗ − γx µ(dx)

of the dual operator A∗ turns out to be the asymptotic fitness distribution.

We will later discuss the two scenarios in detail. Let us start with a couple of soft results that hold
independently of the growth scenario.

Theorem 2.1. Almost surely, as t ↑ ∞, we have

(a) lim
t↑∞

M(t)

N(t)
=

β

β + γ
.

(b) If

∫
xΞt(dx)→ m ∈ [0,∞], then

1

t
logN(t)→ (β + γ)m.

Proof. (a) At every birth event the type of birth is chosen independently. Hence, by the law
of large numbers almost surely limn→∞

1
nM(σn) = β, and limn→∞

1
nN(σn) = β + γ, where the right

hand side is the expected number of families, resp. individuals, created at a birth event. Hence

lim
n→∞

M(σn)

N(σn)
=

β

β + γ
.

The result follows as the process (M(t)/N(t) : t > 0) is piecewise constant with jumps occuring only
at the times σn, for n ∈ N.

(b) Given the population at the time σn of the nth birth event, the waiting time σn+1 − σn until the
next individual is born is exponentially distributed with rate given by the sum of the fitnesses in the
population, i.e. N(σn)

∫
xΞσn(dx) ∼ n(β + γ)m. Hence

σn =
n∑
i=1

(σi − σi−1) ∼ 1

(β + γ)m
log n

and, in particular, we obtain, almost surely,

lim
t↑∞

1

t
logN(t) = lim

n→∞

1

σn
logN(σn) = (β + γ)m lim

n→∞

logN(σn)

log n
= (β + γ)m.

�

In the next chapter we investigate the precise growth behaviour in the case of bulk driven behaviour
using tools from the theory of general branching processes.



CHAPTER 3

Growth driven by bulk behaviour

In this chapter we study the bulk driven phase using tools from the theory of general branching
processes. The results here are adapted from Nerman [21] who uses a more general framework.

Recall that our process is defined using a sequence (Fn, Yn,Πn) of independent random variables where

• Fn is a µ-distributed random variable,
• given Fn the process Yn = (Yn(t) : t ≥ 0) is an independent Yule process with rate γFn,
• given Fn, Yn the point process Πn = (Πn(t) : t ≥ 0) with intensity measure

(β+γ−1
γ δYn(t) + (1− γ)FnYn(t) dt : t ≥ 0).

Recall that Yn determines the birth of family members of the nth family relative to the foundation time
of the family, and Πn the birth times of new families created from this family. For greater generality
we enrich this triple (F, Y,Π) by a fourth component φ = (φ(t) : t ≥ 0), a cadlag process taking values
in N0 assigning some kind of score to the family t time units after its foundation. In all our examples
(below) φ is a function of (F, Y,Π) but this does not have to be the case. We use the convention that
φ(t) = 0 if t < 0.

Denote by Gn the σ-algebra generated by (F1, Y1,Π1, φ1), . . . , (Fn, Yn,Πn, φn). We let τ1 = 0 and

τn = inf{t > τn−1 : ∃m ∈ {1, . . . , n− 1} with ∆Πm(t− τm) = 1}.
Note that τn is Gn−1-measurable. We then define

Zφ(t) =
∑

n : τn<t

φn(t− τn),

the score of the population at time t. Here are the main examples of interest to us.

(1) Let

φ(1)
n (t) =

{
Yn(t), if t ≥ 0

0, otherwise.

Then φ(1)
n (t− τn) = Zn(t) is the size of the nth family at time t and hence Zφ

(1)
(t) = N(t).

(2) Let φ(2)
n (t) = 1 if t ≥ 0 and zero otherwise. Then Zφ

(2)
(t) = M(t) is the total number of

families in the system at time t.

(3) Let a > 0 and

φ(a)
n (t) =

{
Yn(t), if 0 ≤ t < a,

0, otherwise.

Then Zφ
(a)

(t) is the number of individuals in families younger than a at time t.

13



14 3. GROWTH DRIVEN BY BULK BEHAVIOUR

(4) Let 0 < x < 1 and

φ(x)
n (t) =

{
Yn(t), if Fn ≥ 1− x and t ≥ 0

0, otherwise.

Then Zφ
(x)

(t) = N(t) Ξt[1−x, 1] and together with (1) this can be used to identify the limit
of the empirical fitness distribution of particles.

(5) Let k ∈ N and

φn(t) =

{
1, if t ≥ 0 and Yn(t) = k,

0, otherwise.

Then Zφ(t) is the number of families of size k at time t. In the Barabasi and Bianconi
tree this refers to the number of vertices of degree k and will allow the calculation of the
empirical degree distribution.

The main result of this section is a convergence theorem under the following main assumption.

Assumption 1 (Existence of a Malthusian parameter). There exists an λ∗ > γ, called the Malthusian
parameter, such that

1 =

∫ ∞
0

e−λ
∗s EΠ(ds).

We shall see below what this condition means in terms of the model parameters β, γ and µ. We also
formulate an assumption on the process φ.

Assumption 2 (Regularity of φ). The function t 7→ E[φ(t)] is almost everywhere continuous and there
exists h : [0,∞)→ (0,∞) integrable, bounded and non-increasing such that

E
[

sup
t≥0

e−λ
∗tφ(t)

h(t)

]
<∞.

We define

mφ
∞ =

∫∞
0 e−λ

∗tEφ(t) dt∫∞
0 te−λ∗t EΠ(dt)

.

We can now formulate the main result on convergence of general branching processes in the case of
reinforced branching processes.

Theorem 3.1. Suppose Assumptions 1 and 2 hold. Then there exists a positive random variable W ,
not depending on φ, such that

lim
t↑∞

e−λ
∗tZφt = W mφ

∞ almost surely.

Sketch of Theorem 3.1. The proof comes in three steps:

(i) Show convergence for a special choice of φ using a martingale argument.
(ii) Show that the resulting limit W is positive almost surely.

(iii) Approximate general φ by our special choice.

(i) Let J (t) be the set of families born after time t from families born before time t, formally

J (t) =
⋃
τn<t

{m : τm = τn + s ∈ [t,∞) : ∆Πn(s) = 1}.
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We put

Wt =
∑

m∈J (t)

e−λ
∗τm =

∑
τn<t

∑
∆Πn(s)=1:
τn+s≥t

e−λ
∗(τn+s) = e−λ

∗tZφt ,

where
φn(t) =

∑
∆Πn(s)=1:

s≥t

e−λ
∗(s−t).

We now show convergence for this particular score function. Let R0 = 1 and, for n ∈ N,

Rn = 1 +

n∑
m=1

e−λ
∗τm
( ∑

∆Πm(s)=1

e−λ
∗s − 1

)
.

We rewrite

Rn = 1 +

n∑
m=1

∑
∆Πm(s)=1

e−λ
∗(τm+s) −

n∑
m=1

e−λ
∗τm ,

which shows that Rn is a weighted sum of the direct descendants of the first n families, excluding the
families indexed 2, . . . , n. We hence have

(Wt : t ≥ 0) = (RM(t) : t ≥ 0).

Lemma 3.2. (Rn : n ≥ 0) is a martingale with respect to the filtration (Gn : n ≥ 0).

Proof. Recall that Rn and τn+1 are Gn-measurable. Moreover,∑
∆Πn+1(s)=1

e−λ
∗s

is independent of Gn. Hence

E
[
Rn+1 −Rn

∣∣Gn] = e−λ
∗τn+1 E

[ ∑
∆Πn+1(s)=1

e−λ
∗s − 1

]
= 0,

by definition of the Malthusian parameter. �

As (Rn : n ≥ 0) is a non-negative martingale it converges, almost surely, to a nonnegative limit
variable W . We then have, almost surely,

lim
t↑∞

Wt = lim
t↑∞

RM(t) = lim
n→∞

Rn = W.

(ii) To see that W is positive almost surely, one relies on a Kesten-Stigum type theorem, which shows

W > 0 almost surely ⇔ E[X log+X] <∞,
for

X =
∑

∆Π(s)=1

e−λ
∗s.

An elegant proof of such a result for general branching processes is given by Olofson in [22]. It is then
easy (but lengthy) to check that in our model always E[X2] <∞, which implies the result.

(iii) Given two scores φ and ψ we need to show that almost surely

Zφt

Zψt
−→ φ̂(λ∗)

ψ̂(λ∗)
,
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where φ̂(λ∗) =
∫∞

0 e−λ
∗tEφ(t) dt. We drop the considerable technicalities of this step and only give an

informal argument confirming that

EZφt ∼ mφ
∞e

λ∗t,

and hence
EZφt
EZψt

−→ φ̂(λ∗)

ψ̂(λ∗)
,

making the form of the limit plausible.

We let (tj) be the sequence of birth times of mutant offspring of the first family (ie. the jump times
of the point process Π1) and write

Zφt = φ1(t) +
∑
tj≤t

Zφt−tj .

Writing mφ
t = EZφt and taking expectations we get the renewal equation

mφ
t = Eφ(t) +

∫ t

0
mφ
t−s EΠ(ds).

Taking Laplace transforms gives

m̂(λ) = φ̂(λ) + m̂(λ)EΠ̂(λ),

and hence informally

m̂(λ) =
φ̂(λ)

1− EΠ̂(λ)
.

As

∂λEΠ̂(λ∗) = −
∫ ∞

0
te−λ

∗t EΠ(dt) < 0,

the function 1− EΠ̂(λ) has a simple zero at λ∗. Hence we have a Laurent expansion

m̂(λ) =
φ̂(λ∗)

−∂λEΠ̂(λ∗)
(λ− λ∗)−1 + o

(
(λ− λ∗)−1

)
.

Inverting the Laplace transform termwise (as explained in [24, 21.14]) gives

mφ
t =

φ̂(λ∗)

−∂λEΠ̂(λ∗)
eλ
∗t + o(eλ

∗t),

and hence we get the required formula for mφ
∞ = lim e−λ

∗tEZφt . �

We now look at the consequences of Theorem 3.1. We first express Assumption 1 explicitly in terms
of the model parameters β, γ and µ. We have, for any λ∗ ≥ γ,∫ ∞

0
e−λ

∗s EΠ(ds) =

∫
µ(df)

{
β+γ−1

γ

∫ ∞
0

e−λ
∗s deγfs + (1− γ)f

∫ ∞
0

e−λ
∗seγfs ds

}
= β

∫
f

∫ ∞
0

e−λ
∗s+γfs ds µ(df)

= β

∫
f

λ∗ − γf µ(df).

This is decreasing in λ∗ and going to zero as λ∗ ↑ ∞. As λ∗ ↓ γ it converges to

β

γ

∫
f

1− f µ(df),
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which has to be at least one for a Malthusian parameter to exist. Hence Assumption 1 translates to

β

γ

∫
f

1− f µ(df) > 1,

or, equivalently,
β

β + γ

∫
µ(df)

1− f > 1. (3.3)

This condition identifies the regime of bulk growth, as predicted in Chapter 2. The Malthusian
parameter λ∗ is then defined by the equation

β

∫
f

λ∗ − γf µ(df) = 1. (3.4)

Now we look at the examples of scores φ we listed earlier and harvest the results.

Under the condition of bulk growth (3.3) we get the following results.

(1) Almost surely,

lim
t↑∞

e−λ
∗tN(t) = Wmφ(1)

∞ .

To confirm this result we check that Assumption 2 holds for φ(1). This follows using Doob’s
maximal inequality and the results of the tutorial for a standard Yule process (Ys : s > 0) as

E
[

sup
t≥0

e−γFtφ(1)(t)
]

= E
[

sup
s≥0

e−sYs

]
≤ 2 sup

s≥0

√
E[e−2sY 2

s ] <∞.

We see that the right hand side is strictly positive showing that the number of individuals
has purely exponential growth. For later comparison we calculate the numerator of mφ(1)

∞ ,
i.e. the score dependent quantity. We get∫

µ(df)

∫ ∞
0

e−λ
∗tEφ(1)(t) dt =

∫
µ(df)

λ∗ − γf =
β + γ

λ∗β
.

(2) Almost surely,

lim
t↑∞

e−λ
∗tM(t) = Wmφ(2)

∞ .

To compare with (1) we calculate the score dependent numerator of mφ(2)

∞ . We get∫∞
0 e−λ

∗t dt = 1
λ∗ . This is in line with the result of Theorem 2 which shows that there is

an asymptotic factor (β + γ)/β between the number of individuals N(t) and the number of
families M(t).

(3) We see that the proportion of individuals in families born less than a time units ago is
asymptotically equal to

λ∗β

β + γ

∫
µ(df)

∫ a

0
e−λ

∗t+γft dt.

This limit goes to one as a ↑ ∞, which shows that most individuals come from recently
established families, which confirms that in this phase the growth is indeed bulk driven.
There is a good heuristic explanation for this formula. t time units before observation time
the population had a proportion e−λ

∗t of its current size. Mutants then generated with
fitness f then grow families to size eγft.
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(4) Almost surely,

lim
t↑∞

Ξt[1− x, 1] =
λ∗β

β + γ

∫ 1

1−x

1

λ∗ − γf µ(df).

In other words, in the bulk driven phase the empirical fitness distribution converges to a
deterministic probability distribution which is absolutely continuous with respect to µ and
has the density

β

β + γ

λ∗

λ∗ − γf .

We look at Example (5) in the tutorial. A somewhat similar application of general branching processes
to the study of preferential attachment networks (without fitness but with a nonlinear attachment rule)
is carried out in Rudas et al. [26].

Figure 1. Empirical fitness distribution in a bulk-driven example.
Simulation by Anna Senkevich.
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Tutorial : The empirical degree distribution in the Bianconi-Barabasi Tree

Assume we are in the situation of Example 2. Then

Θt :=
1

M(t)

M(t)∑
n=1

δZn(t)

is the empirical distribution of degrees in the network at time t.

Problem:

(a) Show that under Assumption 1 we have

lim
t↑∞

Θt = ν almost surely,

where

ν(k) =

∫ 1

0

λ∗

kf + λ∗

k−1∏
i=1

if

if + λ∗
µ(df).

(b) Show that λ∗ ∈ (1, 2) and that ν is a probability measure

(c) Show that ν(k) = k−(1+λ∗)+o(1) and hence the power law exponent ranges between the values
2 and 3, which is sometimes referred to as the supercritical regime.

Solution:

(a) Combining examples (2) and (5) we get from Theorem 3.1 that

lim
t↑∞

Θt(k) = λ∗
∫ ∞

0
e−λ

∗t P(Y (t) = k) dt,

where (Y (t) : t > 0) is a Yule process with random parameter F . We use the notation of the first
tutorial to write

P(Y (t) = k) = P(T1 + · · ·+ Tk−1 < t)− P(T1 + · · ·+ Tk < t),

where Tj is exponential with parameter jF . Now∫ ∞
0

e−λ
∗t P(T1 + · · ·+ Tk < t) dt = E

∫ ∞
T1+···+Tk

e−λ
∗t dt =

1

λ∗

∫
µ(df)

k∏
i=1

E
[
e−λ

∗Ti
∣∣F = f

]
=

1

λ∗

∫
µ(df)

k∏
i=1

1

1 + λ∗

if

.

Hence,

λ∗
∫ ∞

0
e−λ

∗t P(Y (t) = k) dt =

∫
µ(df)

( k−1∏
i=1

if

if + λ∗
−

k∏
i=1

if

if + λ∗

)
=

∫
µ(df)

λ∗

kf + λ∗

k−1∏
i=1

if

if + λ∗
.

(3.5)

Observe that if ν is identified as a probability measure then the convergence holds automatically in
the stronger total variation sense.
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(b) λ∗ is the unique solution of the equation∫
f

λ− f µ(df) = 1.

The left hand side is monotonically decreasing in λ and takes a value > 1 for λ = 1 and a value < 1
for λ = 2. Hence the solution lies in the interval (1, 2). Summing over k = 1, 2, . . . in (3.5) shows that
ν is a probability measure.

(c) Note that, for k > n,

log
k−1∏
i=n

if

if + λ∗
=

k−1∑
i=n

log
1

1 + λ∗

if

= −(1 + on(1))
k−1∑
i=n

λ∗

if
= −(1 + on(1))

λ∗

f

(
log
(
k
n

)
+ on(1)

)
.

We infer (without spelling out all details here) that for large k the main contribution to the integral
comes from values of f close to one and that therefore∫

µ(df)
λ∗

kf + λ∗

k−1∏
i=1

if

if + λ∗
= k−(1+λ∗)+ok(1).

Remark: This result holds (for a suitable choice of λ∗) without Assumption 1 and also extends, with
a completely different proof, to a class of Bianconi-Barabasi networks which are typically not trees,
see Corollary 2.8 in Dereich and Ortgiese [14].



CHAPTER 4

Growth driven by extremal behaviour

We have seen in Chapter 3 that when a Malthusian parameter exists, then one can obtain limit
theorems for different measurable quantities of the system such as the number of families or of particles
in the system, or the empirical fitness distribution, or the distribution of family sizes. This chapter is
devoted to the study of reinforced branching processes which do not admit a Malthusian parameter.
We will see that reinforced branching processes with no Malthusian parameter exhibit condensation,
meaning that the empirical fitness distribution converges to the sum of an absolute continuous part,
called the bulk, and a Dirac mass in the essential supremum of the support of the fitness distribution,
called the condensate.

Recall the definition of the empirical fitness distribution form (1.1),

Ξt =
1

N(t)

M(t)∑
n=1

Zn(t) δFn .

Theorem 4.1. Assume that
β

β + γ

∫ 1

0

dµ(x)

1− x < 1, (cond)

and let λ? := γ. Then

(i)
∫
x dΞt(x)→ λ?/β+γ almost surely when t goes to infinity;

(ii) Ξt → π almost surely weakly when t goes to infinity, where

dπ(x) =
β

β + γ

1

1− x dµ(x) +$(β, γ)δ1,

with

$(β, γ) = 1− β

β + γ

∫ 1

0

dµ(x)

1− x > 0.

Remark 4.1 Combining (i) with Theorem 2.1(b) shows that

lim
t↑∞

1

t
logN(t) = γ,

which is indeed the scenario of growth driven by extremal behaviour. Moreover in the empirical fitness
distribution we see the phenomenon of condensation, as a positive fraction of individuals are pushed
toward the extreme fitness value. We will investigate further properties of this behaviour in Chapter 5
and state some open problems related to it in Chapter 6.

The proof we develop here uses the results proved in Chapter 3: the idea is to couple the branching
process with a branching process admitting a Malthusian parameter and apply Theorem 3.1 to the
latter. The two coupled branching processes are continuous-time branching process, but the coupling
only relates their discrete-time versions.

21
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The coupling of the processes (lower bound).

We look at the reinforced brancing process with fitness distribution µ at the time (σn) of the birth
events and abbreviate Ξ̂n := Ξσn .

Fix ε > 0. We define a discrete-time branching process whose empirical fitness distribution Ξ̂(ε)
n has

the property that for all n ≥ 0, (Ξ̂n, Ξ̂
(ε)
n ) ∈ S, where S is the subset of the set of pairs of counting

measures on [0, 1] defined by

S :=
{

(ν, µ) : ν
(
[0, 1]

)
= µ

(
[0, 1]

)
and ν

(
[a, b]

)
≥ µ

(
[a, b]

)
for all a, b ∈ [0, 1− ε)

}
.

Let (Un)n≥1 be a sequence of i.i.d. random variables uniformly distributed on [0, 1]. At time zero, the
new process contains one particle of fitness F11F1<1−ε + 1F1≥1−ε and thus (Ξ̂0, Ξ̂

(ε)

0 ) ∈ S.

Assume now that, (Ξ̂n, Ξ̂
(ε)
n ) ∈ S. We construct the new process at time n+ 1 as follows:

• if a mutant of fitness f is born at time n + 1 (in the original process), then we add in the
(new) process a new particle of fitness f1{f < 1− ε}+ 1{f ≥ 1− ε} born at time n+ 1;
• if a selectant of fitness larger than 1 − ε is born at time n + 1 in the original process, then

we add a new particle of fitness 1 born at time n+ 1;
• if a selectant of fitness f < 1− ε is born at time n+ 1 in the original process, then if

Un+1 ≤
(

Ξ̂(ε)
n ({f})∫ 1

0 x dΞ̂(ε)
n (x)

)(
Ξ̂n({f})∫ 1

0 x dΞ̂n(x)

)−1

,

we add a particle of fitness f born at time n+ 1, otherwise, add a particle of fitness 1.

By construction, (Ξ̂n+1, Ξ̂
(ε)

n+1) ∈ S. It is now easy to check that the new process is the discrete-time
version of the reinforced branching process with fitness distribution µε := 1[0,1−ε)µ+µ(1−ε, 1)δ1, and
falls into the framework of Chapter 3. Since

β

β + γ

∫ 1

0

dµε(x)

1− x =∞,

the new process admits a Malthusian parameter λε and λε ↓ γ as ε ↓ 0. Using the techniques developed
in Chapter 3, we deduce that, for all 0 ≤ a, b < 1− ε, we have

lim
n→∞

Ξ̂(ε)
n

(
[a, b]

)
= lim

t→∞
Ξ̂(ε)

t

(
[a, b]

)
=

β

β + γ

∫ b

a

λε
λε − γx

dµ(x)

almost surely. For all 0 ≤ a, b < 1 and 0 < ε < 1− b, we thus have

lim inf
t→∞

Ξt
(
[a, b]

)
= lim inf

n→∞
Ξ̂n
(
[a, b]

)
≥ lim

n→∞
Ξ̂(ε)
n

(
[a, b]

)
=

β

β + γ

∫ b

a

λε
λε − γx

dµ(x).

Letting ε ↓ 0 concludes the proof of the lower bound.

The coupling of the processes (upper bound).

Fix ε > 0, and let (Ξ[ε]

t )t≥0 be the reinforced branching process of fitness distribution

µ[ε] = 1[0,1−ε)µ+ µ(1− ε, 1)δ1−ε,

and Ξ̂[ε]
n = Ξ[ε]

σn its discrete-time version. Denote by F [ε]
n the i.i.d. sequence of fitnesses in this reinforced

branching process and by λ[ε] the Malthusian parameter.

We construct a coupling of Ξ̂n and Ξ̂[ε]
n such that (Ξ̂[ε]

n , Ξ̂n, ) ∈ S. Let (Vn)n≥1 be a sequence of i.i.d.
random variables uniformly distributed on [0, 1] and (Wn,W

′
n)n≥1 be independent sequences of i.i.d.

random variables of distribution 1(1−ε,1]µ/µ(1−ε,1).
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We construct Ξ̂n from Ξ̂[ε]
n . At time zero, Ξ̂0 = δF1 , where F1 = F [ε]

1 1{F [ε]

1 < 1−ε}+W11{F [ε]

1 = 1−ε}
and hence (Ξ̂[ε]

0 , Ξ̂0) ∈ S.

Assume now that (Ξ̂[ε]
n , Ξ̂n) ∈ S. We define Ξ̂n+1 as follows:

• if a mutant of fitness f is born at time n+ 1 in the ε-truncated process, then

Ξ̂n+1 = Ξ̂n + δf1{f < 1− ε}+Wn+11{f = 1− ε};
• if a selectant of fitness 1− ε is born at time n+ 1 in the ε-truncated process, let

Ξ̂n+1 = Ξ̂n + δW ′n+1

• if a selectant of fitness f < 1− ε is born at time n+ 1 in the ε-truncated process, then if

Vn+1 ≤
Ξn
(
{f}

)∫ 1
0 x dΞ̂n(x)

(
Ξ̂[ε]
n

(
{f}

)∫ 1
0 x dΞ̂[ε]

n (x)

)−1

,

then Ξn+1 = Ξn + δf , otherwise, Ξn+1 = Ξn + δW ′n+1
.

By construction, (Ξ̂n+1, Ξ̂
(ε)

n+1) ∈ S, and it is easy to check that (Ξ̂n)n≥0 has indeed the same law as
the empirical fitness distribution of the original reinforced branching process.

We get that, for all 0 < a < b < 1− ε,

lim sup
n→∞

Ξ̂n(a, b) ≤ lim
n→∞

Ξ̂[ε]
n (a, b) =

β

β + γ

∫ b

a

λ[ε]

λ[ε] − γx dµ
[ε](x).

Observing that µ[ε] → µ weakly and λ[ε] → γ, as ε ↓ 0, is enough to conclude the proof of the lower
bound and hence of Theorem 4.1.
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Figure 1. Empirical fitness distribution in two examples with condensation.
Simulations by Anna Senkevich.



CHAPTER 5

Largest families and related problems

In this chapter we follow [11] and study asymptotics for the features (like size or fitness) of the largest
family in the system at time t. Such results require regularity assumptions on µ at the upper end. We
assume here that w(µ) < ∞ and then, without loss of generality, w(µ) = 1. We further assume that
µ has a regularly varying tail in one, meaning that

µ(1− xε, 1)

µ(1− ε, 1)
→ xα, for all x > 0 as ε ↓ 0,

or equivalently

µ(1− ε, 1) = εα`(ε). (RV)

for a slowly varying function ` and some α > 1, see [5]. This corresponds to the most common type
of behaviour of µ at its tip that allows a condensation phase. Other cases can be studied and will be
covered in a forthcoming paper [20].

Figure 1. A simulation of a reinforced branching process in the condensation case.
Parameters are µ(dx) = 3(1 − x)2 dx and β = γ = 1. Each family is represented by a
circle with area proportional to its size at time t = 12 and centred at its time of birth
(horizontal axis) and its fitness (vertical axis). Simulation courtesy of Anna Senkevich.

25
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We introduce the random times T (t), t > 0, as

T (t) := inf
{
s ≥ 0 : M(s) ≥ n(t)

}
where n(t) :=

⌈
1

µ(1− t−1, 1)

⌉
.

Our intuition is that

• the largest families of the population at time t are born around time T (t);
• T (t) grows like 1/λ? log n(t) ∼ α

λ∗ log t;

• the largest families at t have fitness Fn with 1− Fn of order 1/t and size of order eγ(t−T (t)).

To confirm our intuition we consider the point process

Γt =

M(t)∑
n=1

δ
(
τn − T (t), t(1− Fn), e−γ(t−T (t))Zn(t)

)
,

where δ(x) is the Dirac mass in x.

Theorem 5.1 (Poisson limit). Under assumption (RV) the point process (Γt)t≥0 converges vaguely on
the space [−∞,∞]× [0,∞]× (0,∞] to the Poisson point process Πζ with intensity measure

dζ(s, f, z) = αfα−1λ?eλ
?se−ze

γ(s+f)
eγ(s+f) ds df dz.

Remark 5.1 Note the compactifications at ±∞ in Theorem 5.1. As the limiting point process has a
continuous density, Theorem 5.1 implies that all mass of Γt that asymptotically accumulates at infinity
in one of the first two components, must escape at zero in the last component, meaning that the only
way points can disappear in the limit is because the corresponding family size is small relative to the
normalisation.

Remark 5.2 As there is no scaling in the first component of Γt, the limit theorem focuses on a time
window of constant width around T (t). The theorem shows that this is wide enough to capture the
largest family at time t. However, it turns out that in the condensation phase this is not wide enough
to capture all families that contribute to the condensate. This is why important questions on the
emergence of the condensate remain open, see also Chapter 6.

Corollary 5.2 (Limits of family characteristics). Let V (t) be the fitness and S(t) the birth time of
the family of maximal size at time t. There exist random variables U, V, Z such that, as t→∞,

(i)

e−γ(t−T (t)) max
n∈N

Zn(t) =⇒ Z,

(ii)
t(1− V (t)) =⇒ V,

(iii)
S(t)− T (t) =⇒ U.

Remark 5.3 The birth time of the family of maximal size at time t is of asymptotic order T (t) +O(1)
and hence of leading order α/λ? log t. This answers a question of Borgs et al. [7] about the rate at which
new nodes with higher fitness become the leading influence in the population. We prove Corollary 5.2
and give further details of the limit laws in the tutorial.
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1

0 T(t) t

C/t

C

Figure 2. The largest family at time t is born at the time and with a fitness from the
yellow window, with high probability as C becomes large.

A further problem that can be solved using Theorem 5.1 is about that emergence of the condensate,
i.e. how the condensate manifests itself at large finite times. Following the discussion of Bose-Einstein
condensation in van den Berg et al. [3] two alternative scenarios are possible:

• For the largest family, the proportion of individuals belonging to this family in the overall
population at time t is asymptotically positive. This phenomenon of macroscopic occupancy
arises in condensation of the free Bose gas below a critical temperature, see [3] .
• No individual family makes an asymptotically positive contribution. Instead, it is a collective

effort of a growing number of families to form the condensate. This phenomenon is called
non-extensive condensation. van den Berg et al. [3] have shown that this occurs in the free
Bose gas for an intermediate temperature range.

We shall see in Theorem 5.3 that in our model under a natural assumption on µ the second scenario
prevails. To show this we need to investigate the behaviour of the largest family in our system.

Theorem 5.3 (The winner does not take it all). Under assumption (RV) the size of the largest family
is negligible relative to the overall population size, i.e.

lim
t→∞

maxn∈{1,...,M(t)} Zn(t)

N(t)
= 0, in probability.

Remark 5.4 Theorem 5.3 means that asymptotically no single family contributes a positive proportion
of the total mass, hence if there is condensation it is always non-extensive. This means in the context
of Example 2 that no vertex attracts a positive fraction of the edges in the network. This is at odds
with the informal description of condensation in the preferential attachment networks by Bianconi
and Barabasi [4], who are stating that ‘the fittest node [is] acquiring a finite fraction of the links,
independent of the size of the network.’ It is also at odds with more recent work of Godrèche and
Luck [15] who use a nonrigorous analysis on assumptions based on simulations to conclude that
asymptotically there is even an unbounded number of macroscopic families. However the phenomenon
we investigate here is too subtle to be reliably captured by non-rigorous techniques. In the context of
Example 3 our theorem states that the proportion of balls of any colour goes to zero, uniformly over
all colours.

Sketch of Theorem 5.3. Subject to a cut-off argument we have in view of Theorem 5.1,

e−γ(t−T (t))

M(t)∑
n=1

Zn(t) =

∫
z dΓt(s, f, z) ∼

∫
z dΠζ(s, f, z) as t ↑ ∞,
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where Πζ is the Poisson random measure with intensity measure ζ. We calculate

ζ (R× (0,∞)× (a, b)) =
Γ(α+1)Γ(1+λ?

γ
)

(λ?)α

(
a
−λ

?

γ − b−
λ?

γ
)
,

and hence, as λ∗ ≥ γ, we get∫
z dζ(s, f, z) =

Γ(α+1)Γ(1+λ?

γ
)

(λ?)α

∫ ∞
0

λ∗

γ z
−λ∗/γ dz =∞.

From this we conclude that

e−γ(t−T (t))

M(t)∑
n=1

Zn(t) −→∞,

while e−γ(t−T (t)) maxn≤M(t) Zn(t) converges in distribution and hence remains finite. �

Sketch of Theorem 5.1. We start by looking at the first component of Γt. The main difficulty
of our model is that the time τn of birth of the nth family is not known with good accuracy. It is
therefore important the yellow box has only constant width, as from our logarithmic growth rates we
get a rough bound for the births occuring around the stopping times T (t) = τn(t), which is sufficiently
accurate on a constant time scale.

Lemma 5.4. For all ε > 0, we have with high probability as t ↑ ∞, for all n ∈ N,

1

λ? ± ε log
n

n(t)
− ε ≤ τn − T (t) ≤ 1

λ? ∓ ε log
n

n(t)
+ ε,

where the sign in ± is the same as that of the logarithm.

How do we get a Poisson limit with the given density?

Recall that n(t) = dµ(1− 1
t , 1)−1e, then

• by Lemma 5.4 points are spaced at τn − T (t) ∼ 1
λ∗ log

(
n
n(t)

)
,

• by regular variation

n(t)µ[1− x
t , 1]→ xα =

∫ x

0
αfα−1 df.

An extreme value calculation gives, for a0 < a1 and 0 < b0 < b1 and B = (a0, a1)× (b0, b1) that

P(Γt(B) = 0) = P
(
t(1− Fn) 6∈ (b0, b1) ∀n with τn − T (t) ∈ (a0, a1)

)
=

∏
n :

1+o(1)
λ∗ log n

n(t)
∈(a0,a1)

P
(
Fn 6∈

(
1− b1

t , 1− b0
t

))

=
(

1− µ
(
1− b1

t , 1− b0
t

))n(t)(eλ
∗(a1+o(1))−eλ∗(a0+o(1)))

=
(

1− bα1 − bα0
n(t)

)n(t)(eλ
∗(a1+o(1))−eλ∗(a0+o(1)))

−→ exp(−(bα1 − bα0 )(eλ
∗a1 − eλ∗a0)) = e−ζ0(B),

where ζ0(ds df) = λ∗eλ
∗s ds⊗ αfα−1 df . Similarly,
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EΓt(B) =

n(t)(eλ
∗(a1+o(1))∑

n(t)(eλ
∗(a0+o(1))

P
(
t(1− Fn) ∈ (b0, b1)

)
= n(t)(eλ

∗(a1+o(1)) − eλ∗(a0+o(1)))µ
(
1− b1

t , 1− b0
t

)
−→ (bα1 − bα0 )(eλ

∗a1 − eλ∗a0) = ζ0(B).

By a celebrated theorem of Kallenberg [25, Proposition 3.22] this is enough to ensure convergence of
the point process to the Poisson limit. More precisely, we obtain

M(t)∑
n=1

δ
(
τn − T (t), t(1− Fn)

)
=⇒ Πζ0 .

We have
Zn(t) = Y (Fnγ(t− τn)) for t ≥ τn,

for a standard Yule process Y independent of Fn and τn. Hence, by Tutorial 1,

e−γFn(t−τn)Zn(t) −→ X,

where X is standard exponential independent of Fn and τn. Therefore, if the nth point has initial
components s, f , the third component becomes

e−γ(t−T (t))Zn(t) = e−γ(τn−T (t)) e−γ(t−τn)Zn(t)

= e−γ(τn−T (t)) e−γ(t−τn)(1−Fn) e−γ(t−τn)FnZn(t)

−→ e−γs e−γf X,

Hence the third component is exponentially distributed with mean e−γ(s+f). It therefore contributes
a density of

e−ze
γ(s+f)

eγ(s+f) dz.

Why does the biggest family originate from this box?

The yellow box is centred around

T (t) = inf{s > 0: M(s) ≥ n(t)} = inf{s > 0: Ξs(1− 1
t , 1) > 0}+O(1).

If the nth family is born at time τn, its size is

Zn(t) ∼ eγFn(t−τn).

Therefore, for every ε > 0 there exists C > 0 such that

• if the family is born after time T (t) + C it size is at most

eγ(t−T (t)−C) ≤ εeγ(1− 1
t
)(t−T (t)).

• if the family has fitness 1− C
t or lower, its size is at most

eγ(1−C
t

)(t−T ( t
C

)) ≤ ε eγ(1− 1
t
)(t−T (t)).

Hence it is plausible that families born outside the yellow box, for large C, are not the largest with
high probability. The actual argument for this is much more technical, as we need to compare all
families outside the box simultaneously with a small total probability of failure. �
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Tutorial : The size and fitness of the largest family

Problem:

(a) Show that, as t→∞,

e−γ(t−T (t)) max
n∈N

Zn(t) =⇒W−
γ
λ? ,

where W is exponentially distributed with parameter Γ(α+ 1)Γ(1 + λ?

γ )(λ?)−α.

(b) Let V (t) the fitness of the family of maximal size at time t. Show that, under Assump-
tion (cond), as t→∞, we have

t(1− V (t)) =⇒ V,

where V is Gamma-distributed with scale parameter λ? and shape parameter α.

Solution:

(a) We fix x > 0 and apply the vague convergence proved in Theorem 5.1 to the compact set

K := [−∞,+∞]× [0,∞]× [x,∞].

We get that
M(t)∑
n=1

1K(τn − T (t), t(1− Fn), e−γ(t−T (t))Zn(t))⇒ Poisson
(∫
K dζ

)
.

Hence

P
(
e−γ(t−T (t)) max

n∈{1,...,M(t)}
Zn(t) ≥ x

)
→ P

(
Poisson

(∫
K dζ

)
≥ 1
)

= 1− exp
(
−
∫
K dζ

)
. (5.6)

Integrating out gives∫
K
dζ =

∫ +∞

−∞

∫ ∞
0

∫ ∞
x

αfα−1λ?eλ
?se−ze

γ(s+f)
eγ(s+f)dz df ds

=

∫ ∞
0

e−w
∫ ∞

0
αfα−1

∫ 1
γ

log w
x
−f

−∞
λ?eλ

?sds df dw

=
(∫ ∞

0
e−w

(w
x

)λ?
γ
dw
)(∫ ∞

0
αfα−1e−λ

?fdf
)

=
Γ(α+1)Γ(1+λ?

γ
)

(λ?)α x
−λ

?

γ .

Thus, the right hand side in (5.6) is 1 − exp(−Λx−η), for Λ = Γ(α + 1)Γ(1 + λ?

γ )(λ?)−α and η = λ?

γ ,

which proves the statement.

(b) The probability that t(1− V (t)) is in [f, f + df ] converges in the appropriate sense to∫ +∞

−∞

∫ ∞
0

e−ζ([−∞,+∞]×[0,∞]×[z,∞]) ζ(ds, f, dz),

where the inner integration is with respect to z, and the outer with respect to s. We recall from above
that

ζ([−∞,+∞]× [0,∞]× [z,∞]) =
Γ(α+1)Γ(1+λ?

γ
)

(λ?)α z
−λ

?

γ .
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Under (cond), we have λ? = γ and the right hand side becomes αΓ(α,λ?)
z , where

Γ(α, λ?) :=

∫ ∞
0

fα−1e−λ
?f df =

Γ(α)

(λ?)α
.

We get, substituting v = eγ(s+f) and recalling that λ? = γ,∫ +∞

−∞

∫ ∞
0
e−ζ([−∞,+∞]×[0,∞]×[z,∞])dζ(s, f, z)

= αfα−1e−λ
?fdf

∫ ∞
0

(∫ ∞
0

ve−zvdv

)
e−

αΓ(α,λ?)/zdz

= αfα−1e−λ
?fdf

∫ ∞
0

e−αΓ(α,λ?)/z

z2
dz

=
fα−1e−λ

?fdf

Γ(α, λ?)
.





CHAPTER 6

Open problems and ongoing work

• Precise growth of the system

A question that remains open is about the precise rate of growth of the system in the
condensation phase. We know from Theorem 2.1 that

M(t)

N(t)
−→ β

β + γ
almost surely.

Hence it is equivalent to ask for the absolute growth of either of the processes (M(t) : t > 0)
or (N(t) : t > 0). In the bulk driven case we have, almost surely,

lim
t↑∞

e−λ
∗tN(t) = W̃ ,

for some positive random variable W̃ . The open problem is, whether in the condensation case
there exists a deterministic function ψ such that N(t)/ψ(t) converges, and to identify this
function ψ. For regularly varying fitness distributions µ a lower bound follows by considering
the growth of the largest family, which gives

N(t)

eλ?(t−T (t))
→∞,

from which an explicit bound follows by considering that T (t) ∼ α/λ? log t.

• Origin of the condensate

At which times are the families contributing to the condensate born? We have seen that the
window of constant width around T (t) from which the largest family originates does not
contribute substantially to the condensate. Condensate particle must come from a different,
larger, window.

• Shape of the condensate

Our results offer only a partial answer to the question raised in Borgs et al. [7] how the
links in the network are distributed among the highest fitnesses present in the system at any
given time. The most interesting question that remains open here is whether the families
that together form the condensate have a characteristic collective behaviour prior to con-
densation. The work on Kingman’s model in Dereich and Mörters [13], and on a growth
model without self-organisation in Dereich [10], suggests that this is indeed the case. More
precisely, we believe that in a shrinking neighbourhood of the maximal fitness, the empirical
fitness distribution takes an asymptotic shape of a universal nature.

Conjecture 6.1 (Condensation wave). Under assumption (RV) we have

lim
t→∞

Ξt(1− x
t , 1) =

ω(β, γ)

Γ(α+ 1)

∫ x

0
yαe−y dy,

33
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in probability, i.e. the condensation wave has the shape of a Gamma distribution with shape
parameter 1 + α.

It is also plausible from calculations in the Kingman model that in cases of stronger decay
of µ at w(µ) the condensation wave has a Gaussian shape. Such results are very hard to
check in simulations as the simulation volume would have to be unrealistically large. They
are also currently beyond the scope of rigorous mathematical analysis.

• More general branching and Bianconi-Barabasi networks

There are two natural generalisations of our model:
– In our model description as a branching process one could generalise the offspring rules

to allow the birth of more than one mutant or selectant at a birth event. This will
complicate notation but we do not expect any difficulties, or indeed significant new
insights, from this generalisation.

– In our Example 2 which describes our model as a growing network it would be natural to
allow new vertices to connect to more than one existing vertex. The techniques of this
paper are unsuitable for this generalisation. Dereich and Ortgiese [14] have developed a
stochastic approximation technique which allows to generalise the results of Tutorial 2
(and some others) to this case.

• Other classes of bounded fitness distributions

In this course we have investigated maximal families for a broad class of bounded fitness
distributions, those of regular variation at the maximal fitness value, or equivalently where µ
is in the maximal domain of attraction of the Weibull distribution. With a similar technique
we are also able to understand fitness distributions with a faster decay at the maximal fitness
value, ie. bounded µ in the maximal domain of attraction of the Gumbel distribution. For
example, the class with

logµ(1− ε, 1) ∼ −ε−γ for some γ > 0.

These results will be included in the forthcoming paper [20]. It is open whether there exist
bounded fitness distributions where we experience condensation by macroscopic occupancy.

• Unbounded fitness distributions and explosions

In the case of unbounded fitness distributions w(µ) = ∞ explosions may occur, ie. the
population can become infinitely large in finite time. When exactly do they occur and what
can be said about the explosion time? There is some published work by Komjathy [19] that
can be exploited.

• Unbounded fitness distributions and travelling waves

In the case of unbounded fitness distributions if there is no explosion the empirical fitness
distribution splits into a bulk part of asymptotic mass β/(β + γ) and shape µ, and another
part of mass γ/(β + γ) going to infinity. The techniques of Chapter 4 are suitable to prove
the mass and shape of the bulk, see also [7].

The other part is called a travelling wave and is more interesting. Under suitable assump-
tions on µ one can identify the speed at which this wave travels to infinity [12]. But there
are lots of open problems, in particular fine results on the spread and speed of the travelling
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wave, the size and fitness of the largest family, and possible the asymptotic shape of the
wave. These problems are currently under investigation, see the forthcoming paper [12].
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