Uncertainty quantification for network regression

Frank W. Marrs Colorado State University frank.marrs@colostate.edu

Collaborators

Bailey K. Fosdick Colorado State University

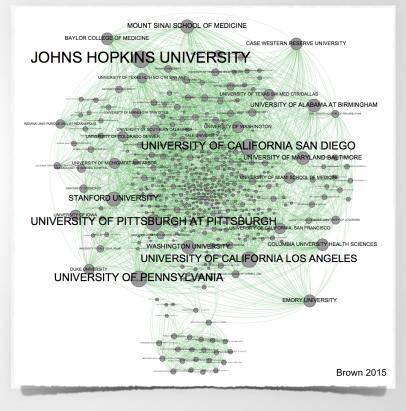
Tyler H. McCormick University of Washington

Network regression

- response Y: weighted,
 directed, from actor i to j
- covariates X: individual or pairwise attributes
- Model linear relationship of covariates and response

$$y_{ij} = \mathbf{x}_{ij}^T \boldsymbol{\beta} + \xi_{ij}$$

 $Y = X\beta + \boldsymbol{\xi} \in \mathbb{R}^{n(n-1)}$



Motivation

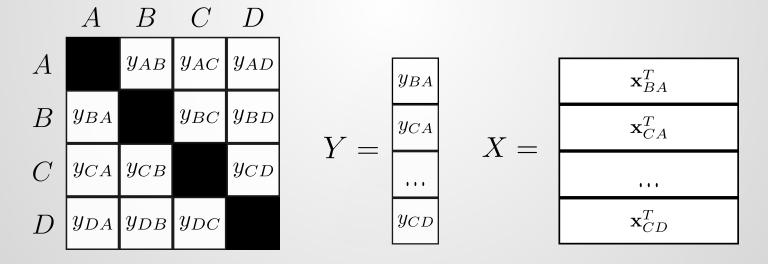
- International Trade Data (Westveld and Hoff, 2011)
- Informal Risk-Sharing Networks (Fafchamps and Gubert 2007, Attansio et al 2012, Banerjee et al 2013)
- International Militarized Disputes (Russett and Oneal 2011)
- Friendship Networks (Goodreau et al 2009, Wimmer and Lewis 2010)
- Speed Dating Networks (Fisman et al 2006)

Network regression

$$y_{ij} = \mathbf{x}_{ij}^T \boldsymbol{\beta} + \xi_{ij}$$

 response Y: weighted, directed, from actor i to j

$$Y = X\beta + \xi \in \mathbb{R}^{n(n-1)}$$
 • covariates X: individual or pairwise attributes



Network regression

$$y_{ij} = \mathbf{x}_{ij}^T \boldsymbol{\beta} + \xi_{ij}$$

- Goal: inference about eta
 - point estimates $(\widehat{\boldsymbol{\beta}})$
 - uncertainty estimate $(\widehat{\boldsymbol{\beta}} \pm \widehat{\operatorname{se}} \{\widehat{\boldsymbol{\beta}}\})$
- ξ_{ij} highly structured error
 - i.e. ξ_{ij} and ξ_{ik} share a node, expect correlation

Linear Regression

Recall Ordinary Least Squares

$$\hat{\boldsymbol{\beta}} = \operatorname{argmin}_{\beta} ||Y - X\boldsymbol{\beta}||_{2}^{2} = (X^{T}X)^{-1}X^{T}Y$$
$$Var(\hat{\boldsymbol{\beta}}|X) = (X^{T}X)^{-1}X^{T}\Sigma X (X^{T}X)^{-1}$$
$$\Sigma = Var(Y|X) = Var(\boldsymbol{\xi})$$

- X is $(n^2 n) \times p$ matrix of covariates
- Y and ξ are $(n^2 n)$ vectors of relations and errors
- For inference on $\widehat{\beta}$, need an estimate of Σ

Linear Regression

Recall normal likelihood

$$\ell(Y|\boldsymbol{\beta}, \boldsymbol{\Sigma}) \propto -\frac{1}{2}log(|\boldsymbol{\Sigma}|) - \frac{1}{2}\boldsymbol{\xi}^{T}\boldsymbol{\Sigma}^{-1}\boldsymbol{\xi}$$
$$\boldsymbol{\Sigma} = Var(Y|X) = Var(\boldsymbol{\xi})$$

- X is $(n^2 n) \times p$ matrix of covariates
- Y and $\boldsymbol{\xi}$ are $(n^2 n)$ vectors of relations and errors
- For inference on $\widehat{\beta}$, need a model for Σ

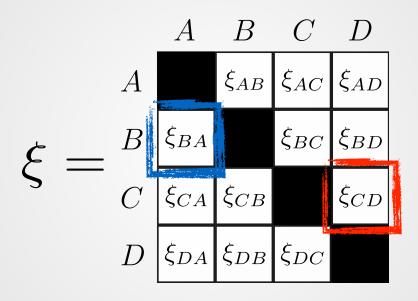
- Fafchamps and Gubert 2007
- Non-parametric approach
- Estimate every nonzero entry in

$$\Sigma = Var(Y|X) = Var(\boldsymbol{\xi})$$

• Plug-in estimator

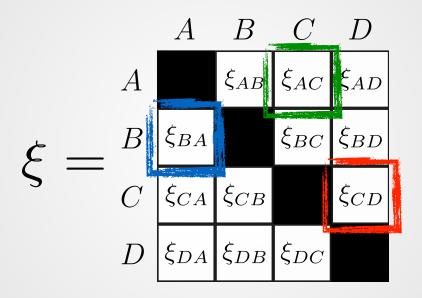
$$Var(\widehat{\boldsymbol{\beta}}|X) = (X^T X)^{-1} X^T \Sigma X (X^T X)^{-1}$$

Assumes that non-overlapping pairs independent



 $Cov(\boldsymbol{\xi}_{BA}, \boldsymbol{\xi}_{CD}) = 0$

• Model nonzero entries in Σ products of OLS residuals



 $Cov(\xi_{BA},\xi_{AC}) = e_{BA}e_{AC}$

 $e_{AB} := y_{AB} - \mathbf{x}_{ij}^T \widehat{\boldsymbol{\beta}}$

		BA	CA	DA	AB	СВ	DB	AC	ВС	DC	AD	BD	CD
В	4	e _{BA} e _{BA}	e _{ca} e _{ba}	$e_{DA}e_{BA}$	e _{AB} e _{BA}	e _{cB} e _{BA}	e _{DB} e _{BA}	e _{AC} e _{BA}	e _{BC} e _{BA}		e _{AD} e _{BA}	e _{BD} e _{BA}	
C,	4	e _{BA} e _{CA}	e _{cA} e _{cA}	e _{DA} e _{CA}	e _{AB} e _{CA}	e _{cB} e _{cA}		e _{AC} e _{CA}	e _{BC} e _{CA}	e _{DC} e _{CA}	e _{AD} e _{CA}		e _{cD} e _{cD}
D	4	e _{BA} e _{DA}	$e_{CA}e_{DA}$	$e_{DA}e_{DA}$	$e_{AB}e_{DA}$		e _{DB} e _{DA}	$e_{AC}e_{DA}$		e _{DC} e _{DA}	e _{AD} e _{DA}	e _{BD} e _{DA}	e _{cD} e _{DA}
A	в	e _{BA} e _{AB}	$e_{CA}e_{AB}$	$e_{DA}e_{AB}$	$e_{AB}e_{AB}$	e _{cB} e _{AB}	e _{DB} e _{AB}	$e_{AC}e_{AB}$	e _{BC} e _{AB}		$e_{AD}e_{AB}$	e _{BD} e _{AB}	
C	в	e _{BA} e _{CB}	e _{ca} e _{cb}		e _{AB} e _{CB}	e _{cb} e _{cb}	e _{DB} e _{CB}	e _{AC} e _{CB}	e _{BC} e _{CB}	e _{DC} e _{CB}		e _{BD} e _{CB}	e _{cd} e _{cb}
D	в	e _{BA} e _{DB}		$e_{DA}e_{DB}$	e _{AB} e _{DB}	e _{cB} e _{DB}	e _{DB} e _{DB}		e _{BC} e _{DB}	e _{DC} e _{DB}	e _{AD} e _{DB}	e _{BD} e _{DB}	e _{cd} e _{db}
A	c	e _{BA} e _{AC}	e _{ca} e _{ac}	$e_{DA}e_{AC}$	e _{AB} e _{AC}	e _{cB} e _{AC}		e _{AC} e _{AC}	e _{BC} e _{AC}	e _{DC} e _{AC}	e _{AD} e _{AC}		e _{cD} e _{AC}
) B	c	$e_{BA}e_{BC}$	e _{CA} e _{BC}		e _{AB} e _{BC}	e _{CB} e _{BC}	e _{DB} e _{BC}	e _{AC} e _{BC}	e _{BC} e _{BC}	e _{DC} e _{BC}		e _{BD} e _{BC}	e _{cD} e _{BC}
D	c		e _{ca} e _{DC}	e _{DA} e _{DC}		e _{cB} e _{DC}	e _{DB} e _{DC}	e _{AC} e _{DC}	$e_{BC}e_{DC}$	e _{DC} e _{DC}	e _{AD} e _{DC}	e _{BD} e _{DC}	e _{cD} e _{DC}
A	D	e _{BA} e _{AD}	$e_{CA}e_{AD}$	$e_{DA}e_{AD}$	$e_{AB}e_{AD}$		e _{DB} e _{AD}	$e_{AC}e_{AD}$		e _{DC} e _{AD}	e _{AD} e _{AD}	e _{BD} e _{AD}	$e_{CD}e_{AD}$
BI	D	$e_{BA}e_{BD}$		$e_{DA}e_{BD}$	$e_{AB}e_{BD}$	$e_{CB}e_{BD}$	e _{DB} e _{BD}		$e_{BC}e_{BD}$	e _{DC} e _{BD}	$e_{AD}e_{BD}$	e _{BD} e _{BD}	e _{cD} e _{BD}
C	D		$e_{CA}e_{CD}$	$e_{DA}e_{CD}$		e _{cB} e _{cD}	e _{DB} e _{CD}	$e_{AC}e_{CD}$	$e_{BC}e_{CD}$	e _{DC} e _{CD}	$e_{AD}e_{CD}$	$e_{BD}e_{CD}$	$e_{CD}e_{CD}$

$$\widehat{\Sigma}_{DC} =$$

 $n(n-1) \times n(n-1)$

Issues:

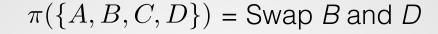
- More estimates than data points, $O(n^3) > O(n^2)$
- No sharing of information
- Singular with probability 1
- Can we add a reasonable assumption to improve the estimate?

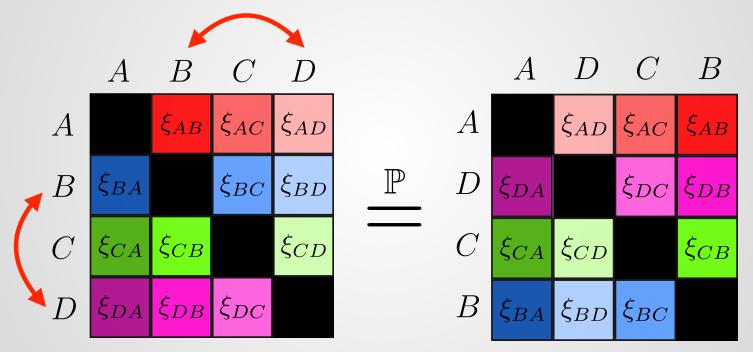
- Intuition: Node labeling on errors uninformative
- $\boldsymbol{\xi}$ jointly exchangeable if, for any permutation $\pi(.)$,

 $\mathbb{P}\left(\{\xi_{ij}: i \neq j, 1 \le i, j \le n\}\right) = \mathbb{P}\left(\{\xi_{\pi(i)\pi(j)}: i \neq j, 1 \le i, j \le n\}\right)$

(akin to homogenous variance assumption)

• Many network models are exchangeable: e.g. latent space, stochastic block, etc.

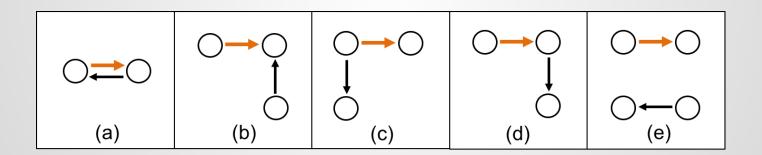


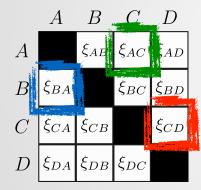


Original ξ

Permuted ξ

- **Major contribution**: Prove covariance matrix of jointly exchangeable vector $\boldsymbol{\xi}$ has 5 covariances and 1 variance
- Regardless of n





2	ξ_{BA}	ξ_{CA}	ξ_{DA}	ξ_{AB}	ξ_{CB}	ξ_{DE}	ξ_{AC}	BC	ξ_{DC}	ξ_{AD}	ξ_{BL}	ξcd
ξ_{BA}	σ^2	ϕ_b	ϕ_b	ϕ_a	ϕ_d	ϕ_d	ϕ_d	ϕ_c		ϕ_d	ϕ_c	
ξ_{CA}	ϕ_b	σ^2	ϕ_b	ϕ_d	ϕ_c		ϕ_a	ϕ_d	ϕ_d	ϕ_d		ϕ_c
ξ_{DA}	ϕ_b	ϕ_b	σ^2	ϕ_d		ϕ_c	ϕ_d		ϕ_c	ϕ_a	ϕ_d	ϕ_d
ξ_{AB}	ϕ_a	ϕ_d	ϕ_d	σ^2	ϕ_b	ϕ_b	ϕ_c	ϕ_d		ϕ_c	ϕ_d	
ξ_{CB}	ϕ_d	ϕ_c		ϕ_b	σ^2	ϕ_b	ϕ_d	ϕ_a	ϕ_d		ϕ_d	ϕ_c
ξ_{DB}	ϕ_d		ϕ_c	ϕ_b	ϕ_b	σ^2		ϕ_d	ϕ_c	ϕ_d	ϕ_a	ϕ_d
ξ_{AC}	ϕ_d	ϕ_a	ϕ_d	ϕ_c	ϕ_d		σ^2	ϕ_b	ϕ_b	ϕ_c		ϕ_d
ξ_{BC}	ϕ_c	ϕ_d		ϕ_d	ϕ_a	ϕ_d	ϕ_b	σ^2	ϕ_b		ϕ_c	ϕ_d
ξ_{DC}		ϕ_d	ϕ_c		ϕ_d	ϕ_c	ϕ_b	ϕ_b	σ^2	ϕ_d	ϕ_d	ϕ_a
ξ_{AD}	ϕ_d	ϕ_d	ϕ_a	ϕ_c		ϕ_d	ϕ_c		ϕ_d	σ^2	ϕ_b	ϕ_b
ξ_{BD}	ϕ_c		ϕ_d	ϕ_d	ϕ_d	ϕ_a		ϕ_c	ϕ_d	ϕ_b	σ^2	ϕ_b
ξ_{CD}		ϕ_c	ϕ_d		ϕ_c	ϕ_d	ϕ_d	ϕ_d	ϕ_a	ϕ_b	ϕ_b	σ^2

Exchangeable estimator

Maintain independence assumption from DC

$$Cov(\xi_{ij}, \xi_{kl}) = 0$$
 when $\{i, j\} \cap \{k, l\} = \emptyset$

- Pool across all relations to estimate 5 nonzero terms in $\widehat{\Sigma}_E$
 - i.e. 1 variance and 4 covariances
- Estimate $\hat{\sigma}^2$, $\hat{\phi}_i$ with mean of products of OLS residuals
- Projection of $\widehat{\Sigma}_{DC}$ onto subspace of exchangeable covariance matrices

Exchangeable estimator

- Adds assumption of joint exchangeability of $\boldsymbol{\xi}$ to DC estimator
- Shares information: should see reduced variability
- Should see improved performance when assumption is reasonable
 - Covariates explain all variability except for exchangeable structure
 - Heterogeneities small relative to variability across 5 parameters
- Subsumes ALL exchangeable networks modeled with random effects, such as Latent Factor Model of Hoff (2005, 2007)
- Fast, direct estimation of covariance matrices

Latent Factor Model of Hoff (2005)

$$\xi_{ij} = a_i + b_j + \gamma_{(ij)} + z_i^T z_j + \epsilon_{ij}$$

Issues:

- Parametric model
- Random effects model
- May be slow to estimate

Simulation study

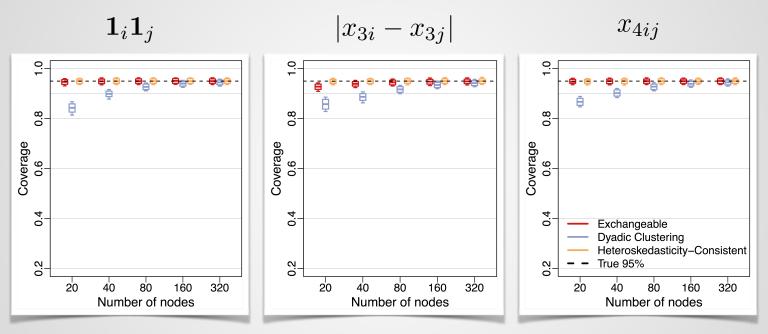
- Generate data for networks of size *n*
- Estimate coefficients using OLS
- Estimate standard errors with *exchangeable, dyadic clustering,* and *heteroskedasticity consistent* estimators

$$y_{ij} = \beta_1 + \beta_2 \mathbf{1}_i \mathbf{1}_j + \beta_3 |x_{3i} - x_{3j}| + \beta_4 x_{4ij} + \xi_{ij}$$

 $\mathbf{1}_i \sim_{iid} \text{Bernoulli}(1/2)$

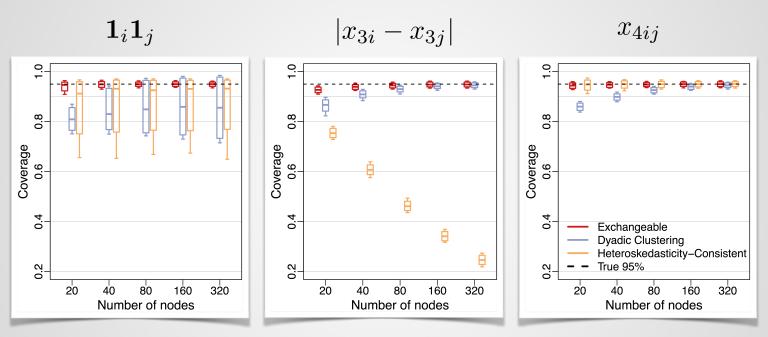
 $x_{3i}, x_{4ij} \sim_{iid} \mathcal{N}(0, 1)$

IID Errors



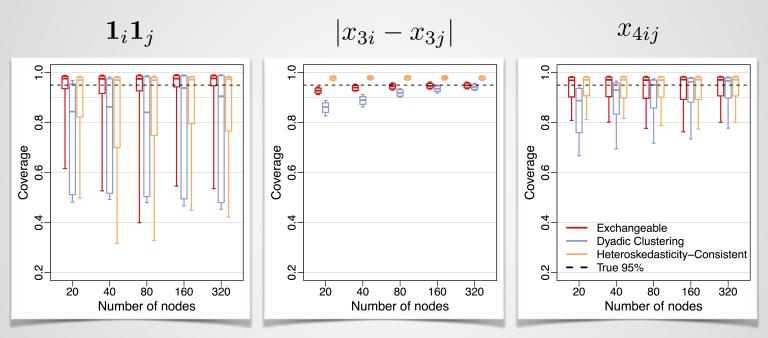
Probability true coefficient pertaining to each covariate is in 95% confidence interval

Exchangeable Errors



Probability true coefficient pertaining to each covariate is in 95% confidence interval

Nonexchangeable Errors



Probability true coefficient pertaining to each covariate is in 95% confidence interval

• **Theorem:** OLS is consistent and asymptotically normal under exchangeable error structure.

$$\sqrt{n}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \xrightarrow{d} \mathcal{N}(0, V_0)$$

$$V_0 = (\phi_b + \phi_c + 2\phi_d) E[x_{jk} x_{jk}^T]^{-1}$$

• Theorem: Exchangeable estimator is consistent.

$$\sqrt{n}(\widehat{V}_E - Var(\boldsymbol{\beta})) \xrightarrow{p} 0$$

$$\widehat{V}_E := (X^T X)^{-1} X^T \widehat{\Sigma}_E X (X^T X)^{-1}$$

• **Theorem:** The bias of the exchangeable estimator is less than that of the dyadic clustering estimator (for centered simple linear regression).

$$\frac{|\operatorname{Bias}(\widehat{V}_{DC})|}{|\operatorname{Bias}(\widehat{V}_{E})|} \ge 1$$

$$\widehat{V}_{DC} := (X^T X)^{-1} X^T \widehat{\Sigma}_{DC} X (X^T X)^{-1}$$

(Previously discussed)

- **Theorem:** Covariance matrix of exchangeable errors has at most 6 unique terms.
- **Theorem:** Dyadic Clustering estimate of covariance matrix of the errors is singular with probability 1.

(Still to prove)

- **Conjecture:** Exchangeable estimate of covariance matrix of errors is invertible with probability 1.
- **Conjecture:** Precision matrix of exchangeable errors has at most 6 unique terms in the same pattern! (leads to 6x6 inversion regardless of n)
- **Conjecture:** Exchangeable estimator is asymptotically efficient for normallydistributed exchangeable errors.

- 25 countries over 20 years
- "gravity model" of trade
- 8 covariates
 - Nodal
 - Edge
- Fit with Iteratively-reweighted least squares/GEE
- Working covariance has 10 terms
 - 5 at same time, 5 at different times

- Westveld and Hoff fit Bayesian regression model
- Stationary working covariance model
 - Appx 30 parameters
 - Complex hierarchical model with many modeling decisions

$$t = 1 \quad t = 2 \quad t = 3 \quad t = 4$$

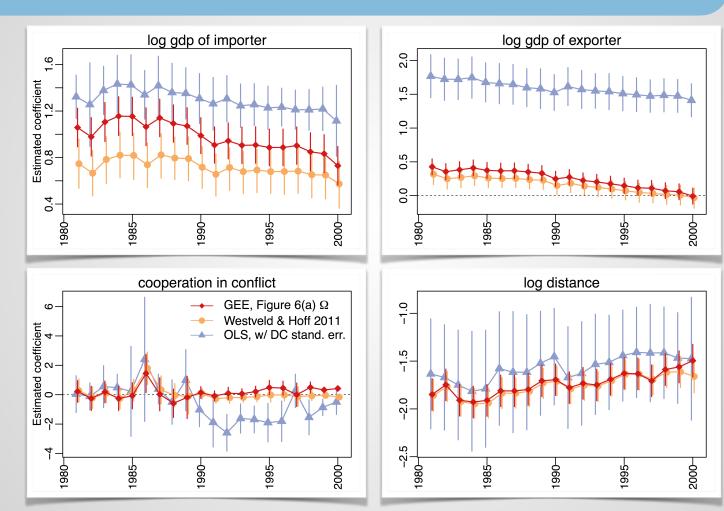
$$t = 1 \quad \Omega_1 \quad \Omega_2 \quad \Omega_2 \quad \Omega_2$$

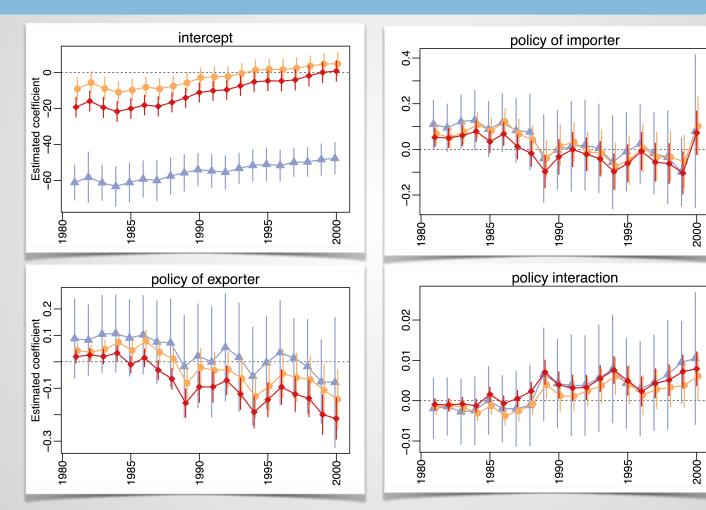
$$t = 2 \quad \Omega_2 \quad \Omega_1 \quad \Omega_2 \quad \Omega_2$$

$$t = 3 \quad \Omega_2 \quad \Omega_2 \quad \Omega_1 \quad \Omega_2$$

$$t = 4 \quad \Omega_2 \quad \Omega_2 \quad \Omega_2 \quad \Omega_1$$

$$t = 1 \quad t = 2 \quad t = 3 \quad t = 4$$





Summary

- Dyadic clustering approach may be noisy
- Exchangeable covariance matrix
 - 6 unique terms, one of which we assume is zero
- Many common network models are jointly exchangeable
 - i.e. Latent Factor Model of Hoff (2005)
- Estimates of $se\{\widehat{m{eta}}\}$ based on exchangeable error structure perform well
 - simulations and trade data

Future work

- Prove conjectures
- Extend approach to binary data
- Test for exchangeability
- Principled extensions to heterogeneous cases

Frank Marrs

Colorado State University

frank.marrs@colostate.edu

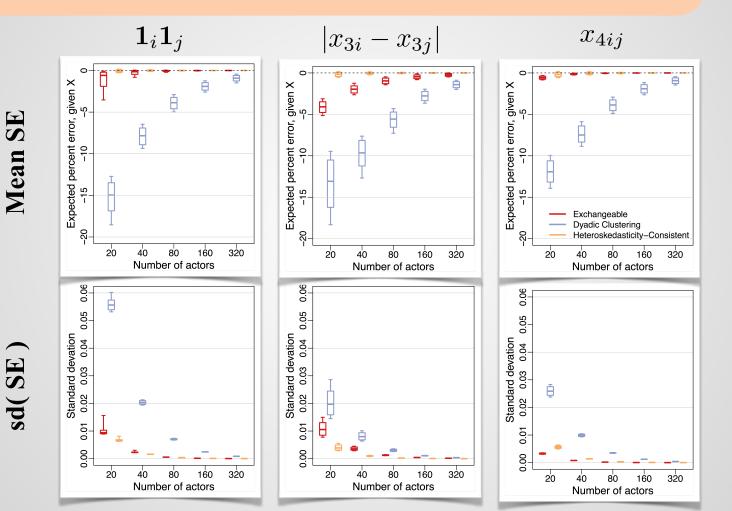
http://www.stat.colostate.edu/~marrs

Marrs, F.W., McCormick, T.H., and Fosdick, B.K. (2017) "Standard errors for regression on relational data with exchangeable errors", arXiv:1701.05530. [<u>Preprint</u>]

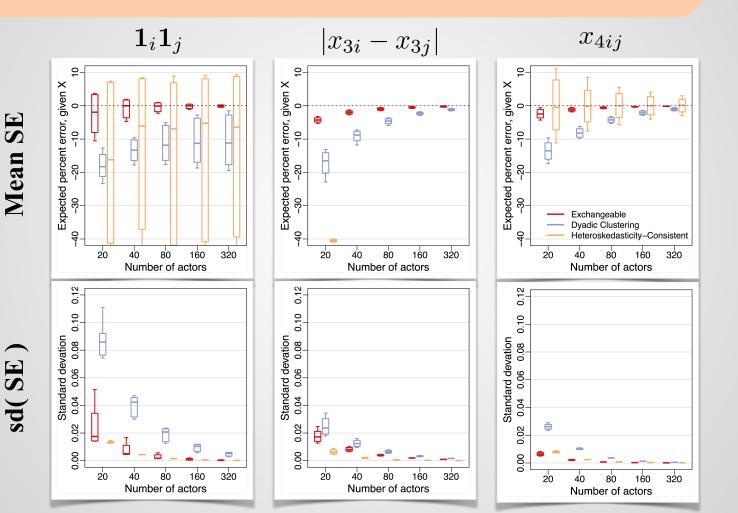
Simulation study

- Error structures:
 - 1. IID errors
 - 2. Exchangeable errors (latent distance model of Hoff)
 - 3. Non-exchangeable error structure
- 1,000 error draws for each of 500 *X* draws
- Fit OLS and estimate standard errors using DC, E estimators

Standard error comparison - IID errors



Standard error comparison - EXCH errors



Standard error comparison - Non-exch. errors

