Dynamic network models Worksheet for Lecture 2 Shankar Bhamidi

(1) Let $\{\mathcal{F}(t) : t \ge 0\}$ be the continuous time branching where each individual has a Poisson rate one offspring distribution. Let

$$T_n = \inf \left\{ t : |\mathcal{F}(t)| = n \right\}$$

Describe the attachment scheme corresponding to the tree process $\mathbf{t}_n = \mathcal{F}(T_n)$.

- (2) **Master equation:** Refer to the random tree model in the previous question. Recall that we think of edges pointed from parents to children in the tree. Fix $k \ge 0$ and let $N_k(n)$ be the number of vertices with out-degree k in \mathbf{t}_n . Write $p_k(n) = \mathbb{E}(N_k(n)/n)$ denote the expected proportion of vertices with out-degree k. Start with k = 0 and find a recursion relation between $p_0(n+1)$ and $p_0(n)$. What does this suggest about $\lim_{n\to\infty} p_0(n)$? Now understand limits $\lim_{n\to\infty} p_k(n)$ for general k.
- (3) Refer to the random tree model in question 1. In the above case, argue intuitively that $e^{-t}|\mathcal{F}(t)|$ is a martingale (with respect to the natural filtration). Using this derive the limiting degree distribution.
- (4) Let M_n be the maximum degree of the tree \mathbf{t}_n in the above case. What is the magnitude of M_n ?
- (5) Fix a positive sequence $\{f(k): k \ge 1\}$. Suppose one has a branching process with offspring distribution

$$\mathcal{P} = (Y_1, Y_2, \ldots); \qquad Y_i = \sum_{k=1}^i L_i$$

where L_i has exponential rate f(k) distribution. For any $t \ge 0$, $\mathcal{P}[0,t] := \sup\{i: Y_i \le t\}$ be the number of points in the interval [0,t]. Recall that the Malthusian rate of growth λ which controls how quickly this branching process grows is given by the equation

$$\mathbb{E}(\mathcal{P}[0, T_{\lambda}]) = 1$$

where T_{λ} is an $\exp(\lambda)$ random variable independent of \mathcal{P} . Find an equation in terms of $\{f(k): k \geq 1\}$ that λ solves.

- (6) Recall the superstar model $\mathcal{T}_n(p)$ where each new vertex with probability p connects to the vertex v_0 with probability p and with probability (1-p) connects to any other vertex with proportional to their current (out)-degree. Show that this model can be embedded in the two-type continuous time branching process $\{\mathcal{F}(t): t \geq 0\}$ in the slides with surgery namely:
 - (a) Start with one red vertex v_1 at time t = 0.
 - (b) Every vertex v reproduces at rate proportional to the number of their current blue children +1.
 - (c) Each new vertex is colored red with probability p and blue with probability (1-p).
 - (d) From $\mathcal{F}(T_{n-1})$ one can get $\mathcal{T}_n(p)$ as follows: Insert new vertex v_0 . Delete the edges of each red vertex to their parent in $\mathcal{F}(T_{n-1})$ and re-attach to v_0 .
- (7) In the context of the previous example, let B(t) be the number of blue vertices at time t and $Z(t) := |\mathcal{F}(t)|$ be the size of the tree. Find a constant λ_p and constants a, b such that $e^{-\lambda_p t}(aZ(t) + bB(t))$ is a martingale. This tells us about the relative rate of growth of this process.