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Network fragmentation-coalescence models

Terrorists, consensus and biological clustering

Consider a collection of n identical particles
(terrorists/opinions), grouped together into some number of
clusters (cells/consensus). We define a stochastic dynamical
process as follows:

Every k-tuple of clusters coalesces at rate α(k)n1−k ,
independently of everything else that happens in the system.
The coalescing cells are merged to form a single cluster with
size equal to the sum of the sizes of the merged clusters.

Clusters fragment (terrorist cells are dispersed/consensus
breaks) at constant rate λ > 0, independently of everything
else that happens in the system. Fragmentation of a cluster of
size ` results in ` ‘singleton’ clusters of size one.
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Network fragmentation-coalescence models

Terrorists, consensus and biological clustering

Without fragmentation, the model falls within the domain of
study of Smoluchowski coagulation equations, originally
devised to consider chemical processes occurring in
polymerisation, coalescence of aerosols, emulsication,
flocculation.

In all cases: one is interested in the macroscopic behaviour of
the model (large n), in particular in exploring universality
properties.
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Model history (but only for dyadic coalescence)

This model is a variant of the one presented in:
Bohorquez, Gourley, Dixon, Spagat & Johnson (2009)
Common ecology quantifies human insurgency Nature 462,
911-914.

It is also related to: Ráth and Tóth (2009) Erdős-Rènyi
random graphs + forest fires = self-organized criticality, 14
Paper no. 45, 1290-1327.

λ(n)

1/n

In a system of size n ‘vacant’ edges become ‘occupied’ at rate 1/n,
each site ‘hit by lightning’ at rate λ(n) annihilating to singletons
the cluster in which it is contained.
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Heavy-tailed terrorism

In the insurgency model, two blocks merge if a terrorist in
each block make a connection, which they do at a fixed rate.
This means that coalescence is more likely for a big terrorist
cell.
The macroscopic-scale, large time limit of the insurgency
model for a “slow rate of fragmentation” shows that the
distribution of block size is heavy tailed:

“P(typical block = x) ≈ const.× x−α, x →∞.”
Taken from Bohorquez, Gourley, Dixon, Spagat & Johnson
(2009):
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A challenge

The Ráth-Tóth model take account of cluster size but not
proximity (inherent Erdös-Renyi percolation type structure)

Our model borrows from the spirit of the exchangeable
Λ-coalescent (without actually having that mechanism) and
allows for multiple coagulation irrespective of cluster sizes.

Are there variants of this story which can incorporate multiple
cluster mergers with cluster size dependence and and/or
proximity?
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The Ráth-Tóth model take account of cluster size but not
proximity (inherent Erdös-Renyi percolation type structure)

Our model borrows from the spirit of the exchangeable
Λ-coalescent (without actually having that mechanism) and
allows for multiple coagulation irrespective of cluster sizes.

Are there variants of this story which can incorporate multiple
cluster mergers with cluster size dependence and and/or
proximity?



Network fragmentation-coalescence models

A challenge
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Back to our model: Generating function

For each n ∈ N, and k ∈ {1, . . . , n}, the state of the system is
specified by the number of clusters of size k at time t.

Introduce the random variables

wn,k(t) :=
1

n
#{clusters of size k at time t}, 1 ≤ k ≤ n.

Rather than working with these quantities directly, use the
empirical generating function

Gn(x , t) =
n∑

k=1

xkwn,k(t), n ≥ 1, x ∈ (0, 1), t ≥ 0
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Theorem 1

Theorem

Suppose that the coalescence rates α : N→ R+ satisfy

α(k) ≤ exp(γk ln ln(k)) , ∀k ,

where γ < 1 is an arbitrary constant. Let G : [0, 1]× R+ → R be
the solution of the deterministic initial value problem

G(x , 0) = x ,

∂G

∂t
(x , t) = λ(x − G(x , t)) +

∞∑
k=2

α(k)

k!

(
G(x , t)k − kG(1, t)k−1G(x , t)

)
.

Then Gn(x , t) converges to G (x , t) in L2, uniformly in x and t, as
n→∞, that is

sup
x∈[0,1],t≥0

E
[
(G (x , t)− Gn(x , t))2

]
→ 0, as n→∞.
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Main technique in proof

For f (x ,wn) :=
∑n

k=1 x
kwn,k , we have

Anf (x ,wn) = λ(x − f (x ,wn)) +
n∑

k=2

α(k)

k!
(f (x ,wn)k − kf (1,wn)k−1f (x ,wn))

+ βn(x ,wn),

where

sup
wn

|βn(x ,wn)| ≤ A

n
,

where A is a constant independent of n and x .
Look at the mean-field equations to ”guess” the limiting
behaviour of Gn(x , t) (equivalently consider the leading order
terms of the generator).
Apply Dynkin’s formula,play with leading terms in generator
and invoke Gronwall’s Lemma:

E[(G (x , t)−Gn(x , t))2] = E
[∫ t

0

(
∂

∂s
+An

)
[(G (x , s)− Gn(x , s))2]ds

]
,
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The next theorem deals with the stationary cluster size
distribution.

Let

pn,k(t) :=
#{clusters of size k at time t}

#{clusters at time t}
, 1 ≤ k ≤ n.

Define
pk := lim

t→∞
lim
n→∞

pn,k(t) ,

as a distributional limit, which exists thanks to the previous
theorem and that

n∑
k=1

xkpn,k(t) =
Gn(x , t)

Gn(1, t)
, n ≥ 1, x ∈ (0, 1), t ≥ 0 .
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Theorem 2

Theorem

If α satisfies

α(k) ≤ exp(γk ln ln(k)) , ∀k ,

and m is the smallest integer such that α(m) > 0, then the
stationary cluster size distribution obeys

lim
λ↘0

pk =

 1
k

(
m−1
m

)k ( 1
m

) k−1
m−1

(m( k−1
m−1)
k−1
m−1

)
if m − 1 divides k − 1

0 otherwise

and in particular, as k →∞

lim
λ↘0

pk ≈

{
k−3/2 if m − 1 divides k − 1

0 otherwise.
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Terrorists never congregate in even numbers
Suppose we allow coalescence in groups of three or more but
not pairs (m = 3).

In the large n and small λ limit we will see no clusters of even
size whatsoever in the stationary distribution.

The model has the apparently paradoxical feature that
clusters of even size are vanishingly rare, despite the fact that
limλ↘0 p1 ≈ 2/3.

This is a consequence of the weight of the tail of the cluster
size distribution.

The universal exponent 3/2 suggests a typical cluster size∑n
1 kpk ≈ O(n1/2) ⇒ ] clusters ≈ O(n1/2).

Coalescence of triples:
(n1/2

3

)
× α(3)n1−3 ≈ O(n−1/2)

Coalescence of quadruples:
(n1/2

4

)
× α(4)n1−4 ≈ O(n−1)

With 2/3 of blocks being singletons, this creates an imbalance
with manifests in the disappearance of even sized blocks.
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Thank you!
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