

Weierstrass-Institute for Applied Analysis and Stochastics

Stochastic geometry in telecommunications

Benedikt Jahnel

Challenges

- High complexity in space and time
- Large number of network components
- Random positioning and mobility of components
- Common communication technology

Let us consider networks with the following properties:

- random spatial distribution of network components
- static networks without time
- no additional infrastructure

www.wikipedia.de

Idea since the 1960's (Gilbert): Use stochastic geometry to model telecommunication networks.

The Poisson point process

- A Poisson point process X is a random cloud of points without cluster points (configuration of network components) with the following properties:
 - 1. Point clouds in disjoint areas are stochastically independent.
 - 2. The number of points in an area $A \subset \mathbb{R}^d$ is Poisson distributed with parameter $\lambda \operatorname{Vol}(A)$:

$$\mathbb{P}_{\lambda}(X ext{ has } k ext{ points in } A) = e^{-\lambda \operatorname{Vol}(A)} rac{(\lambda \operatorname{Vol}(A))^k}{k!}$$

Gilbert graph

- Gilbert (1961): First network model $g_r(X)$ based on Poisson point porcess X.
- Two network components x, y can communicate if their distance is smaller then a connectivity parameter r > 0: |x y| < r

Percolation

- Quality of network connectivity measured via size of connected components: clusters
- Existence of infinite cluster is called percolation

 $\mathbb{P}_{\lambda}(g_r(X) \text{ percolates}) > 0$

www.wikipedia.de

Phase transition

Percolation is a phase-transition phenomena in the intensity parameter λ.
There exists 0 < λ_c < ∞ with the property that

 $\lambda_{\mathsf{c}} = \lambda_{\mathsf{c}}(r) = \inf\{\lambda : \mathbb{P}(g_r(X) \text{ percolates}) > 0\}.$

In the sub-critical regime $\lambda < \lambda_c$ we have local communication.

- In the super-critical regime $\lambda > \lambda_c$ global communications is possible.
- There is no known closed form expression for λ_{c} as a function of r.
- Numerical approximations suggest that $\lambda_{c} \approx 1.436$ for r = 1.

Poisson tesselations

Based on the Poisson point process, a large number of tessellations can be defined.

Relative neighborhood graph

Johnson-Mehl tessellation

Minimum spanning forest

Poisson-Voronoi tesselation

- Also other names: Voronoi diagram, Voronoi decomposition, Voronoi partition, Dirichlet tessellation or Thiessen Polygon
- Formal definition: The Voronoi cell around the point $x \in X$ is given by

$$Z(x) = \{ z \in \mathbb{R}^d : |z - x| < |z - y| \text{ für alle } y \in X \setminus \{x\} \}.$$

Used in a great number of scientific fields (Algorithmic geometry, material sciences, ...) and applications (biology, chemistry, meteorology, crystallography, architektur, ...).

www.wikipedia.de

Fundamental network characteristics

1. What is the probability that two users are connected dependent on their distance?

 $p_s = \mathbb{P}(o \iff se_1)?$

2. What is the proportion of pairs of connected users?

$$\pi_s = \mathbb{E}(\#(X \nleftrightarrow Y) \in B_s(o))?$$

3. What is the probability that two users are connected if the number of hops is constraint?

$$\hat{p}_s = \mathbb{P}(o \iff se_1 | \# \operatorname{Hops} < \alpha s)?$$

Lets get to it.

Voronoi structure: Avignon (France)

From: Open street maps

Manhattan grid structure: Bouake (Ivory Coast)

From: Open street maps

Manhattan grid structure: Xian (China)

From: Open street maps

Nested Manhattan grid structure with users

Essentially asymptotically connected Cox point processes

Theorem

If the random intensity measure is essentially asymptotically connected, then $0 < \lambda_c < \infty$.

- Examples are Poisson Voronoi tessellation (PVT) or the Poisson Delaunay tessellation.
- Manhattan and nested Manhattan grids are not stabilizing and proofs for non-triviality should be much harder.
- Continuum percolation for general Cox processes can exhibit pathological effects, for example $\lambda_c = 0$ (see Błaszczyszyn & Yogeshwaran, 2013).

Approximations for λ_c

- Users form Cox point process X with random intensity $\lambda | du \cap S |$ where
- S realization of a street system, e.g., PVT
 - PVT is characterized by length intensity $\gamma = \mathbb{E}[|S \cap [-1/2, 1/2]^2|]$

Approximations for λ_c

- Users form Cox point process X with random intensity $\lambda | du \cap S |$ where
- S realization of a street system, e.g., PVT
- PVT is characterized by length intensity $\gamma = \mathbb{E}[|S \cap [-1/2, 1/2]^2|]$
- Dense streets: approximate X by 2D Poisson point process with spatial intensity $\gamma\lambda$
 - $4.51\pi^{-1}r^{-2}$ is the approximate critical intensity for percolation of the Boolean model
 - Approximation I:

 $\lambda_c\approx 4.51\pi^{-1}\gamma^{-1}r^{-2}$ becomes exact for $\gamma\uparrow\infty$ with $\lambda\gamma$ fixed.

Approximations for λ_c

- Users form Cox point process X with random intensity $\lambda | du \cap S |$ where
- S realization of a street system, e.g., PVT
- PVT is characterized by length intensity $\gamma = \mathbb{E}[|S \cap [-1/2, 1/2]^2|]$
- Sparse streets: approximate X by inhomogenous Bernoulli bond percolation with parameter b^l where l is edge length
 - **b**_{crit} is critical percolation threshold. For PVT with distance parameter 1, by simulations $b_{\rm crit} \approx 0.725$
 - Approximation II: $\frac{\lambda_c}{\gamma} \exp(-\lambda_c r) \approx -\log(b_{\text{crit}})$ becomes exact for $\gamma \downarrow 0$ with $\frac{\lambda}{\gamma} \exp(-\lambda r)$ fixed.

Fundamental network characteristics

1. What is the probability that two users are connected dependent on their distance?

$$p_s = \mathbb{P}^0(o \iff se_1)?$$

2. What is the expected number of pairs of connected users?

$$\pi_s = \mathbb{E}(\#(X \leftrightarrow Y) \in B_s(o))?$$

3. What is the probability that two users are connected if the number of hops is constraint?

$$\hat{p}_s = \mathbb{P}^0(o \iff se_1 | \# \operatorname{Hops} < \alpha s)?$$

Connection probability as a function of distance

\blacksquare Palm calculus to ensure o on streets: Define Palm version of S via

$$\mathbb{E}^{0}f(S) = \frac{1}{\gamma}\mathbb{E}\int_{Q_{1}(o)\cap S} f(S-u)\mathrm{d}u$$

define device connection probability at relative position B via

$$p_B(\lambda, r, \gamma) = \frac{\mathbb{E}^0 \int_{S \cap B} \mathbb{1}\left\{o \nleftrightarrow v \text{ in } g_r(X \cup \{v\})\right\} \mathrm{d}v}{\mathbb{E}^0 |S \cap B|}$$

where \mathbb{E}^0 denote the Palm measure for S and X.

Theorem (Scaling invariance)

Let $\lambda, r, \gamma > 0$ be arbitrary. Then, for every a > 0,

$$p_{aB}(a^{-1}\lambda, ar, a^{-1}\gamma) = p_B(\lambda, r, \gamma).$$

Large distance approximation

• $p_s = p_{Q_1(se_1)}$ converges to the square of the percolation probability

$$\theta(\lambda, r, \gamma) = \mathbb{P}^0(o \nleftrightarrow \infty \text{ in } g_r(X))$$

Theorem

Let $\lambda, r, \gamma > 0$ be arbitrary. Assume some cluster uniqueness and vacancy condition, then

$$\lim_{s \uparrow \infty} p_s = \theta^2.$$

More precisely, there exists c > 0 such that $|p_s - \theta^2| \le \exp(-cs)$ for all sufficiently large s.

Percolation approximation w.r.t. λ - universality

Percolation approximation w.r.t. λ - universality

Conjecture

Let
$$r, \gamma > 0$$
. Then, $\theta(\lambda) \approx (\lambda - \lambda_c)^{5/36}$ as $\lambda \to \lambda_c$.

More precisely, $\lim_{\lambda \to \lambda_c} \frac{\log \theta(\lambda)}{\log(\lambda - \lambda_c)} = 5/36.$

- Smirnov and Werner 2001 for the triangular lattice
- Assumed to be universal, i.e., depend only on the local structure of the graph and the dimension

Percolation approximation w.r.t. λ - large deviations

finite box crossing: $\theta_K(\lambda) = \mathbb{P}^0(o \iff X_i \text{ for some } X_i \in X \setminus Q_K(o))$

Theorem (large λ_U)

Let $r, \gamma > 0$ and $K > 2r_{U}$ be arbitrary. Then,

$$\theta_K(\lambda) \approx 1 - \exp(-2r\lambda)$$

as $\lambda \to \infty$. More precisely,

$$\lim_{\lambda \to \infty} \lambda^{-1} \log(1 - \theta_K(\lambda)) = -2r.$$

expect statement to hold also for θ

Thank you for your attention.