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Plan for the talk

Based on a joint work with Bhamidi, Cranmer, Desmarais ’17.

Why weighted network?

Exponential models for simple(binary) and weighted network.

Main tool: Dense graph limits.

(Graph) Limiting results on (G)ERGM and applications.

A special case: Normal distribution.

Discussions.
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Why weighted network?

What is a simple(binary) network?
Graph with vertex set V := [n] and edge set E , where (i , j) ∈ E if nodes i
and j are connected for i , j ∈ n. The n × n adjacency matrix of (V ,E ) is
the matrix X with elements

xij = 1 if (i , j) ∈ E ,

= 0 if (i , j) ∈ E c .

Binary network captures the information about the connectivity
structure of the vertex set.

It does not captures information about the strength of the
connection.

Suman Chakraborty (UNC) GERGM August 21, 2017 3 / 26



Argentina

Australia

Brazil

Canada

China

France

Germany

India

Italy

Japan

South Korea

Mexico
Portugal

Singapore

Spain

United Kingdom

United States

Edge Values

0 1173.32

Figure: International Lending Network 2005.(The plot is taken from Wilson,
Denny, Bhamidi, Cranmer, Desmarais ’16)
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Motivating Examples

A binary network would require thresholding and thus loss of
information.

Instead of using binary values we associate an weight to each pair of
nodes, the adjacency matrix becomes xij = {Weight of the edge
(i , j)}.
The weights can be any real number.
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Statistical Motivation

Studies by Park and Newman (’04a); Wasserman and Pattison (’96)
Snijders, Pattison, Robins and Handcock (’06); Fienberg (’10)...suggest,

High variance in the “popularity” of nodes implies high values of∑
i ,j ,k xijxik . (This is homomorphism number of two-star)

High transitivity indicates high values of
∑

i ,j ,k xijxjkxki . (This is
homomorphism number of triangles)

Higher values of other motif counts in many applications.

Exponential Random Graph Models(ERGM) were used to
incorporate the above features.
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An Examples of ERGMs

Following is a model on the space of all simple graphs(binary and
undirected) on n nodes,

pβ1,β2(G ) ∝ exp

(
2β1E + 6

β2
n
TR

)
,

E = Number of edges in G and TR = Number of triangles in G .
Intuition,

What happens if β2 = 0?

What happens if β2 > 0?

Why the scaling n is required for the triangle?

Why the constants 2 and 6 are there?

Will come back to the Model after a (very)short overview of graph limits.
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Brief Overview Of Graph Limits

Map the n × n adjacency matrix X = {xij}1≤i ,j≤n with xij = xji for all
i , j ∈ [n] to a symmetric kernel:

k(x , y) =
n∑

i ,j=1

xij1Jni (x)1Jnj (y),

where Jn1 = [0, 1n ] and for i = 2, . . . , n, Jni is the interval ( i−1n , i
n ].

K : Space of symmetric measurable functions from [0, 1]× [0, 1]→ R. The
cut distance in the space K is defined as follows,

d(k1, k2) = sup
A,B⊂[0,1]

|
∫
A×B

(k1(x , y)− k2(x , y)) dx dy |,

where A and B are Borel subsets of [0, 1].
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Σ : space of all measure preserving bijections (with respect to the
Lebesgue measure) σ : [0, 1]→ [0, 1].

k1, k2 ∈ K, say that k1 ∼ k2 if,

k1(x , y) = σk2(x , y) := k2(σx , σy), a.e. x , y , for some σ ∈ Σ.

Denote the orbit {σk : σ ∈ Σ} by k̃ . Write K̃ := K\ ∼ for the
quotient space under the relation ∼ on K and τ for the natural map
from k → k̃ .

d is invariant under σ, so a natural distance δ on K̃ is:

δ(k̃1, k̃2) = inf
σ
d(σk1, k2) = inf

σ
d(k1, σk2) = inf

σ1,σ2
d(σ1k1, σ2k2).
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Two results and an important representation

Lovász and coauthors proved many important results about this metric
space.

(K̃t , δ) is a compact metric space, where K̃t = {k̃ ∈ K̃ : |k̃ | ≤ t} for
t ∈ R.

Why is this metric useful?

It makes many important functionals continuous. e.g,
homomorphism density, normalized spectra and many more.

How one represents homomorphism density of a graph F into a Kernel k?

t(F , k) =

∫
[0,1]|V (F )|

∏
(i ,j)∈E(F )

k(xi , xj)
∏

i∈V (F )

dxi

Note: t(F , k) is invariant under measure preserving transformation.

Suman Chakraborty (UNC) GERGM August 21, 2017 10 / 26



Two Examples

E be an edge and G be a graph on n vertices and mapped into the kernel
kG . Then

t(E ,G ) = t(E , kG ) =

∫
[0,1]

kG (x1, x2) dx1 dx2 = 2 no. of edges in G .

TR be a triangle, then,

t(TR,G ) = t(TR, kG ) =

∫
[0,1]3

kG (x1, x2)kG (x2, x3)kG (x3, x1) dx1 dx2 dx3

= 6 no. of triangles in G .
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The GERGM

With each edge {i , j}, assign an i.i.d probability distribution qij(= qji )
for 1 ≤ i < j ≤ n.

For the diagonal, qii = δ0 be the unit mass at zero, for i = 1, . . . , n
independent of the remaining edges.

Write Qn for the induced measure on K via the mapping of the graph
into the kernel on [0, 1]× [0, 1] and Q̃n for the corresponding
push-forward measure on K̃. Call Q̃n the base measure.

The generalized exponential random graph model is a probability measure
R̃n on K̃ defined via tilting Q̃n using a given function T .

dR̃n(k̃) = exp{n2(T (k̃)− ψn)} dQ̃n(k̃), k̃ ∈ K̃.

where ψn is the normalizing constant.
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Literature and Challenges

Desmarais and Cranmer ’12, Krivitsky ’12, Wilson, Denny, Bhamidi,
Cranmer, Desmarais ’16 used weighted exponential random graphs with
various choices of base measures and statistics T . Following are some of
the main challenges:

Estimating the normalizing constant.

Understand large network limits.

“Degeneracy” and “No Degeneracy” phenomenon.

Choice of base measures and statistics T .

Suman Chakraborty (UNC) GERGM August 21, 2017 13 / 26



Normalizing Constant

One main challenge is to estimate the normalizing constant of GERGM.
Theorem(Bhamidi, C, Cranmer, Desmarais ’17). Under some
assumptions on the base measure and the statistic T , the limiting
normalizing constant is given by,

ψ = lim
n→∞

ψn = lim
l→∞

sup
k̃∈K̃l

(T (k̃)− I (k̃)),

where

I (k) =
1

2

∫∫
[0,1]×[0,1]

h(k(x , y)) dx dy

with h(x) := supθ [θx − lnM(θ)], and M(θ) is the moment generating
function of q.
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Assumptions

(C1: Finiteness) Suppose for each fixed t > 0, T is a bounded
continuous function in cut metric when restricted to Kt and further
satisfies ∫

K̃
exp(n2T (k̃)) dQ̃n(k̃) <∞,

(C2: Exponential tightness)

lim sup
l→∞

lim sup
n→∞

1

n2
ln

∫
{T (k̃)−T (fl (k̃))≥ε}

en
2T (k̃) dQ̃n(k̃) = −∞.

where

fl(q) = q if |q| ≤ l ,

= l if q ≥ l ,

= −l if q ≤ −l .
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Proof Technique

The proof involves the following steps:

Noting ψn = 1
n2

ln
∫
K̃ e

n2T (k̃) dQ̃n(k̃).

Truncate the integral using operator fl .

Show that the {T (k̃)− T (fl(k̃)) ≥ ε} does not contribute anything
at n2 scale using our assumptions.

Using Large deviations result by Chatterjee and Varadhan ’11
together with continuity of T and compactness of K̃l .
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A Law of Large numbers

Theorem(Bhamidi, C, Cranmer, Desmarais ’17). Let F̃ ∗ be the set of
maximizers of T (k̃)− I (k̃). If together with (C1) and (C2) we assume all
elements in F̃ ∗ are absolutely bounded, then for any η > 0 there exist
constants C , γ > 0 such that,

Rn(δ(k̃ , F̃ ∗) ≥ η) ≤ Ce−n
2γ ,

for all n ≥ 1.
Observations from GERGM are concentrated around the set F̃ ∗.
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Exact solutions for some popular GERGM

H1 be a graph with two vertices and a single edge joining these vertices
and Hi ’s are graphs with at least two edges for 2 ≤ i ≤ s. We will consider
the following statistics,

T (k) =
s∑

i=1

βi t(Hi , k),

Theorem(Bhamidi, C, Cranmer, Desmarais ’17). Under assumptions
(C1) and (C2), where β2, . . . , βs are non negative real numbers. Also
suppose either the kernel k is non-negative or e(Hi )’s are even positive
integers for all 2 ≤ i ≤ s. Then the value of the normalizing constant is
given by

lim
n→∞

ψn = sup
u∈R

(
s∑

i=1

βiu
e(Hi ) − I (u)

)
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Concentration of the model

Last theorem made evaluating the limiting normalizing constant a simple
optimization problem. The following theorem gives how a typical
observation would look like.
Theorem(Bhamidi, C, Cranmer, Desmarais ’17). In addition to the
usual assumptions assume that

lim
|u|→∞

s∑
i=1

βiu
e(Hi ) − I (u) = −∞.

Let K be the set of maximizers of the function g(·) defined via
g(u) :=

∑s
i=1 βiu

e(Hi ) − I (u). Then K has finitely many elements and

min
u∈K

δ(k̃n, k̃
u)→ 0,

as n→∞, almost surely, where k̃u are the constant kernel equal to u on
[0, 1]× [0, 1].
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Comments

The last two theorems enable us to evaluate the normalizing constant
easily.

If for some β, g(u) :=
∑s

i=1 βiu
e(Hi ) − I (u) has an unique maximizer

then it is sometimes called “high temperature” regime.

The concentration result shows that under the high temperature
regime the model is essentially indistinguishable from an independent
random graph with edge probability is a function of β := (β1, . . . , βs).

It does not say anything when βi < 0 for some i ≥ 2.
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A Special Case

Consider the model of the form where H1 is a single edge as before and
Hj ’s are j-stars for all 2 ≤ j ≤ s.
Theorem(Bhamidi, C, Cranmer, Desmarais ’17). Under usual
assumptions the value of the normalizing constant is given by

lim
n→∞

ψn = sup
u∈R

(
s∑

i=1

βiu
e(Hi ) − I (u)

)
Let K be the set of maximizers of the function g(·) defined via
g(u) :=

∑s
i=1 βiu

e(Hi ) − I (u). Assume that,

lim
|u|→∞

s∑
i=1

βiu
e(Hi ) − I (u) = −∞.

Then K has finitely many elements and

min
u∈K

δ(k̃n, k̃
u)→ 0.

as n→∞, almost surely.
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Degeneracy Phenomenon

Consider the GERGM model,

T (k) = β1t(E , k) + β2t(TR, k),

with base measure Bernoulli(1/2).

Analysis by Handcock ’03 suggested if β1 is large negative number
and β2 varies then the edge density in the resulting graph goes from
very small(close to zero) to very large(close to one) skipping all
intermediate values.

Park and Newman ’04 suggested this phenomenon for Edge,
Two-Star ERGM.

Chatterjee and Diaconis ’13 gave first rigorous proof of this
phenomenon for the Edge-Triangle ERGM.

Radin and Yin ’13 gave detailed analysis of this phenomenon for a
large class of ERGM models.
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Degeneracy Phenomenon

This is problematic in practice.

How to detect these “unwanted” regions?

What happens in GERGM?

A detailed simulation study by Wilson, Denny, Bhamidi, Cranmer,
Desmarais ’16 suggested: Edge-Two-star model with base measure
truncated normal distribution does not suffer from degeneracy.
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Normal Distribution and Degeneracy Phenomenon

Theorem(Bhamidi, C, Cranmer, Desmarais ’17). Consider the model
with T (k) = β1t(H1, k) + β2t(H2, k) with H1 is an edge and H2 is
two-star and standard normal distribution as the base measure.

ψn =
1√

1− 4β2(n−1)
n

exp

(
β21n(n − 1)

1− 4β2
(n−1)

n

)(
1− 2β2(n − 2)

n

)− (n−1)
2

.

whenever n ≥ 3 and β2 <
n

4(n−1) . In particular,

lim
n→∞

1

n2
lnψn =

(
β21

1− 4β2

)
.

Remark: The model does not suffer from degeneracy.
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Summary

Derived the limiting normalizing constant.

Understood large network limit of GERGM.

Derived formula for limiting Normalizing constant for large class of
models.

Proved no degeneracy for edge-two star model with standard normal
base measure.
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THANK YOU.
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