Shape and topological sensitivities in mathematical image processing

Michael Hintermüller

Weierstrass Institute for Applied Analysis and Stochastics

michael.hintermueller@wias-berlin.de

joint work with A. Laurain (U Sao Paolo) and W. Ring (Uni Graz).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Preoperative data - high resolution scans.

Surface rendering of preoperative data.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Intraoperative MR scans.

- smaller volume required / available.
- Iow resolution compromise: quality vs. acquisition time.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Active contour approaches

Edge detector based image segmentation.

- \rightarrow computationally inexpensive;
- $\rightarrow\,$ 'edgy' image required.

Active contours without edges.

 \rightarrow region bases models - Mumford-Shah;

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 \rightarrow requires PDE solution.

Fundamental task of image segmentation

- Given a (possibly noise corrupted gray scale) image...
- ...find boundary curves of regions with approx. constant gray levels (contours).

Fundamental task of image segmentation

- Given a (possibly noise corrupted gray scale) image...
- ...find boundary curves of regions with approx. constant gray levels (contours).

Some existing approaches

- \Rightarrow Global energy principles satisfied by optimal contour.
- Snakes active contours as deformable models based on energy minimization along curve. Disadvantage: Depends on parametrization - non geometric (non intrinsic) model.
- ⇒ Geodesic active contours combining a geometric model with the energy minimization approach. Parametrization by Euclidean arclength of curve. Curve evolution:

$$\frac{d\mathcal{C}}{dt} = (g(\mathcal{C})\kappa - \langle \nabla g, \mathcal{N} \rangle)\mathcal{N},$$

where g is an edge detector.

⇒ Deformable active contours with contour as zero-level set of time dependent function u in terms of geometrically intrinsic formulation. Propagation according to

$$u_t + F|\nabla u| = 0.$$

Choices of F

$${m F} = {m g}\left(\operatorname{div}\left(rac{
abla u}{|
abla u|}
ight) +
u
ight)$$

with ν a "balloon force".

The choice

$$F = \operatorname{div}\left(g\frac{\nabla u}{|\nabla u|}\right) = g \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right) + \frac{1}{|\nabla u|} \langle \nabla g, \nabla u \rangle,$$

can be interpreted as the gradient direction of the energy

$$J(\Gamma) = \int_{\Gamma} g \, dS \qquad (\Gamma \dots \text{contour}).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Edge detector based segmentation

For image segementation one seeks to locally minimize the functional

$$J(\Gamma) = \int_{\Gamma} g_{I} dS + \nu \int_{\Omega} g_{I} dx.$$

Here g_l is an edge detector for the edges in the original image *l*.

Signed distance function

The signed distance function b_{Ω} of a bounded open set $\Omega \subset \mathbf{R}^2$ is defined as

$$b_{\Gamma}(x) = d_{\Omega}(x) - d_{\mathbf{R}^2} \setminus \Omega(x).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへぐ

Properties

•
$$|\nabla b_{\Gamma}|^2 = 1$$
 a.e. on \mathbf{R}^2 if meas(Γ)=0.

$$\triangleright \nabla b_{\Gamma}\big|_{\Gamma} = n.$$

•
$$\Delta b_{\Gamma}|_{\Gamma} = \kappa.$$

•
$$b'_{\Gamma}|_{\Gamma} = -v_n$$
 with $v_n = \langle V, n \rangle|_{\Gamma}$.

• $\Delta b'_{\Gamma}|_{\Gamma} = -\Delta_{\Gamma} v_n$ with $\Delta_{\Gamma} w = \text{div}_{\Gamma}(\nabla_{\Gamma} w)$ the Laplace-Beltrami operator.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Gradient and Newton-type level set flow

 \Rightarrow Level set idea and descent flow. Suppose $F : \Gamma \rightarrow \mathbf{R}$ is descent direction, e.g. negative shape gradient.

Propagating front formulation for $\Gamma(t)$:

$$\dot{x}(t) = F((t), \Gamma(t)) n(x(t))$$
 for $x(t) \in \Gamma(t)$.

Equivalent formulation given by level set equation

$$\phi_t + \tilde{F} |\nabla \phi| = 0$$
 on $\mathbf{R}^2 \times (0, T)$

where propagating front is zero level set of ϕ , i.e.

$$\Gamma(t) = \{x \in \mathbf{R}^2 : \phi(x, t) = 0\}.$$

Scalar function \tilde{F} : $\mathbf{R}^2 \times [0, T) \to \mathbf{R}$ chosen such that $\tilde{F}|_{\Gamma(t)} = F(\Gamma(t))$.

Extension velocity. Some freedom in extending *F* : Γ → R to *F̃* : R² × [0, *T*) → R. In our context preferred: Constructing *F̃* as solution to transport equation

$$\langle
abla ilde{F},
abla b_{\Gamma}
angle = 0 ext{ on } \mathbf{R}^2; \quad ilde{F} igert_{\Gamma} = F$$

most appropriate.

$$V_F = \tilde{F} \nabla b_{\Gamma}.$$

Then $\langle V_F, n \rangle = F$.

Newton-type speed function. The Newton-type speed function is the solution *F* : Γ → **R** to

$$d^2 J(\Gamma; V_F; V_G) = -dJ(\Gamma; V_G)$$
 for all $G: \Gamma \to \mathbf{R}$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

1st and 2nd order Eulerian semi-derivs.

$$dJ(\Gamma; V) = \langle D_{\Gamma}J, V \rangle = \int_{\Gamma} \left\langle \left(\frac{\partial g_i}{\partial n} + g_i (\kappa + \nu) \right) \mathbf{n}, V \right\rangle dS.$$

Newton-type speed function F solves

$$\int_{\Gamma} \left[\left(\frac{\partial^2 g_l}{\partial n^2} + (2\kappa + \nu) \frac{\partial g_l}{\partial n} + \nu \kappa g_l \right) F G + g_l \langle \nabla_{\Gamma} F, \nabla_{\Gamma} G \rangle \right] dS = -\int_{\Gamma} \left(\frac{\partial g_l}{\partial n} + (\kappa + \nu) g_l \right) G dS$$

$$\Rightarrow \text{ Coercivity (*).}$$

$$\int_{\Gamma} \left[\left(\frac{\partial^2 g_l}{\partial n^2} + (2\kappa + \nu) \frac{\partial g_l}{\partial n} + \nu \kappa g_l \right)_{+} F G + g_l \langle \nabla_{\Gamma} F, \nabla_{\Gamma} G \rangle \right] dS = -\int_{\Gamma} \left(\frac{\partial g_l}{\partial n} + (\kappa + \nu) g_l \right) G dS$$

Shape Newton-Algorithm with narrow band

- Initialization. Choose Γ₀. Initialize level set function φ⁰ such that Γ₀ is zero level set of φ⁰; set k = 0. Choose bandwidth w ∈ N and ν ∈ R.
- 2. **Newton direction.** Find zero level set Γ_k of actual level set function ϕ^k . Solve (*) to obtain Newton-type direction F^k .
- 3. **Extension.** Extend F^k to band around actual zero level set Γ_k with bandwidth *w* yielding F_{ext}^k .
- Update. Perform time step in level set equation with speed function F^k_{ext} to update φ^k on band. Let φ^{k+1} denote this update.
- 5. **Reinitialization.** Reinitialize $\hat{\phi}^{k+1}$ in order to obtain signed distance function ϕ^{k+1} with zero level set given by zero level set of $\hat{\phi}^{k+1}$. Set k = k + 1 and go to (2).

Numerical results.

Example 1

Newton-type direction!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Comparison

k	Δt^k	Δt_{CFL}^k	J_h^k	$J_{h,r}^k$
1	0.00027	0.00014	67.71894	67.73983
2	0.00916	0.00458	63.62859	63.58714
3	0.05119	0.01462	55.69355	55.30486
4	0.07655	0.02187	45.59301	45.34222
5	0.11608	0.03317	37.06772	36.81020
6	0.16018	0.04577	28.19008	27.54977
7	0.20494	0.05856	16.41064	15.95286
8	0.31020	0.08862	9.73240	9.92598
9	0.34469	0.09848	4.01012	3.83231

Comparison of Algorithms (LS ... line search).

	Newton	gradient	gradient	gradient
	u = 0	$\nu = 1$	$\nu = 1$	u = 0
	LS	LS	no LS	LS
# it.	9	13	31	327

200

æ

Example 2.

Newton-type direction!

Steepest descent!

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Active contours without edges

- Given: Gray value image $u_d : D \to \mathbf{R}$ (noisy and/or blurred) with $D = (0, 1) \times (0, 1)$.
- Aim: Find denoised and deblurred approximation *u* to given data *u_d* and a set Γ ⊂ *D* − the *edge set* of given image *u_d* − as minimizer of the Mumford-Shah functional

$$J(u,\Gamma) = \int_D |u-u_d|^2 dx + \frac{\mu}{2} \int_{D\setminus\Gamma} |\nabla u|^2 dx + \nu \int_{\Gamma} 1 d\mathcal{H}_1,$$

with $\mu, \nu \geq 0$, and \mathcal{H}_1 the 1-dim. Hausdorff measure.

Consider

$$\Gamma = \partial \Omega_1 = \{ x \in D : \phi(x) = 0 \}, \quad \Omega_1 = \{ x \in D : \phi(\mathbf{x}) < 0 \}$$

with $\Omega_1 \subset D$ open.

$$\Omega_2 = D \setminus \overline{\Omega_1} = \{x \in D : \phi(x) > 0\}$$

Under suitable assumptions:

$$\inf_{(u,\Gamma)\in H^1(D\setminus\Gamma)\times\mathcal{E}}J(u,\Gamma)=\inf_{\Gamma\in\mathcal{E}}\min_{u\in H^1(D\setminus\Gamma)}J(u,\Gamma).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

 $\ensuremath{\mathcal{E}}$ denotes the set of admissible edges.

- Set $u_k = u|_{\Omega_k}$ for k = 1, 2.
- ► Note: $u \in H^1(D \setminus \Gamma) \Leftrightarrow u_k \in H^1(\Omega_k)$ for k = 1, 2.
- Solution u(Γ) = u₁(Γ)χ_{Ω1} + u₂(Γ)χ_{Ω2} to inner minimization is given as solution to optimality system

$$\int_{\Omega_k} \left(u_k(\Gamma) \varphi + \mu \langle \nabla u_k(\Gamma), \nabla \varphi \rangle \right) dx = \int_{\Omega_k} u_d \varphi \, dx$$

for all $\varphi \in H^1(\Omega_k)$ and for k = 1, 2.

Weak form of Neumann problem for

$$\begin{bmatrix} -\mu \Delta u_k(\Gamma) + u(\Gamma) = u_d \text{ on } \Omega_k \\ \frac{\partial u_k(\Gamma)}{\partial n_k} = 0 \text{ on } \partial \Omega_k \end{bmatrix}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for k = 1, 2.

Remaining shape optimization problem.

$$\hat{J}(\Gamma) = \sum_{k=1}^{2} \int_{\Omega_{k}} \left(\frac{1}{2} |u_{k}(\Gamma) - u_{d}|^{2} + \frac{\mu}{2} |\nabla u_{k}(\Gamma)|^{2} \right) dx + \nu \int_{\Gamma} 1 d\mathcal{H}_{1}$$

over $\Gamma \in \mathcal{E}$.

Let $V_F = F \nabla b_{\Gamma}$ with a scalar function F.

Eulerian derivative of \hat{J} :

$$d\hat{J}(\Gamma; V_F) = \int_{\Gamma} \left(\frac{1}{2} \llbracket |u - u_d|^2 \rrbracket + \frac{\mu}{2} \llbracket |\nabla_{\Gamma} u(\Gamma)|^2 \rrbracket + \nu \kappa \right) F \, d\mathcal{H}_1,$$

where

•
$$[[|u - u_d|^2]] = |u_1 - u_d|^2 - |u_2 - u_d|^2;$$

• $[[|\nabla u(\Gamma)|^2]] = |\nabla u_1(\Gamma)|^2 - |\nabla u_2(\Gamma)|^2$

denote the jumps of $|u - u_d|^2$ and $|\nabla u|^2$, respectively, across Γ .

Shape Hessian

$$d^{2}\hat{J}(\Gamma; F; G) = \int_{\Gamma} \left[\frac{1}{2} \left(\kappa \left(\left[|u - u_{d}|^{2} \right] - \mu \left[|\nabla_{\Gamma} u|^{2} \right] \right) + \frac{\partial}{\partial n} \left[|u - u_{d}|^{2} \right] \right) \right. \\ \left. + \left[\left((u - u_{d}) u_{G}' \right] + \mu \left[\langle \nabla u, \nabla u_{G}' \rangle \right] - \nu \Delta_{\Gamma} G \right] F \, d\mathcal{H}_{1}.$$

The shape derivative u'_G solves

$$\begin{cases} -\mu \Delta u'_{k,G} + u'_{k,G} = 0 \text{ on } \Omega_k \\ \frac{\partial u'_{k,G}}{\partial n_1} = \operatorname{div}_{\Gamma}(G \nabla_{\Gamma} u_k) + \frac{1}{\mu}(u_d - u_k) G \text{ on } \Gamma, \end{cases}$$

for k = 1, 2.

Shape Hessian evaluation too expensive!!!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Descent direction and PCG.

Let B(Γ_k; V_F; V_G) denote the shape Hessian or a positive definite approximation. A descent direction G^k_N for Ĵ in Γ_k is obtain as solution to

$$B(\Gamma_k; V_F; V_{G_N^k}) = -d\hat{J}(\Gamma_k; V_F) \quad \forall F$$

by means of the preconditioned conjugate gradient method, i.e., G_N satisfies

 $\langle V_{G_N^k}, V_F \rangle < 0 \quad \forall F.$

➤ ⇒ allows to replace constant time-stepping (CFL-condition) with a line search technique.

Numerical results.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Initialisation! Segmented image 15 Iterations!

Solution of elliptic equation.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Initialisation! Segmented image 5 Iterations!

Steepest descent method at iteration 8.

Denoising and simultaneous segmentation.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Data! Denoised image 5 Iterations!

Segmentation result.

(日)

Mumford-Shah (MS) model in image segmentation

Given: $f : \Omega \mapsto \mathbb{R}$ gray-level image, $\Omega \subset \mathbb{R}^2$ bounded;

Find : u, reconstruction of true image, and Γ , the edge set (contours).

$$\min_{u,\Gamma} J(u,\Gamma) = \int_{\Omega} (f-u)^2 + \mu \int_{\Omega \setminus \Gamma} |\nabla u|^2 + \nu \mathcal{H}^1(\Gamma), \quad (1)$$

Piecewise constant MS (Chan-Vese)

When *u* is piecewise constant:

$$\min_{u,\Gamma} J(u,\Gamma) = \int_{\Omega} (f-u)^2 + \nu \mathcal{H}^1(\Gamma).$$
(2)

Algorithm for minimizing (2)

- 1. Apply topological derivative
- 2. Apply shape derivative

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Topological derivative

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Topological derivative

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Topological derivative

Topological derivative

Let ω_{δ} be a ball of radius $\delta > 0$ and center $x_0 \in \Omega$. $\Omega_{\delta} := \Omega \setminus \omega_{\delta}$. For $\delta \to 0$ we have

$$J(\Omega_{\delta}) = J(\Omega) + \rho(\delta)\mathcal{T}(\mathbf{x}_0) + \mathcal{O}(\rho(\delta)),$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

and $\mathcal{T}(x_0)$ is the topological derivative of J at x_0 ; $\rho(\delta) \to 0$.
Why use topological derivative?

- Extremely fast in detecting topological structures.
- Independent of initialization.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Why use shape derivative?

• Topological derivative cannot handle perimeter term $\mathcal{H}^1(\Gamma)$.

TOPSHAPE - Algorithm

- 1. Phase I: Apply TOPological derivative for $\nu = 0$.
- 2. Phase II: Apply SHAPE derivative for $\nu > 0$.

Agenda

Mumford-Shah functional and topological derivative Topological derivative Phase I: Algorithm for topological derivative

Mumford-Shah functional and shape derivative + level set framework

(ロ) (同) (三) (三) (三) (○) (○)

Shape sensitivity analysis Phase II: Algorithm for shape derivative

Piecewise constant MS-model (Chan-Vese)

Image f

- $f: \Omega \mapsto \mathbb{R}$: gray scale image.
- $\Omega \subset \mathbb{R}^2$: corresponding domain $\Omega = \cup_{i=1}^m \Omega_i, \ \Omega_i \cap \Omega_j = \emptyset \quad \forall i \neq j.$

$$\Gamma = \cup_{i=1}^m \Gamma_i = \cup_{i=1}^m \partial \Omega_i.$$

- "colors" $c_i = |\Omega_i|^{-1} \int_{\Omega_i} f(x) dx$.
- approximation $u(x) = c_i \ \forall x \in \Omega_i$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

▶ Note that the $\Gamma_i \cap \Gamma_j$, $j \neq i$, might be non-empty.

For $\nu = 0$ in (2), we obtain

$$J(u,\Gamma) = \int_{\Omega} (f-u)^2.$$
(3)

• Note that $c_i = c_i(\Omega_i)$ for all *i*.

We can rewrite (3) in terms of Ω_i only:

$$\mathcal{J}_{0}(\{\Omega_{i}\}_{i=1}^{m}) = \sum_{i=1}^{m} \int_{\Omega_{i}} (f(x) - c_{i})^{2} dx = J(u, \Gamma).$$
(4)

Later we also use

$$\mathcal{J}_{\nu}(\{\Omega_i\}_{i=1}^m) = \mathcal{J}_0(\{\Omega_i\}_{i=1}^m) + \frac{\nu}{2} \left(\mathcal{H}^1(\partial \Omega) + \sum_{i=1}^m \mathcal{H}^1(\Gamma_i) \right).$$

Shape resp. topology optimization problem

$$\begin{array}{ll} \text{Minimize} & \mathcal{J}_{\nu}(\{\Omega_i\}_{i=1}^m) \\ \text{s.t.} & \Omega = \cup_{i=1}^m \overline{\Omega}_i, \\ & \Omega_i \cap \Omega_j = \emptyset \quad \forall i \neq j, \\ & \Omega_i \text{ measurable } \forall i \in \{1,...,m\}. \end{array}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Theorem Problem (5) admits a solution $\{\Omega_i^*\}_{i \in \{1,...,m\}}$.

Let $\{\Omega_i\}_{i=1}^m$ be given, $\rho > 0$, $x_0 \in \Omega_i$, $B_\rho := B(x_0, \rho)$. Q: \mathcal{J}_0 reduced when moving B_ρ (ρ small) from Ω_i to Ω_j ? Topological derivative

$$\begin{aligned} \mathcal{J}_0(\Omega_1,...,\Omega_i \setminus B_\rho,...,\Omega_j \cup B_\rho,...,\Omega_m) \\ &= \mathcal{J}_0(\{\Omega_i\}_{i \in [1,m]}) + \pi \rho^2 \mathcal{T}_{ij}(\mathbf{x}_0) + \mathcal{O}(\rho^2) \end{aligned}$$

Matrix-valued derivative:

 $\mathcal{T} = \{\mathcal{T}_{ij}\}_{(i,j)\in\{1,...,m\}^2}$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

with $\mathcal{T}_{ii} \equiv 0$ for all $i \in \{1, \ldots, m\}$.

Remove "material" from Ω_i

Here it is assumed that $\Omega_i \neq \emptyset$

$$c_i(\Omega_i \setminus B_\rho) = c_i(\Omega_i) + \pi |\Omega_i|^{-1} \rho^2 \left(c_i(\Omega_i) - \frac{1}{|B_\rho|} \int_{B_\rho} f(x) dx \right) + \mathcal{O}(\rho^2)$$

Add "material" to Ω_i If $\Omega_i \neq \emptyset$ then

$$c_j(\Omega_j \cup B_\rho) = c_j(\Omega_j) - \pi |\Omega_j|^{-1} \rho^2 \left(c_j(\Omega_j) - \frac{1}{|B_\rho|} \int_{B_\rho} f(x) dx \right) + \mathcal{O}(\rho^2).$$

If $\Omega_j = \emptyset$ then

$$c_j(\Omega_j\cup B_
ho)=rac{1}{|B_
ho|}\int_{B_
ho}f(x)dx.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

If
$$\Omega_j \neq \emptyset$$
, then we obtain
 $\mathcal{J}_0(\Omega_1, ..., \Omega_i \setminus B_{\rho}, ..., \Omega_j \cup B_{\rho}, ..., \Omega_m)$
 $= \mathcal{J}_0(\{\Omega_i\}_{i \in [1,m]}) + \int_{B_{\rho}} (f(x) - c_j)^2 - (f(x) - c_i)^2 dx + 2\pi |\Omega_i|^{-1} \rho^2 \left(c_i(\Omega_i) - \frac{1}{|B_{\rho}|} \int_{B_{\rho}} f(x) dx\right) \int_{\Omega_i} (f(x) - c_i) dx - 2\pi |\Omega_j|^{-1} \rho^2 \left(c_j(\Omega_j) - \frac{1}{|B_{\rho}|} \int_{B_{\rho}} f(x) dx\right) \int_{\Omega_j} (f(x) - c_j) dx + \mathcal{O}(\rho^2),$

but since $\int_{\Omega_i} (f(x) - c_i) = \int_{\Omega_j} (f(x) - c_j) = 0$, we obtain: Topological derivative

$$\mathcal{T}_{ij}(x_0) = (f(x_0) - c_j)^2 - (f(x_0) - c_i)^2.$$

If
$$\Omega_j = \emptyset$$
, then we obtain
 $\mathcal{J}_0(\Omega_1, ..., \Omega_i \setminus B_{\rho}, ..., \Omega_j \cup B_{\rho}, ..., \Omega_m)$
 $= \mathcal{J}_0(\{\Omega_i\}_{i \in [1,m]}) + \int_{B_{\rho}} (f(x) - c_j)^2 - (f(x) - c_i)^2 + 2\pi |\Omega_i|^{-1} \rho^2 \left(c_i(\Omega_i) - \frac{1}{|B_{\rho}|} \int_{B_{\rho}} f(x) dx\right) \int_{\Omega_i} (f(x) - c_i) + o(\rho^2).$
Since $\int_{\Omega_i} (f(x) - c_i) = 0$ and $c_j(\Omega_j \cup B_{\rho}) = \frac{1}{|B_{\rho}|} \int_{B_{\rho}} f(x) dx$:

Topological derivative

$$\mathcal{T}_{ij}(x_0) = -(f(x_0) - c_i)^2.$$

Observations.

► For
$$\mathcal{T}_{ij}(x_0) = (f(x_0) - c_j)^2 - (f(x_0) - c_i)^2$$
, we have
 $\mathcal{T}_{ij}(x_0) = \mathcal{T}_{ik}(x_0) + \mathcal{T}_{kj}(x_0)$.

For $\mathcal{T}_{ij}(x_0)$ as above, it holds that

$$\mathcal{T}_{ij}(x) < 0 \Longleftrightarrow \left\{egin{array}{ccc} ext{either} & extsf{c}_i < extsf{c}_j & ext{and} & extsf{f}(x) > rac{ extsf{c}_i + extsf{c}_j}{2}, \ ext{or} & extsf{c}_i > extsf{c}_j & ext{and} & extsf{f}(x) < rac{ extsf{c}_i + extsf{c}_j}{2}. \end{array}
ight.$$

• Let $d_i := \frac{c_{i-1}+c_i}{2}$ $\forall i \in \{2,..,m\}$ and assume

$$\min(f) \le c_1^{(0)} < .. < c_i^{(0)} < .. < c_m^{(0)} \le \max(f),$$

where ⁽⁰⁾ refers to initial guess of subsequent algorithm. Let $x \in \Omega_k$ and p be smallest integer such that $\mathcal{T}_{kp}(x) = \min_{l \in \{1,...,m\}} \mathcal{T}_{kl}(x)$. Then

$$d_p < f(x) \le d_{p+1}.$$
(6)

Conversely, if f(x) satisfies (6) for some \hat{p} then

$$\mathcal{T}_{k\hat{\rho}}(x) = \min_{l \in \{1,..,m\}} \mathcal{T}_{kl}(x).$$

Algorithm

- lnput: Ω , f, m. Output: Ω_i , c_i , i = 1, ..., m.
- ▶ Initialization: Choose $\min(f) \le c_1^{(0)} < .. < c_i^{(0)} < .. < c_m^{(0)} \le \max(f). \text{ Set } I = 0$ and $\Omega_i^{(0)} = \emptyset \ \forall i \in \{1,..,m\}.$
- ► While[(l > 0 and $|\Omega_i^{(l)} \Delta \Omega_i^{(l-1)}| > 0 \ \forall i$) or l = 0] Compute $d_i^{(l)}$, $i \in \{2, ..., m\}$, set $d_1^{(l)} < 0$, $d_{m+1}^{(l)} = \max(f)$. Set $\Omega_i^{(l+1)} = \left\{ x \in \Omega \mid d_i^{(l)} < f(x) \le d_{i+1}^{(l)} \right\} \quad \forall i$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

► For k = 1, ..., mif $|\Omega_i^{(l+1)}| > 0$ then Update $c_k^{(l+1)} = |\Omega_k^{(l+1)}|^{-1} \int_{\Omega_k^{(l+1)}} f(x) dx$. else Choose arbitrary $c_k^{(l+1)}$ outside $[d_{k-1}^{(l)}, d_k^{(l)}]$.

set *I* = *I* + 1

Chan-Vese model

Image f

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Piecewise constant Mumford-Shah model

Image f

Initialization

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Chan-Vese model

First iteration

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Chan-Vese model

First iteration

Second iteration

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Shape derivative

moving domain Ω_t

X: Lagrangian coordinate x(t, X): Eulerian coordinate

$$\frac{d}{dt}x(t,X) = V(t,x(t,X))$$
$$x(0,X) = X$$

 $T_t(V)(X) = x(t, X)$ $\Omega_t = T_t(V)(\Omega)$: moving domain

 $J(\Omega_t)$: shape functional

 $dJ(\Omega, V) = \lim_{t \to 0} \frac{J(\Omega_t) - J(\Omega)}{t}$

Structure theorem

If Ω is smooth enough there exists ∇J on Γ such that

$$dJ(\Gamma, V) = \langle \nabla J, v_n \rangle_{\Gamma},$$

where $v_n(x) = V(0, x) \cdot n(x)$ and $\langle \cdot, \cdot \rangle_{\Gamma}$ a duality pairing. If duality pairing can be realized as integral over Γ we have

$$dJ(\Gamma, V) = \int_{\Gamma} \nabla J \, v_n \, d\Gamma, \qquad (7)$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

and we are able to use a gradient-descent method by choosing $v_n = -\nabla J$.

Due to the Four-Color Theorem, we choose m = 4. Define two level set functions ϕ_1 and ϕ_2 such that

$$\Omega_1 \cup \Omega_2 = \{ x \in \Omega \mid \phi_1(x) < 0 \}$$
(8)

$$\Omega_1 \cup \Omega_3 = \{ x \in \Omega \mid \phi_2(x) < 0 \}.$$
 (9)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

For instance, the set Ω_1 can be deduced by

$$\Omega_1 = \{ x \in \Omega \mid \phi_1(x) < 0 \text{ and } \phi_2(x) < 0 \}.$$

For convenience we also define the sets D_1 and D_2

$$\begin{array}{rcl} D_1 & := & \Omega_1 \cup \Omega_2, \\ D_2 & := & \Omega_1 \cup \Omega_3. \end{array}$$

Image Level set function 1 Level set function 2

Hamilton-Jacobi equation

$$\phi_t(t,x) + v_n(t,x)|\nabla\phi(t,x)| = 0, \qquad (10)$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where ϕ_t time derivative of ϕ and $\phi(0, x)$ given data.

Note that v_n is defined only on Γ, therefore it is necessary to define its extension to the entire domain (or at least a band around the actual contour).

MS-functional

$$\mathcal{J}_{\nu}(\{\Omega_{i}\}_{i=1}^{m}) = \sum_{i=1}^{m} \int_{\Omega_{i}} (f(x) - c_{i})^{2} dx + \frac{\nu}{2} \sum_{i=1}^{m} \mathcal{H}^{1}(\Gamma_{i}) + \frac{\nu}{2} |\partial \Omega|.$$
(11)

For convenience, we use the notation

$$\mathcal{J}_{\nu}(\Gamma) = \mathcal{J}_{\nu}(\{\Omega_i\}_{i=1}^m).$$

Shape derivative

$$d\mathcal{J}_{\nu}(\Gamma, V) = \sum_{i=1}^{m} 2 \int_{\Omega_i} (f(x) - c_i) c'_i(\Gamma, V) dx$$

+
$$\sum_{i=1}^{m} \int_{\Gamma_i} (f(x) - c_i)^2 v_{n_i}(x) dx$$

+
$$\frac{\nu}{2} \sum_{i=1}^{m} \int_{\Gamma_i} \kappa_i(x) v_{n_i}(x) dx,$$

where

- κ_i is the curvature of Γ_i ,
- *n_i* is the outer unit normal vector to Ω_i
- $c'_i(\Gamma, V)$ is the shape derivative of c_i at Γ in the direction V.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Since $c'_i(\Gamma, V)$ is a scalar, we have

$$\sum_{i=1}^m \int_{\Omega_i} (f(x)-c_i)c_i'(\Gamma,V)\,dx = \sum_{i=1}^m c_i'(\Gamma,V)\int_{\Omega_i} (f(x)-c_i)\,dx = 0,$$

since c_i is the mean value of f over the domain Ω_i . Thus we obtain

$$d\mathcal{J}_{\nu}(\Gamma, V) = \sum_{i=1}^{m} \int_{\Gamma_i} \left((f(x) - c_i)^2 + \frac{\nu}{2} \kappa_i(x) \right) v_{n_i}(x) dx.$$

Therefore we have identified the shape gradient

$$abla \mathcal{J}_{\nu}(x) = (f(x) - c_i)^2 + rac{
u}{2}\kappa_i(x) \qquad ext{f.a.a } x \in \Gamma_i$$

and we may choose

$$v_{n_i}(x) = -(f(x) - c_i)^2 - rac{
u}{2}\kappa_i(x)$$
 f.a.a $x \in \Gamma_i$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We deduce the value of the velocity on the boundaries of D_1 and D_2

$$\begin{array}{lll} v_n(x) &=& -(f(x) - c_{12}(x))^2 \\ && +(f(x) - c_{34}(x))^2 - \nu \kappa_{D_1}(x) & \text{f.a.a. } x \in \partial D_1, \\ v_n(x) &=& -(f(x) - c_{13}(x))^2 \\ && +(f(x) - c_{24}(x))^2 - \nu \kappa_{D_2}(x) & \text{f.a.a. } x \in \partial D_2, \end{array}$$

where c_{ij} is the piecewise constant function

$$egin{array}{rcl} c_{ij}(x) &=& c_i ext{ if } x\in \Gamma_i, \ c_{ij}(x) &=& c_j ext{ if } x\in \Gamma_j, \end{array}$$

and κ_{D_1} , κ_{D_2} are the curvatures of D_1 and D_2 , respectively.

Phase II - Algorithm

- **step 1** Initially choose ϕ_1^0 and ϕ_2^0 as signed distances to $\Omega_1^0 \cup \Omega_2^0$ and $\Omega_1^0 \cup \Omega_3^0$ where $\Omega_i^0, i \in \{1, \dots, m\}$ come from phase I; set k = 0.
- **step 2** Compute normal velocities $v_{n,1}^k$ and $v_{n,2}^k$ for ϕ_1^k and ϕ_2^k . If $||v_{n,1}^k|| = 0$ and $||v_{n,2}^k|| = 0$ then stop; otherwise continue with 3.
- **step 3** Extend $v_{n,1}^k$ and $v_{n,2}^k$ to Ω. Update ϕ_1^k and ϕ_2^k by a time step in Hamilton-Jacobi equation.

step 4 Update domains $\Omega_i^k, i \in \{1, \dots, m\}$ and put k = k + 1. Go to step 2.

Table 1						
n ²	It. topo	Time topo	It. shape	Time shape		
390 ²	11	0.11 <i>s</i>	6	11.28 <i>s</i>		

Figure: Original (ul), image after topo. step (ur), segmentation (II) / with contour in green (Ir).

size	It. topo	Time topo	It. shape	Time shape
315 × 315	14	0.09 <i>s</i>	3	4.05 <i>s</i>

Figure: Original image (upper left), image after topology step (upper right), segmentation without contour (lower left), segmentation with contour (lower right)

size	It. topo	Time topo	It. shape	Time shape
331 × 331	35	0.26	6	17.83 <i>s</i>

Figure: Original image (upper left), image after topology step (upper right), segmentation without contour (lower left), segmentation with contour (lower right)

Figure: 2D slices of original (upper) and after topology optim. (lower).

size	It. topo	Time topo	
$256\times208\times70$	30	4.93	
	•	< □ > < @ >	 ■ ► < ■

э

The Osher-He Experience

The Osher-He Experience

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Surface coils

exhibit high sensitivity σ near center of coil which falls off away.

Modulated image

・ロン ・四 と ・ ヨ と ・ ヨ と

э.

- We require $u \in [0, 1]$ and $0 \le \sigma \le \overline{\sigma}$ in Ω .
- This motivates the following approximation:

$$\begin{aligned} J_{\nu}(u,\Gamma,\sigma) &= \int_{\Omega} (\sigma^{-1}f - u)^2 + \delta \int_{\Omega} |\nabla^2 \sigma|^2 + \mu \int_{\Omega \setminus \Gamma} |\nabla u|^2 + \nu \mathcal{H}^1(\Gamma) \\ &+ \kappa \int_{\Omega} \max(u - 1, 0)^2 - \lambda \int_{\Omega} (\ln(\sigma) + \ln(\bar{\sigma} - \sigma)) \,, \end{aligned}$$

with $\kappa > 0$ and $\lambda > 0$ (driven to 0 over iterations).

- Solution process: nonlinear Gauss-Seidel, i.e., minimize w.r.t. one variable while keeping the respective other one fixed.
 - For u fixed: Newton-Multigrid solver for fourth order PDE

$$\begin{split} (\delta\Delta^2 + u^2)\sigma - \frac{\lambda}{2\sigma} + \frac{\lambda}{2(\bar{\sigma} - \sigma)} &= uf \quad \text{in } \Omega, \\ \partial_{nn}\sigma &= \partial_{n\tau}\sigma = \partial_n\Delta\sigma &= 0 \quad \text{on } \Gamma, \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへぐ

For σ fixed: TOPSHAPE with necessary optimality conditions for c_i, i ∈ {1,..,m}, given by

$$2\kappa |\Omega_i| \max(c_i - 1, 0) + \int_{\Omega_i} 2\left(c_i - rac{f}{\sigma}
ight) = 0.$$

This leads to the two cases

$$c_i = |\Omega_i|^{-1} \int_{\Omega_i} \frac{f}{\sigma} \text{ if } c_i \leq 1,$$

and

$$c_i = rac{\kappa + |\Omega_i|^{-1} \int_{\Omega_i} rac{f}{\sigma}}{1 + \kappa}$$
 if $c_i > 1$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Note that in both situations $c_i \ge 0$ for all *i*.

► If
$$|\Omega_j| \neq 0$$
, we get

$$\mathcal{T}_{ij}(x_0) = \left(\frac{f(x_0)}{\sigma(x_0)} - c_j\right) \left(\frac{f(x_0)}{\sigma(x_0)} - c_j - \max(c_j - 1, 0) \frac{2\kappa |\Omega_j|}{(\kappa + |\Omega_j|)^2}\right) - \left(\frac{f(x_0)}{\sigma(x_0)} - c_i\right) \left(\frac{f(x_0)}{\sigma(x_0)} - c_i - \max(c_i - 1, 0) \frac{2\kappa |\Omega_i|}{(\kappa + |\Omega_i|)^2}\right).$$

When $|\Omega_j| = 0$ we obtain

$$\mathcal{T}_{ij}(x_0) = -\left(\frac{f(x_0)}{\sigma(x_0)} - c_i\right) \left(\frac{f(x_0)}{\sigma(x_0)} - c_i - \max(c_i - 1, 0) \frac{2\kappa |\Omega_i|}{(\kappa + |\Omega_i|)^2}\right).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●
Segmentation AND modulation recovery

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで