BOUNDS ON STABLE SETS IN GRAPHS AND CODES

Alexander Schrijver

CWI and University of Amsterdam

Joint work with Dion Gijswijt (Amsterdam & Leiden) and Hans Mittelmann (Arizona)

STABLE SETS IN GRAPHS

Let G = (V, E) be a graph.

 $S \subseteq V$ is stable if no two vertices in V are adjacent.

$$\alpha(G) := \max\{|S| \mid S | S | S \}$$

is hard to compute.

CODES

A code (of length n) is a subset C of $\{0,1\}^n$.

The (Hamming) distance $d_H(u, v)$ of $b, c \in \{0, 1\}^n$ is the number of i with $b_i \neq c_i$.

The minimum distance of a code C is the minimum distance of any two distinct elements of C.

A(n, d):= the maximum cardinality of any code of length nand minimum distance at least d.

CODES AS STABLE SETS

Let $G_{n,d}$ be the graph with vertex set $\{0,1\}^n$, two of them being adjacent if their distance is less than d.

Then: $A(n,d) = \alpha(G_{n,d})$ $\alpha(G)$ is hard to compute and $G_{n,d}$ itself is exponentially large, but $G_{n,d}$ has a large symmetry.

EIGENVALUE METHODS

Let G = (V, E) be a graph.

Lovász bound:

 $\boldsymbol{\vartheta}(\boldsymbol{G}) \coloneqq \max\{ \mathbf{1}^T X \mathbf{1} \mid$

X nonnegative and positive semidefinite $V \times V$ matrix with trace 1 and with $X_{u,v} = 0$ if u and v are adjacent vertices $\}$.

 $\alpha(G) \leq \vartheta(G)$

Proof: Let S be a maximum-size stable set. Take $X := |S|^{-1} \mathbf{1}_S \mathbf{1}_S^T$. \Box

 $\vartheta(G)$ can be computed in polynomial time (with semidefinite programming).

 $A(n,d) \le \vartheta(G_{n,d})$ (Delsarte bound)

but $G_{n,d}$ is exponentially large,

but we can exploit the symmetry of $G_{n,d}$:

SYMMETRY

If X is an optimum solution for $\vartheta(G)$ and $P \in Aut(G)$ then PXP^T is again an optimum solution.

(We identify an automorphism of G with its permutation matrix in $\mathbb{R}^{V \times V}$.)

Averaging over all $P \in Aut(G)$ gives that we may assume that X is Aut(G)-invariant.

For $G = G_{n,d}$, the algebra of Aut(G)-invariant matrices in $\mathbb{R}^{V \times V}$ is $\leq n + 1$ -dimensional and can be simultaneously diagonalized (since it is commutative).

Hence the semidefinite programming problem for $\vartheta(G_{n,d})$ can be reduced to a linear programming problem, with $\leq n + 1$ variables and $\leq n + 1$ constraints.

Corollary: the Delsarte bound can be computed fast.

GENERALIZATION

Let G = (V, E) be a graph and let $k \in \mathbb{N}$. Define $S_k := \{U \subseteq V \mid U \text{ stable, } |U| \le k\}.$

$$\boldsymbol{\vartheta_k}(\boldsymbol{G}) := \max \left\{ \sum_{v \in V} X_{\{v\},\{v\}} \right\}$$

X nonnegative and positive semidefinite $S_k \times S_k$ matrix with $X_{\emptyset,\emptyset} = 1$, $X_{U,W} = 0$ if $U \cup W$ is not stable,

 $X_{U,W} = X_{U',W'} \quad \text{if } U \cup W = U' \cup W' \ \big\}$

It can be proved that $\vartheta_1(G) = \vartheta(G)$.

Also: $\alpha(G) \leq \vartheta_k(G)$

Proof: Let S be a maximum-size stable set.

Define $X_{U,W} := \begin{cases} 1 & \text{if } U \cup W \subseteq S, \\ 0 & \text{else.} \end{cases}$

EXPLOITING SYMMETRY

 $\operatorname{Aut}(G)$ acts on \mathcal{S}_k , hence on $\mathbb{R}^{\mathcal{S}_k \times \mathcal{S}_k}$.

Again we can assume X to be Aut(G)-invariant.

Let \mathcal{A} be the algebra of $\operatorname{Aut}(G)$ -invariant matrices in $\mathbb{C}^{\mathcal{S}_k \times \mathcal{S}_k}$. Then there exists a unitary matrix $M \in \mathbb{C}^{\mathcal{S}_k \times \mathcal{S}_k}$ such that

$$M\mathcal{A}M^* = \bigoplus_{i=1}^t \mathbb{C}^{a_i \times a_i} \otimes I_{b_i}$$

for some $a_1, b_1, \ldots, a_t, b_t \in \mathbb{N}$.

Note that

at
$$\mathbb{C}^{a \times a} \otimes I_b = \left\{ \begin{pmatrix} Y & 0 & \cdots & 0 \\ 0 & Y & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & Y \end{pmatrix} \mid Y \in \mathbb{C}^{a \times a} \right\}.$$

So dim
$$\mathcal{A} = a_1^2 + \cdots + a_t^2$$
.

APPLICATION TO CODES GIVES:

(taking k := 2)

		known	known	new
n	d	lower	upper	upper
		bound	bound	bound
17	5	512	680	673
18	5	1024	1280	1237
19	5	2048	2372	2279
22	5	8192	13766	13674
18	7	128	142	135
19	7	256	274	256
24	7	4096	5477	5421
20	9	42	48	47
21	9	64	87	84
23	9	128	280	268
24	9	192	503	466
25	9	384	886	836
26	9	512	1764	1585
24	11	52	56	55
25	11	64	98	96

HOW TO FIND THE BLOCK DIAGONALIZATION ?

 $\mathcal{A} = \operatorname{End}_{\operatorname{Aut}(G)}(\mathbb{C}^{\mathcal{S}_2})$

= the set of all linear functions $f : \mathbb{C}^{\mathcal{S}_2} \to \mathbb{C}^{\mathcal{S}_2}$

such that $f \circ g = g \circ f$ for each $g \in Aut(G)$.

Find the canonical decomposition into isotypical components C_1, \ldots, C_t of the action of Aut(G) on \mathbb{C}^{S_2} .

(An isotypical component is the sum of an equivalence class of irreducible subrepresentations.)

Then

 $\operatorname{End}_{\operatorname{Aut}(G)}(\mathbb{C}^{\mathcal{S}_2}) \cong \bigoplus_{i=1}^t \operatorname{End}_{\operatorname{Aut}(G)}(C_i) \cong \bigoplus_{i=1}^t \mathbb{C}^{a_{\times}a_i}$

for some $a_1, \ldots, a_t \in \mathbb{N}$.

THE CODE BOUNDS USE AN EXTRA CONDITION

For k = 2, you can add the condition:

for all $s, t \in V$, the matrix

 $\left(X_{\{s,u\},\{t,v\}}\right)_{u,v\in V}$

is positive semidefinite.