Political Space Curves

or:

The unreasonable resilience of calculations

Norbert Schappacher I.R.M.A. Université Louis Pasteur Strasbourg (soon: Université de Strasbourg, UdS)

Berlin, 17 October 2008

Es gibt in der Mathematik keine wahren Controversen.

Carl Friedrich Gauß.

Vorspruch highlighted in Deutsche Mathematik, vol. 4, 1939, p. 449.

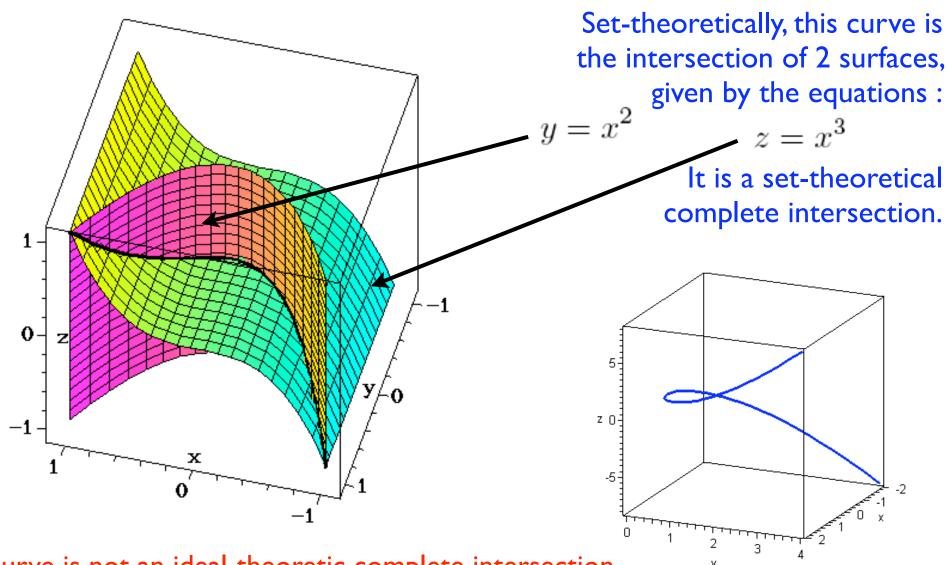
Ludwig Wittgenstein in 1928

Es ist ein merkwürdiger Irrtum der Mathematiker, dass manche von ihnen glauben, dass durch eine Kritik der Grundlagen etwas in der Mathematik fortfallen könnte. Ein Teil der Mathematiker hat den ganz richtigen Instinkt: was wir einmal gerechnet haben, kann doch nicht fortfallen und verschwinden! In der Tat, das, was durch die Kritik zum Verschwinden gebracht wird, das sind die Namen, die Anspielungen, die im Kalkül vorkommen, also das, was ich die Prosa nennen möchte. Es ist sehr wichtig, zwischen dem Kalkül und dieser Prosa auf das strengste zu unterscheiden. Hat man diese Scheidung einmal klar gemacht, so fallen alle diese Fragen wie die nach Widerspruchsfreiheit, Unabhängigkeit etc. weg. (WWK 149)

It is a strange error of mathematicians that some of them think that through foundational criticism something could get lost in mathematics. Some mathematicians have the completely correct instinct: what we have calculated once cannot get lost or disappear. Indeed, what the criticism makes disappear are the names, the allusions which occur in the calculus, i.e., that which I would like to call the *prose*. It is very important to distinguish most strictly between the calculus and the prose. Once this distinction has been clearly made, all those questions about consistency, independence, etc. vanish.

A famous example of a space curve; the "twisted cubic curve", image of : $t \mapsto (t, t^2, t^3)$

Its ideal is generated by: $xz - y^2$, $x^2 - y$, xy - z



The curve is not an ideal-theoretic complete intersection.

The story I want to tell begins with

Leopold Kronecker (1823-1891) who taught in particular elimination theory in his lecture courses at Berlin University, at least since the 1870s.

Theorie der algebraiseter Gleichungen.

II. Seil.

(Sommer-Semester 1885.)

Allgemeine Phenrie der Eliminadian.

From this theory he deduced the following theorem:

Theorem. Every system consisting of an arbitrary number of (polynomial) equations in n variables can always be replaced by a system of (n+1) equations among these variables.

Jedes Gleichungssystem, aus beliebig vielen Gleichungen unter n Variablen bestehend, läßt sich stets durch ein System von (n+1) Gleichungen unter diesen Variablen ersetzen.

Special case: Every curve in 3-space can always be given by at most 4 equations, i.e., as intersection of at most four surfaces.

Eine jede Reavlvenke van beliebiger Skufe im Gehieke van n Variabeln løsert and dunck ein System van (n. 1) Gleickungen unter diesen Variabeln darskellen.

The fact that he formulates here the theorem in terms of resolvents indicates that he wants more than just a description of point sets.

Kronecker, Grundzüge einer arithmetischen Theorie der algebraischen Grössen. 27

minante einer jeden (auch reductibeln) Gleichung ist, welche die Eigenschaft hat, dass sich durch eine ihrer Wurzeln die Grössen jener Gattung x rational ausdrücken lassen.

From Kronecker's Festschrift, 1882

§ 10.

Die Systeme von Gleichungen; ihre Discriminanten und ihre verschiedenen Resolventen.

beilegt. Man sieht dabei leicht, dass stets n+1 solcher Werthsysteme ausreichen, damit die hieraus entstehenden Gleichungen

$$\Phi_1 = 0$$
, $\Phi_2 = 0$, ... $\Phi_{n+1} = 0$

die Gesammtresolvente $\Phi = 0$ haben, und es ergiebt sich daher das Resultat, dass der gesammte Inhalt jedes Theilers der Resolvente eines Gleichungssystems für n Grössen z durch ein System von nur n+1 Gleichungen dargestellt, also auch jedes System von beliebig vielen Gleichungen durch ein solches von nur n+1 Gleichungen ersetzt werden kann.

Theodor Vahlen (1869 Vienna - Prague 1945)

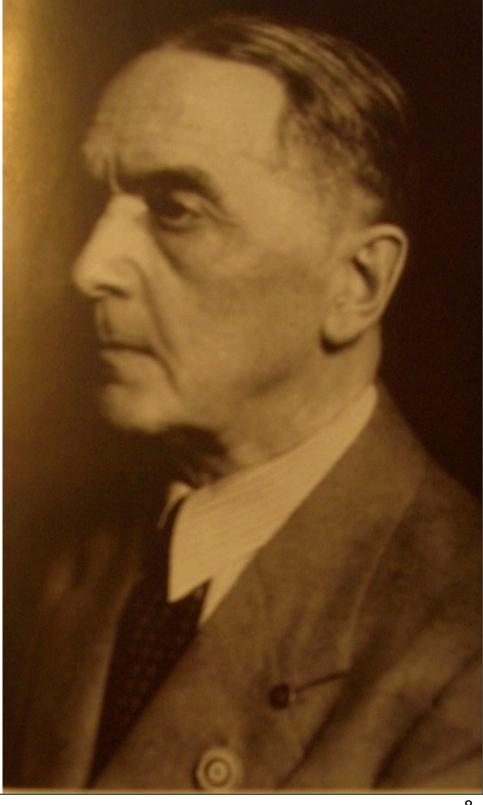
President of the Berlin Academy of Sciences as of 1938.

Forschen heißt kämpfen. Der Mathematik ihre dicht verschanzten Wahrheiten zu entringen, erfordert Kraft, Mut, Zähigkeit und stählt den Charakter.

DM 4 (1939), p. 278.

Theodor Vahlen.

"Research is struggle. To wrest from mathematics its deeply entrenched truths requires force, courage, toughness, and it forges the character into steel."



The first report dedicated by **Deutsche Mathematik** (vol. 1, 1936, pp. 389-420) to the work of a living GERMAN mathematician presented Vahlen's *oeuvre*.

Schrifttum

Das Schrifttum der lebenden Deutschen Mathematiker.

Wie schon auf S. 109 dieses Bandes ausgeführt wurde, beabsichtigt die Deutsche Mathematik, einen Überblick über das Schrifttum aller lebenden Deutschen Mathematiker zu geben. Dankenswerter Weise hat sich Ih. Vahlen auf Bitten der Schriftleitung bereit erklärt, den Unfang zu machen. Die folgende von einem kurzen Lebenslauf eingeleitete Darstellung soll zugleich als Probe für die gedachte Durchführung des Planes dienen. Wir bitten die Deutschen

1. Bemerkung zur vollständigen Darstellung algebraischer Raumeurven. J. reine angew. Math. 108 (1891), S. 346-347.

Es wird eine Raumkurve fünfter Ordnung angegeben, die sich nicht durch drei oder weniger, sondern erst durch vier algebraische Gleichungen darstellen läßt.

Vahlen's Example published in 1891: The rational quintic space curve with a quadrisecant is the intersection of 4, but not of less than 4 surfaces.

Vahlen, Bemerkung zur vollständigen Darstellung algebraischer Raumeurven. 347

Bemerkung zur vollständigen Darstellung algebraischer Raumeurven.

(Von Herrn K. Th. Vahlen.)

Herr Kronecker pflegte in seinen Vorlesungen über die Theorie der algebraischen Gleichungen zu zeigen, dass eine ν -fache, einer n-fachen entnommene algebraische Mannigfaltigkeit im Allgemeinen erst durch n+1 algebraische Gleichungen vollständig dargestellt werde (vgl. Kronecker, Festschrift § 10). Dass eine solche Darstellung zuweilen wirklich nothwendig wird, wenn man nicht zur Parameterdarstellung greifen oder Ungleichungen hinzunehmen will, geht in folgender Weise aus bekannten Sätzen hervor.

Die Schnitteurve zweier Flächen F_{μ} und F_{ν} , resp. μ ter und ν ter Ordnung, zerfalle in zwei Raumeurven R_{ν}^{p} und R_{ν}^{p} , deren Ordnungen m, m' und deren Geschlechter p und p' seien. Durch Gleichsetzung der Anzahlen der scheinbaren Doppelpunkte der ganzen Schnitteurve und derjenigen der zerfallenden erhält man die Anzahl der wirklichen Schnittpunkte der R_{ν}^{p} und der R_{ν}^{p} , nämlich $s=m(\mu+\nu-4)-2(p-1)$. Legt man noch eine dritte Fläche F_{e} , ϱ -ter Ordnung, durch die R_{ν}^{p} , allein, so wird dieselbe von der R_{ν}^{p} in $m'\varrho-s$ oder in $S=\mu\nu\varrho-m(\mu+\nu+\varrho-4)+2(p-1)$ Punkten geschnitten, die auf allen drei Flächen F_{μ} , F_{ν} , F_{e} , aber nicht auf der R_{ν}^{p} liegen.

Für eine gegebene R_n^s können im Allgemeinen nicht drei Flächen so bestimmt werden, dass die Anzahl S verschwindet. Es ergiebt sich dies aus dem einfachsten Beispiele der R_n^s mit nur einer Quadrisecante. Sollte die Anzahl

$$\mu\nu\rho = 5(\mu + \nu + \rho - 4) - 2,$$

oder $(\mu-3)(\nu-3)(\varrho-3) + 3((\mu-3)(\nu-3) + (\mu-3)(\varrho-3) + (\nu-3)(\varrho-3)) \\ + 4(\mu+\nu+\varrho-9)$

verschwinden, so müsste, da keine Fläche zweiter Ordnung durch diese R_5° geht (s. Noether, Zur Grundlegung der Theorie der algebraischen Raumcurven § 14 u. 15, Bd. 93 dieses Journals), $\mu = \rho = 3$ sein. Aber durch
drei Flächen dritter Ordnung wird diese R_5° nicht isolirt dargestellt, weil jede F_3 vier Punkte der Quadrisecante, also diese selbst enthält. Nimmt man
nun zu zwei Flächen dritter Ordnung eine dritte von der Ordnung $\rho > 3$ hinzu, so entstehen $4(\rho - 3)$ ausserhalb der R_5° gelegene Schnittpunkte; diese R_5° wird daher erst durch vier Flächen vollständig dargestellt.

Vahlen's 1891 paper in total, < 2 pages in *Crelle*, vol. 108.

Bemerkung zur vollständigen Darstellung algebraischer Raumcurven.

(Von Herrn K. Th. Vahlen.)

Herr Kronecker pflegte in seinen Vorlesungen über die Theorie der algebraischen Gleichungen zu zeigen, dass eine ν -fache, einer n-fachen entnommene algebraische Mannigfaltigkeit im Allgemeinen erst durch n+1 algebraische Gleichungen vollständig dargestellt werde (vgl. Kronecker, Festschrift § 10). Dass eine solche Darstellung zuweilen wirklich nothwendig wird, wenn man nicht zur Parameterdarstellung greifen oder Ungleichungen hinzunehmen will, geht in folgender Weise aus bekannten Sätzen hervor.

Vahlen's 1891 paper, 1st paragraph.

Vahlen's 1891 paper, second paragraph Die Schnittcurve zweier Flächen F_{μ} und F_{ν} , resp. uter und ν ter Ordnung, zerfalle in zwei Raumeurven R_m^p und $R_m^{p'}$, deren Ordnungen m, m' und deren Geschlechter p und p' seien. Durch Gleichsetzung der Anzahlen der scheinbaren Doppelpunkte der ganzen Schnittcurve und derjenigen der zerfallenden erhält man die Anzahl der wirklichen Schnittpunkte der R_m^p und der $R_m^{p'}$, nämlich $s = m(\mu + \nu - 4) - 2(p-1)$. Legt man noch eine dritte Fläche F_{ϱ} , ϱ -ter Ordnung, durch die R_m^p allein, so wird dieselbe von der $R_{m'}^{p'}$ in $m'\varrho - s$ oder in $S = \mu\nu\varrho - m(\mu + \nu + \varrho - 4) + 2(p-1)$ Punkten geschnitten, die auf allen drei Flächen F_{μ} , F_{ν} , F_{ϱ} , aber nicht auf der R_m^p liegen.

Vahlen considers two surfaces F_{μ} and F_{ν} (in 3-space) of order μ , resp. ν , whose intersection decomposes into two space curves R_m^p and $R_{m'}^{p'}$, of orders m, resp. m', and genera p, resp. p'. He determines the number of points of intersection of R_m^p and $R_{m'}^{p'}$ to be

$$s = m(\mu + \nu - 4) - 2(p - 1).$$

Cutting with a 3rd surface F_{ρ} of order ρ passing just through R_m^p , it will intersect $R_{m'}^{p'}$ in

$$S = m'\rho - s = \mu\nu\rho - m(\mu + \nu + \rho - 4) + 2(p - 1)$$
 [indeed, $m + m' = \mu\nu$]

points, which belong to all three surfaces $F_{\mu}, F_{\nu}, F_{\rho}$, but not to R_m^p .

rem mogom

Für eine gegebene R_m^p können im Allgemeinen nicht drei Flächen so bestimmt werden, dass die Anzahl S verschwindet. Es ergiebt sich dies aus dem einfachsten Beispiele der R_5^0 mit nur einer Quadrisecante. Sollte die Anzahl

$$\mu\nu\rho - 5(\mu+\nu+\rho-4)-2$$
,

oder

$$\begin{array}{l} (\mu-3)(\nu-3)(\varrho-3)+3\big((\mu-3)(\nu-3)+(\mu-3)(\varrho-3)+(\nu-3)(\varrho-3)\big)\\ +4(\mu+\nu+\varrho-9) \end{array}$$

verschwinden, so müsste, da keine Fläche zweiter Ordnung durch diese R_5^0 geht (s. Noether, Zur Grundlegung der Theorie der algebraischen Raumcurven § 14 u. 15, Bd. 93 dieses Journals), $\mu \neq \nu = \varrho = 3$ sein. Aber durch drei Flächen dritter Ordnung wird diese R_5^0 nicht isolirt dargestellt, weil jede F_3 vier Punkte der Quadrisecante, also diese selbst enthält. Nimmt man nun zu zwei Flächen dritter Ordnung eine dritte von der Ordnung $\varrho > 3$ hinzu, so entstehen $4(\varrho - 3)$ ausserhalb der R_5^0 gelegene Schnittpunkte; diese R_5^0 wird daher erst durch vier Flächen vollständig dargestellt.

Vahlen's 1891 paper, 3rd and last paragraph.

Computation showing that, for the rational twisted quintic with one 4-secant (therefore not contained in any quadric), no 3 surfaces exist which make **S**=0.

Vahlen uses

(I) Schubert Calculus, i.e., enumerative geometry,

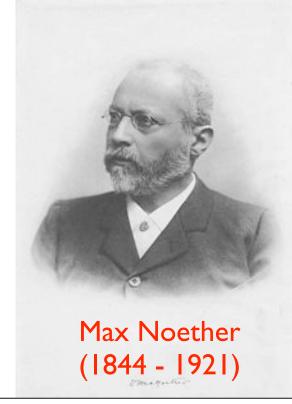
Recall Hilbert's 15th problem:
Rigorous foundation of
Schubert Calculus.

H.C.H. Schubert (1848 - 1911)

and

(2) Max Noether's fundamental 1882 paper on space curves in Crelle 93 (pp. 271-318).

W.-D. Geyer in 1977 called Vahlen's paper a "short and dark article."



The goal of Schubert calculus is to effectively compute the number (not determine the nature!) of all the geometric objects satisfying a set of conditions which, taken together, admit but finitely many solutions. Examples include

- "(1) to find the number of circles tangent to 3 given circles, which Appolonius investigated about 200 B.C.;
- (2) to find the number of arbitrary conics—ellipses, parabolas and hyperbolas, as well as circles—tangent to 5 conics, which Steiner proposed in 1848 as a natural generalization of the problem of Appolonius;
- (3) to find the number of twisted cubics tangent to 12 quadratic surfaces, whose remarkable solution, published only in Schubert's book of 1879 (culminating on p. 184), won Schubert the gold medal in 1875 from the Royal Danish Academy." [Quoted from Kleiman.]

(Steiner had thought the solution to (2) was $6^5 = 7776$, but was corrected by Chasles in 1864 who came up with the right answer 3264.

The prizeworthy number of solutions to (3) that Schubert found is 5,819,539,783,680.)

Zur Grundlegung der Theorie der algebraischen Raumcurven*).

(Von Herrn M. Noether in Erlangen.)

Einleitung.

Als wichtigste Aufgabe in der Theorie der algebraischen Raumcurven erschien dem Verfasser, eine durchaus strenge Grundlegung der allgemeinen Theorie zu geben. Nach dem Vorgange neuerer Untersuchungen über ebene Curven konnte dieselbe wesentlich nur in der Theorie der algebraischen Functionen gesucht werden, und demgemäss hat sich hier der Verfasser die Frage nach denjenigen grundlegenden Ergebnissen gestellt, welche aus der Theorie der algebraischen Functionen hervorgehen. Dieselben beziehen sich auf die Erzeugung der Raumcurven durch specielle oder allgemeine Flächenschnitte, auf ihre Constantenzahl etc.

Es sei zunächst ein Blick auf die bisherige erwähnenswerthe Literatur geworfen, soweit sie entweder die vorliegenden Fragen behandelt hat oder in dieser Arbeit in Bezug auf die algebraischen Grundlagen citirt wird:

- (C.) **), Cayley, Considérations générales sur les courbes en espace. Comptes Rendus de l'Acad. des Sc., t. 54, 58 (1862, 1864).
- (H.), Halphen, Mémoire sur les courbes gauches algébriques. Ibid., t. 70 (1870). Dazu einige spätere Noten in t. 2 des Bull. de la Soc. Math.

de France.

Clipping from Max Noether's 1882 paper

§ 9.

Fortsetzung. 1. Restmethode. 2. Methode des ebenen Schnittes.

1. Auch im letzten Falle des § 8, wobei (2.) und (4.) erfüllt sind, existirt eine auf dem Restsatze V. des § 1 beruhende Methode, welche in einem sehr allgemeinen Falle nachweist, ob sich durch R_m^p eine von F_μ verschiedene Fläche F_ν legen lässt. Wir bezeichnen diese Methode als Restmethode.

Sei wieder $\nu\mu=m+m'$. Durch R_m^p möge eine von F_μ verschiedene Fläche $(\nu+1)^{\mathrm{ter}}$ Ordnung gehen, welche F_μ in einer Resteurve $R'_{m'+\mu}$ treffe. Durch diese Curve $R'_{m'+\mu}$ lege man wieder rückwärts eine Fläche der Ordnung ν_1+1 , welche F_μ weiter in einer Curve $R^p_{m_1}$ treffe. Diese Curve $R^p_{m_1}$ wird der gegebenen Curve R^p_m corresidual sein. Kann man daher nachweisen, dass durch $R^p_{m_1}$ zugleich eine Fläche ν_1^{ter} Ordnung geht, die verschieden ist von F_μ , so ergiebt der Restsatz V., § 1, dass auch durch R^p_m eine von F_μ verschiedene Fläche ν^{ter} Ordnung gehen muss.

Criticism of Vahlen's example in 1941 (!) by Geheimrat Prof. Dr. Oskar Perron (1880-1975)

Über das Vahlensche Beispiel zu einem Satz von Kronecker.

 $-V_0$

Oskar Perron in München.

§ 1.

Kronecker hat in § 10 seiner Kummer-Festschrift ohne ausführlichen Beweis den folgenden Satz angegeben¹):

A. Ein System von beliebig vielen (algebraischen) Gleichungen mit n Unbekannten ist stets einem System von höchstens n+1 Gleichungen äquivalent (d. h. beide Systeme haben dieselben Lösungen ohne Berücksichtigung der Vielfachheit).

Ein nicht ganz leicht zu durchschauender Beweis des Satzes steht bei König²). Einen wesentlich einfacheren Beweis hat mir Herr van der Waerden mitgeteilt. Speziell für n=3 besagt der Satz u. a., daß eine Kurve im Euklidischen R_3 stets als Durchschnitt von höchstens vier Flächen dargestellt werden kann. Wollte man dasselbe auch für den projektiven R_3 schließen, so

Perron simply does it: he writes Vahlen's curve as the intersection of **three** surfaces!

Perron about Vahlen's example

Nun kann man der Meinung sein, daß eine Kurve auch schon als Durchschnitt von weniger als vier Flächen darstellbar sein müsse. Als ein Beispiel, bei dem das nicht der Fall ist, hat Herr Vahlen die rationale Raumkurve fünfter Ordnung mit einer Quadrisekante angeführt3), und, soweit mir bekannt, ist dem nie widersprochen worden. Vielmehr weist König a. a. O. S. 238 anerkennend auf dieses Beispiel hin, und auch in der alten Encyklopädie findet sich ein Hinweis (Band I, 1, S. 264), ebenso in der französischen Ausgabe (Band I, 2, S. 159), während die Neuauflage der Encyklopädie sich über diesen ganzen Fragenkreis bis jetzt ausschweigt. Herr Vahlen hat in seiner Arbeit nichts gerechnet, sondern hat aus Abzählungen schließen zu können geglaubt, daß drei Flächen außer der Kurve immer noch fremde Punkte gemein haben müssen. Das trifft aber nicht zu. Vielmehr werde ich im folgenden zeigen, daß schon die nächstliegenden drei Kegelflächen, die man aus der Parameterdarstellung der Kurve durch Elimination des Parameters erhält, keine fremden Punkte gemein haben.

Herr Vahlen has **not computed** anything in his paper, but thought he could deduce from **enumerations** that three surfaces always had to contain other points, **alien** to the curve. But this is not so. I will rather show below that already the most obvious three cone-surfaces which one ontains from the parameter representation of the curve by eliminating the parameter do not have any points in common which are alien to the curve.

Perron's projective parameter presentation of Vahlen's curve

Die Quadrisekante sei die Gerade $x_1 = x_2 = 0$. Da man die Parameter ϱ , σ linear transformieren kann, darf man annehmen, daß drei Schnittpunkte der Quadrisekante den Parameterverhältnissen

$$\varrho : \sigma = 0:1, 1:0, 1:1$$

entsprechen, der vierte entspreche dem Verhältnis $\varrho:\sigma=\alpha:1$. Dann ist

$$x_1 = arrho \sigma \left(arrho - \sigma
ight) \left(arrho - lpha \sigma
ight) \left(a \, arrho + b \, \sigma
ight),$$
 $x_2 = arrho \sigma \left(arrho - \sigma
ight) \left(arrho - lpha \sigma
ight) \left(c \, arrho + d \, \sigma
ight).$

Natürlich muß $ad - bc \neq 0$ sein; sonst wäre $x_1 : x_2$ konstant, die Kurve also eben. Indem man x_1 , x_2 linear transformiert, kann man a = d = 1, b = c = 0 annehmen, so daß man schließlich die folgende Parameterdarstellung erhält:

(1)
$$\begin{cases} x_1 = \varrho^2 \sigma \left(\varrho - \sigma\right) \left(\varrho - \alpha \sigma\right), \\ x_2 = \varrho \sigma^2 \left(\varrho - \sigma\right) \left(\varrho - \alpha \sigma\right), \\ x_3 = a_0 \varrho^5 + a_1 \varrho^4 \sigma + a_2 \varrho^3 \sigma^2 + a_3 \varrho^2 \sigma^3 + a_4 \varrho \sigma^4 + a_5 \sigma^5, \\ x_4 = b_0 \varrho^5 + b_1 \varrho^4 \sigma + b_2 \varrho^3 \sigma^2 + b_3 \varrho^2 \sigma^3 + b_4 \varrho \sigma^4 + b_5 \sigma^5. \end{cases}$$

Perron's 3 surfaces whose intersection is Vahlen's curve

(6)
$$a_0 x_1^5 + a_1 x_1^4 x_2 + a_2 x_1^3 x_2^2 + a_3 x_1^2 x_2^3 + a_4 x_1 x_2^4 + a_5 x_2^5$$

= $x_1 x_2 x_3 (x_1 - x_2) (x_1 - \alpha x_2)$,

(7)
$$b_0 x_1^5 + b_1 x_1^4 x_2 + b_2 x_1^3 x_2^2 + b_3 x_1^2 x_2^3 + b_4 x_1 x_2^4 + b_5 x_2^5$$

= $x_1 x_2 x_4 (x_1 - x_2) (x_1 - \alpha x_2)$.

Diese beiden Flächengleichungen werden daher identisch befriedigt, wenn man für die x, die Ausdrücke (1) einsetzt. Die Kurve liegt also auf diesen beiden Flächen (Kegeln) fünfter Ordnung⁴).

Jetzt eliminieren wir das Parameterverhältnis auch aus den letzten drei der Gleichungen (1). Das Resultat besteht im Verschwinden der 15-reihigen Determinante

- 1. $\begin{bmatrix} 0 & 0 & 1 & \beta & \alpha & 0 & 0 & 0 & 0 & x_2 & 0 & 0 & 0 & 0 \\ \dots & \dots \end{bmatrix}$
- 6. $a_0 \ a_1 \ a_2 \ a_3 \ a_4 \ a_5 \ 0 \ 0 \ 0 \ x_3 \ 0 \ 0 \ 0$
- 11. $b_0 \ b_1 \ b_2 \ b_3 \ b_4 \ b_5 \ 0 \ 0 \ 0 \ x_4 \ 0 \ 0 \ 0 \ 0$

This 15x15 determinant is a homogeneous polynomial of deg. 5 in the 3 x's, whose zero set contains Vahlen's curve.

(wobei
$$\beta = -1 - \alpha$$
).

Note.

- I. Perron's argument is completely transparent.
- 2. He does not point us to a specific mistake that Vahlen made; rather he uses the bad reputation of Schubert calculus to discredit Vahlen's argument in general, whose specific conclusion he disproves. (I imagine that Perron never studied Max Noether's 1882 paper on space curves, which Vahlen followed rather closely.)
- 3. This goes well with Perron's political goal which is to discredit nazi mathematicians through their idol.

Vahlen's comrades try to defend him, Part I

FORSCHUNG

Über die reine Darstellung algebraischer Raumkurven.

Ein Brief an den Herausgeber.

Von R. W. Leidheuser in Halle.

Im zweiten Heft der Mathematischen Zeitschrift, Band 47, hat Herr O. Perron eine Arbeit "Über das Vahlensche Beispiel zu einem Satz von Kronecker" veröffentlicht. Darin heißt es auf Seite 319: Deutsche Mathematik 6, 1941.

Leidheuser, a mathematician from Halle, defends Vahlen against Perron by philology: Whereas Vahlen's goal was the **pure** representation of a curve as intersection of surfaces, Perron shuns the word "pure," replacing it with the word **alien** (fremd).

Es fragt sich zunächst, was man unter "rein" verstehen will. M. E. versteht man darunter, daß man als Lösungen die Punkte der Kurve erhält und jeden so oft, wie die Vielfachheit des Punktes für die Kurve angibt.

Herr Perron vermeidet das Wort "rein" und ersetzt es durch "fremd".

Legt man demnach die Perronsche Definition des "fremden" Punktes zugrunde, so gilt das "Vahlensche Beispiel" nicht mehr.

Legt man aber die übliche Definition des "reinen" Punktes zugrunde, so bleibt das Vahlensche Beispiel das, was es war: ein außerordentlich schönes, weil so sehreinfaches, Beispiel für die Unmöglichkeit, die Punkte der C_5 "rein" durch 3 Flächen darzustellen.

Leidheuser introduces the intersection multiplicity into the debate.

This brings in Ecc. Francesco Severi, Rome.

One of the leading italian mathematicians of the twentieth century.

In 1932, he had convinced B.L. van der Waerden of his geometric definition of intersection multiplicity.

Uber die Darstellung algebraischer Mannigfaltigkeiten als Durchschnitte von Formen¹).

Von FRANCESCO SEVERI in Rom.

Daß ein Analytiker im Range von Herrn O. Perron sich mit den Elementen der algebraischen Geometrie beschäftigt²), scheint mir eine sehr erfreuliche Tatsache zu sein, weil er jene von einem ganz anderen Gesichtspunkt aus sieht als wir, die wir täglich damit zu tun haben. Diese große Verschiedenheit der Gesichtspunkte führt notwendig zu einer Vertiefung der Theorie und zu nützlichen Diskussionen³), von denen die folgenden Ausführungen eine Probe liefern sollen.

Severi's attempt to define intersection multiplicity via elimination theory à la Kronecker is too hasty; Perron will easily show that it contradicts Bézout's Theorem - among other serious shortcomings.

As a result Severi will not have this article reprinted in his Opere matematiche.

UEBER DIE DARSTELLUNG ALGEBRAISCHER MANNIGFALTIGKEITEN ALS DURSCHNITTE VON FORMEN (*)

Abhandlungen aus dem Mathematischen Seminar der Hansischen Universität, 15 (1943), pp. 97-119

Il Prof. Perron in Mathematische Zeitschrift, (1941), provò che la quintica C di Vahlen, dello spazio ordinario, può ottenersi come intersezione completa di tre superficie algebriche, contrariamente a quanto era stato sempre affermato nella geometria algebrica: che cioè la C costituisce un esempio di una curva sghemba non rappresentabile come intersezione completa di tre superficie.

Nella Nota CXLIX (dopo aver ritrovato per semplice via geometrica il risultato di Perron) si chiarisce che il contrasto fra le due conclusioni deriva da un modo diverso d'intendere la parola «intersezione»: oscia come insieme dei punti comuni a più superficie di S_3 o a più intersuperficie di S_4 (e in questa accezione, nella Memoria CLIX del presente volume (p. 500), lo scrivente preferisce di parlare d'«interferenza»), oppure tenuto conto della molteplicità d'intersezione (arrivando così alla nozione vera e propria d'«intersezione»). Il risultato di Perron è vero in quanto C si consideri come interferenza delle tre superficie; la conclusione consueta dei geometri algebristi è vera quando invece si voglia ottenere C come «intersezione semplice» di tre superficie, nel senso precisato in modo del tutto generale nella citata Memoria CLIX, alla quale possiamo rinviare, perché in essa sono anche riassunti i punti fondamentali della Nota CXLIX.

(*) In luogo della Nota originale viene qui riprodotto (con ovvie modifiche redazionali) il testo scritto dall'Autore a commento della Nota stessa, come apparso nel volume: F. Severi, Memorie scelte, i, Edizioni Cremonese, Roma (1950), pp. 325-326.

The corresponding item in the edition of Severi's Works.

A new term:

"interference" is proposed by Severi to describe the intersection considered by Perron

Severi comes back to the subject in a 1948 paper, defending as he so often did, Italian Algebraic Geometry and its rigour both against the German algebraists and against André Weil.

IL CONCETTO GENERALE DI MOLTEPLICITÀ DELLE SOLUZIONI PEI SISTEMI DI EQUAZIONI ALGEBRICHE E LA TEORIA DELL'ELIMINAZIONE (*)

Annali di Matematica, (4), 26 (1948), pp. 221-270

RIASSUNTO. La Memoria intende riaffermare, in relazione a taluni dubbi o critiche di O. Perron, il sostanziale rigore dei fondamenti della geometria algebrica italiana. La polemica ha tuttavia una propria utile funzione, onde fissare circostanze che lo sviluppo della geometria algebrica non aveva finora richiesto di approfondire. Vengon così arrecati ulteriori apporti a quei fondamenti, alla cui elaborazione l'A. aveva con vari precedenti lavori contribuito: 1) si sbocca nel concetto generale di molteplicità di intersezione e si precisa il valore della rappresentazione di una varietà algebrica irriducibile priva di punti multipli, come intersezione completa, semplice di forme, riconfermando altresì (ciò che l'A. aveva già mostrato in qualche esempio in un precedente stadio della polemica) che, a riconoscere se date forme forniscono una tal rappresentazione, basta il metodo di eliminazione di Kronecker; 2) la nozione d'intersesione integra nella sua più ampia generalità la nozione d'interferenza di varietà; 3) il teorema di Bézout esteso ad r forme di S, riceve piena luce nei suoi aspetti algebrici e infinitesimali, anche quando vi sono infinite soluzioni e viene integrato dal concetto di risultante limite, che per fenomeni, a priori paradossali, non coincide sempre col risultante formale, calcolato col metodo di Kronecker.

Note.

I. In his controversy with Severi, Perron interprets - as many mathematicians do - the big rewriting of Algebraic Geoemtry in the 1930s and 1940s as a mere conservative reaction against the lack of rigour in the Italian school. Severi tries to defend the peculiar Italian way of doing Algebraic Geoemtry against attacks from "abroad."

- 2. From a historical point of view, these attitudes are inadequate because
 - Van der Waerden, Weil, Zariski create a genuinely **new** Alg. Geom.: new concepts, new methods of proof, a new practice.
 - At least in 1941, Severi is still heavily engaged in creating a mathematical **axis** (parallel to the Hitler Mussolini axis since 1936) bringing together Italian geometers with German algebraists.
- 3. But Perron is not part of either of these enterprises.

From 1960 to 1978

- 1960. Martin Kneser dedicates to Perron his elementary, geometric proof of: **Every** irreducible algebraic curve in proj. 3-space is intersection of ≤ 3 surfaces.
- 1962. Hartshorne works out the relation between the property of being a complete intersection and connectedness properties.
- 1964. Forster: The ideal of a locally complete intersection in affine n-space can be generated by n+1 polynomials.
- 1971. Abhyankar: The ideal of a smooth curve in affine 3-space can be generated by 3 polynomials.
- 1973. Eisenbud & Evans algebrize Kneser's argument showing that every (non-empty) algebraic set in (affine or projective) n-space is the intersection of $\leq n$ hypersurfaces.
- 1975. L. Szpiro: Every locally complete intersection curve in affine 3-space is a settheoretic complete intersection. [1978. M. Kumar: same in n-space, n≥3.]
- 1977. M. Kumar proves "Forster's Conjecture": The ideal of a locally complete intersection in affine *n*-space can be generated by *n* polynomials.
- 1978. Cowsik & Nori: Over a field of characteristic p>0, every curve in affine *n*-space is set-theoretically a complete intersection.

During all this time, nobody revisited Vahlen's paper - whose lack of method was "common knowledge."

Frank-Olaf Schreyer, Univ. Saarbrücken When I asked him in 2004, Schreyer took a new look at Vahlen's paper

F.-O. Schreyer:

Given a curve R_m^p which generically is the complete intersection of surfaces F_μ and F_ν , write $F_\mu \cap F_\nu = R_m^p \cup R_{m'}^{p'}$. Then the curves R_m^p and $R_{m'}^{p'}$ in \mathbf{P}^3 are in *liaison* with one another, in the sense of Peskine & Szpiro [Inventiones 26 (1974), 271–302]. Using this paper, one does find scheme-theoretically that $m+m'=\mu\nu$ and $p'=p+(\frac{\mu+\nu}{2}-2)(m'-m)$, and from there like in Vahlen:

$$\deg(R_m^p \cap R_{m'}^{p'}) = m(\mu + \nu - 4) - 2p + 2 = s.$$

A third surface F_{ρ} containing R_m^p intersects $R_{m'}^{p'}$ in $R_m^p \cap R_{m'}^{p'}$ and possibly in other points whose multiplicities add up after Bezout to:

$$S = m'\rho - s = \mu\nu\rho - m(\mu + \nu + \rho - 4) + 2p - 2.$$

The rest of Vahlen's is simply correct as it stands: If our curve R_m^p has m=5, p=0, and admits a 4-secant, then, according to Max Noether (1882), it lies on no quadric surface, i.e., $\mu, \nu, \rho \geq 3$. In this case, S could be zero only for $\mu=\nu=\rho=3$. But a cubic surface containing all 4 points of the 4-secant contains this whole line, so already set-theoretically $F_\mu \cap F_\nu \cap F_\rho$ is more than just R_5^0 .

Thus: "Vahlen has shown" that the ideal sheaf of R_5^0 cannot be generated by less than 4 equations.

What is the relation between Vahlen and Peskine & Szpiro?

Is the sustainability of Vahlen's arguments unreasonable, or supreme proof of the cumulative character of the development of mathematics?

Note. The answer is not really made easier by the fact that one might do a "longterm history of *liaisons*" from Max Noether (in particular *Crelle* 93, 1882), via Dubreil (1935) as well as Severi (1932) and Gaeta (end of the 1940s), leading to Peskine & Szpiro: Liaison des variétés algébriques I, *Inventiones* 26 (1974), and related papers by Rao and others.....

An open problem for the road: Perron's question

- It seems to be still not known (over a field of char.
 0), if every space curve in 3-space is set-theoretically a complete intersection.
- Note that the answer is NO to the corresponding question for 4-space: there are surfaces which are not the intersection of two threefolds; see Hartshorne, chap. III, Ex. 4.9.