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1 Abstract/Introduction

In this course, three examples are developed, involving random trees: binary
search trees, Pólya urns and m-ary search trees. For all of them, a same plan
runs along the following outline:

(a) A discrete Markovian stochastic process is related to a tree structure. In
the three cases, the tree structure is a model coming from computer science and
from analysis of algorithms, typically sorting algorithms. The recursive nature of
the problem gives rise to discrete time martingales.

(b) The process is embedded in continuous time, giving rise to a one (ex. 1)
or to a multitype (ex. 2 and ex. 3) branching process. The associated continuous
time martingales are connected to the previous discrete time martingales. Thanks
to the branching property, the asymptotics of this continuous time branching
process is more accessible than in discrete time, where the branching property
does not hold.

In the three cases, the limit of the (rescaled) martingale has a non classic
distribution. We present some expected properties of these limit distribution
(density, infinite divisibility, ...) together with more exciting properties (divergent
moment series, self decomposability, fixed point equation, ...).

2 Binary search trees

(abridged: bst)

2.1 Definition of a binary search tree

A binary search tree is associated with the sorting algorithm “Quicksort” and
several definitions can be given with this algorithm in mind (see Mahmoud [18]).
Here we give a more probabilistic definition. Let

U = {ε} ∪
⋃
n≥1

{0, 1}n

be the set of finite words on the alphabet {0, 1}, where ε denotes the empty
word. Words are written by concatenation, the left children of u is u0 and the
right children of u is u1. A binary complete tree T is a finite subset of U such
that 

ε ∈ T
if uv ∈ T then u ∈ T ,
u1 ∈ T ⇔ u0 ∈ T .
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The root of the tree is ε. The length of a node u is denoted by |u|, it is the
depth of u in the tree (|ε| = 0). The set of binary complete trees is denoted by
BinTree. In a binary complete tree T ∈ BinTree, a leaf is a node without any
children, the set of leaves of T is denoted by ∂T . The other nodes are internal
nodes.

In the following, we call a random binary search tree the discrete time process
(Tn)n≥0, with values in BinTree, recursively defined by: T0 is reduced to a single
leaf; for n ≥ 0, Tn+1 is obtained from Tn by a uniform insertion on one of the
(n+ 1) leaves of Tn.

2.2 Profile. Discrete martingale

A huge literature exists on binary search trees: see Flajolet and Sedgewick [12]
for analytic methods, Devroye [10] for more probabilistic ones and Mahmoud [18]
for a book on this topics. Here, let’s focus on the profile which expresses the
shape of the tree. The profile is given par the sequence

Uk(n) := the number of leaves at level k in tree Tn.

What is the asymptotic behavior of these quantities when n→ +∞? To answer,
let’s introduce the level polynomial, defined for any z ∈ C by

Wn(z) :=
+∞∑
k=0

Uk(n) zk =
∑
u∈∂Tn

z|u|.

It is indeed a polynomial, since for any level k greater than the height of the tree,
Uk(n) = 0. It is a random variable, not far from a martingale.

Theorem 2.1 (Jabbour-Hattab, 2001, [14]) For any complex number z ∈ C such
that z 6= −k, k ∈ N, let

Γn(z) :=
n−1∏
j=0

(
1 +

z

j + 1

)
and

MBST
n (z) :=

Wn(z)

IE(Wn(z))
=

Wn(z)

Γn(2z − 1)
.

Then, (MBST
n (z))n is a Fn-martingale which can also be written

MBST
n (z) :=

1

Γn(2z − 1)

∑
u∈∂Tn

z|u|.

3



This martingale is a.s. convergent for any z positive real.
It converges in L1 to a limit denoted by MBST

∞ (z) for any z ∈]z−, z+[ and it
converges a.s. to 0 for any z /∈]z−, z+[, where z− and z+ are the two solutions of
equation z log (z/2)− z + 2 = 1.

Proof. The martingale property comes from

IE(Wn+1(z) | Tn) =
n+ 2z

n+ 1
Wn(z).

2.3 Embedding in continuous time. Yule tree

The idea is due to Pittel [19]. Let’s consider a continuous time branching process,
with an ancestor at time t = 0, who lives an exponential time with parameter 1.
When he dies, it gives birth to two children who live an exponential time with
parameter 1, independently from each other, etc... The tree process thus obtained
is called the Yule tree process, it is denoted by (Yt)t.

Let’s call Nt the number of leaves in Yt (at time t) and denote by

0 < τ1 < · · · < τn < . . .

the jumping times. It is easy to see that τn− τn−1 is Exp(n)-distributed and that
(it is the embedding principle)

(Yτn)n
L
= (Tn)n .

On the Yule tree, consider the branching random walk in which the position of a
leaf u of Yt is given by

Xu(t) := −|u| log 2

so that the displacements are (up to a constant) the generations in the tree.
Biggins ([4]) and Bertoin and Rouault ([3]) proved

Theorem 2.2 For any z ∈ C,

MY ULE
t (z) :=

∑
u∈∂Yt

z|u|e−t(2z−1)

is a Ft-martingale.
This martingale converges a.s. for all z positive real.
It converges in L1 to a limit denoted by MY ULE

∞ (z) for all z ∈]z−, z+[ and
it converges a.s. to 0 for all z /∈]z−, z+[, where z− and z+ are the solutions of
equation z log (z/2)− z + 2 = 1; z− = 0.186 . . . ; z+ = 2.155 . . .
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2.4 Martingale connection Yule tree - binary search tree

Proposition 2.3 For any z ∈]z−, z+[, the following connection holds

MY ULE
∞ (z) =

ξ2z−1

Γ(2z)
MBST
∞ (z)

where ξ and MBST
∞ (z) are independent and ξ is Exp(1)-distributed.

Proof. Use the embedding principle.

2.5 Asymptotics

The above connection is one of the main tools leading to the following theorem
on the profile of binary search trees.

Theorem 2.4 ([5], 2005) For any compact K ⊂]z−, z+[,

Uk(n)

IE(Uk(n))
−MBST

∞ (
k

2 log n
)−→
n→∞

0 a.s.

uniformly on k
2 logn

∈ K.

2.6 Another branching random walk: the bisection

A discrete time branching random walk in R is recursively defined as follows:
an ancestor is at the origin at time 0. At time 1 it has a random number N of
children and their positions are X1, X2, . . . . We denote by Z the point process

Z =
N∑
i=1

δXi

(where δ is the Dirac measure). Each individual reproduces independently from
each other and the position of each child relatively to its parent is given by an
independent copy of Z. Let Z(n) be the point process in R which describes the
positions of the individuals of the n-th generation. Z(0) = δ0;Z(1) = Z and

Z(n) =
∑
|u|=n

δXu ,

where Xu is the position of individual u. Individuals are canonically labeled by
the words on U as in Section 2.1. We call (Z(n))n a branching random walk with
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point process Z. Additive martingales are simply attached to these processes: let
for any parameter θ ∈ R

Λ(θ) := logE
∫
R
eθxZ(dx) = logE

N∑
i=1

eθXi ,

and let

Mn(θ) :=

∫
R
eθx−nΛ(θ)Z(n)(dx) =

∑
|u|=n

eθXu−nΛ(θ).

Then (Mn(θ))n is a martingale which converges a.s. to a limit M∞(θ). Under a
“k log k” condition, (cf. Biggings [4]),

- if θΛ′(θ)− Λ(θ) < 0, the convergence is in L1 and EM∞(θ) = 1
- if θΛ′(θ)− Λ(θ) ≥ 0, then M∞(θ) = 0 a.s.

A particular case: the bisection

Consider a segment of length 1 at time 0. At time 1 cut it in two pieces of
length U and 1 − U , where U is uniform on [0, 1]. Continue cutting recursively
and independently the two pieces. What are the lengths of the 2n pieces obtained
after n steps?

Proposition 2.5 ([9]) Let (Z(n))n be the branching random walk (called the bi-
section) with point process Z = δ− logU + δ− log(1−U) and let (MBIS

n )n be the asso-
ciated martingale: for any z ∈ R,

MBIS
n (z) =

∑
|u|=n

e−(2z−1)Xuzn.

Then, for any z ∈]z−, z+[,

MBIS
∞ (z) = MBST

∞ (z) a.s.

3 Pólya urns

3.1 Definition of a Pólya process

Define a discrete time process as follows. At each time, an urn contains black balls
and red balls. Pick up at random (which means uniformly) one ball, remember
its color, put it back in the urn, and add

→ a red balls and b black balls if a red ball has been drawn;
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→ c red balls and d black balls if a black ball has been drawn.

Denote by R =

(
a b
c d

)
the replacement matrix. We are interested in

UDT (n) =

(
# red balls at time n

# black balls at time n

)
which is called the composition vector of the urn. Let UDT (0) =

(
α
β

)
be the

initial composition of the urn. In what follows, we assume that the urn is balanced
which means that the total number of balls added at each step is a constant
S = a+ b = c+ d called the balance. Consequently, the total number of balls at
time n is deterministic, equal to α+ β +nS = u+nS (where u denotes the total
number of balls at time 0). Of course the composition of the urn is random.

The asymptotic behavior of the urn depends on the spectrum of matrix R.
There are two eigenvalues: the largest eigenvalue is the balance S and the smallest
eigenvalue is the integer m = a− c = d− b. We assume in the following that

S > m

consequently, the historical Pólya case where S = m is not covered by these
notes. It corresponds to taking R = S Id as replacement matrix. It has been
well-known, since Gouet [13], that the composition vector admits an almost sure
asymptotics of order one: UDT (n) = nD + o(n) where the random vector D has
a Dirichlet density (explicitly given in [13]).

The asymptotic behavior is quite different depending on σ :=
m

S
≤ 1

2
or

σ >
1

2
. Briefly (see Janson [15]):

1. when σ < 1
2
, the urn is called small and, except when R is triangular, the

composition vector is asymptotically Gaussian2:

UDT (n)− nv1√
n

D−→
n→∞

N (0,Σ2)

where v1 is a suitable eigenvector of tR relative to S and Σ2 has a simple closed
form;

2. when 1
2
< σ < 1, the urn is called large and the composition vector has a

quite different strong asymptotic form, it is described by a limit of martingales
which are introduced in the following section.

2The case σ = 1/2 is similar to this one, the normalisation being
√
n log n instead of

√
n.
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In the following, we assume that σ >
1

2
.

3.2 Vectorial discrete martingale

Recall the dynamics of the process (UDT (n)): if we call for a while x and y the
two coordinates of the vector UDT (n), then

UDT (n+ 1) = UDT (n) +

(
a
b

)
with probability x

x+y

UDT (n+ 1) = UDT (n) +

(
c
d

)
with probability y

x+y
,

(1)

and since x+ y = u+ nS,

IEFn

(
UDT (n+ 1)

)
=

(
I +

A

u+ nS

)
UDT (n) (2)

where I is the identity matrix of dimension 2 and where

A := tR =

(
a c
b d

)
.

The martingale property is immediate from (2) and stated in the proposition
hereafter.

Proposition 3.6 For any positive real x and any positive integer n, denote by
γx,n the polynomials

γx,n(t) :=
n−1∏
k=0

(1 +
t

x+ k
).

Then, γ u
S
,n(A

S
)−1UDT (n) is a (vectorial) Fn-martingale.

Let us call (v1, v2) a basis of eigenvectors associated with the two eigenvalues S
and m respectively and (u1, u2) its dual basis of linear forms (or left eigenvectors).
It means that u1 ◦A = Su1 and u2 ◦A = mu2. They can be explicitly calculated:

u1(x, y) =
1

S
(x+ y), u2(x, y) =

1

S
(bx− cy), (3)

v1 =
S

(b+ c)

(
c
b

)
, v2 =

S

(b+ c)

(
1
−1

)
. (4)
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By projection of the vectorial martingale onto any of the two eigendirections, we
get a one dimensional martingale, for instance

MDT (n) := γ u
S
,n(
m

S
)−1u2(UDT (n))

is a Fn-martingale which converges (in all the possible ways) when n goes to infin-
ity. With a control of the Lp moments of the martingale MDT (n) (see Pouyanne
[20]) one gets the following theorem.

Theorem 3.7 Assume σ ∈]1/2, 1[. Let

WDT := lim
n→+∞

1

nσ
u2(UDT (n)).

When n goes to infinity,

UDT (n) = nv1 + nσWDTv2 + o(nσ),

where v1, v2, u1, u2 are defined by (3) and (4); the convergence happens a.s. and
in all the Lp; the moments of WDT can be recursively calculated.

3.3 Embedding in continuous time. Two type branching
process

Imagine that red clocks and blacks clocks Exp(1) distributed are put on red balls
and black balls respectively. When a red clock rings, the red ball dies et gives
birth to (a + 1) red balls and b black balls. When a black clock rings, the black
ball dies et gives birth to c red balls and (d + 1) black balls. The composition
vector of the urn is now

UCT (t) =

(
# red balls at time t

# black balls at time t

)
.

Start from the same initial composition at time 0: UCT (0) =

(
α
β

)
. The previous

process is a two type branching process. Denote by 0 = τ0 < τ1 < · · · < τn < · · ·
the jumping times. It is easy to see that τn+1− τn is Exp(u+nS) distributed and
that (embedding principle)(

UCT (τn)
)
n

L
=
(
UDT (n)

)
n
.

The benefit of this embedding consists in providing a branching process in con-
tinuous time where the subtrees of the root are independent, which was not the
case in the discrete time process. For such a multitype branching process, it is
classical (see Athreya-Ney [1]) to see that
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Proposition 3.8 (
e−tAUCT (t)

)
t≥0

is a Ft-martingale (a vectorial one). By projection on the eigenlines (the same
ones as previously) we get real-valued convergent martingales and

ξ = lim
t
e−Stu1

(
UCT (t)

)
and WCT := lim

t
e−mtu2

(
UCT (t)

)
With a control on the Lp moments of these martingales, we get the asymptotic
behavior of the continuous time process in the following theorem ([8]).

Theorem 3.9 When t goes to infinity,

UCT (t) = eStξv1 (1 + o(1)) + emtWCTv2 (1 + o(1)) , (5)

where ξ and WCT are real valued random variables defined in Proposition 3.8; the
convergence happens a.s. and in all the Lp; the law of ξ is Gamma(u/S), where
u = α + β is the total number of balls at time 0.

3.4 Martingale connection

Proposition 3.10 The following connection holds

WCT = ξσ WDT a.s.

where ξ and WDT are independent and the law of ξ is Gamma(u/S).

Proof. Use the embedding principle.

This connection indicates that informations on WCT provide informations on
WDT . To get more on WCT , let’s take advantage of the independence properties
in continuous time, already mentioned; they are exploited in the following section.

3.5 Asymptotics

Remember (with Proposition 3.8) that WCT is the limit of a branching process
after projection and scaling. The branching property can be applied at the first
jumping time τ1 (denoted by τ1 for simplicity). Adopt the notation

Xt := UCT (t) starting from

(
1
0

)
Yt := UCT (t) starting from

(
0
1

)
,

(6)
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so that

∀t > τ,


Xt

L
= [a+ 1]Xt−τ + [b]Yt−τ

Yt
L
= [c]Xt−τ + [d+ 1]Yt−τ ,

(7)

where the notation [n]X stands for the sum of n independent copies of the ran-
dom variable X. After projection and scaling, the limits denoted by X and Y
respectively satisfy

∀t > τ,


X

L
= e−mτ ([a+ 1]X + [b]Y )

Y
L
= e−mτ ([c]X + [d+ 1]Y ) .

(8)

It can be seen as a system of fixed point distributional equations. Translating it on
the Fourier transforms, it gives a system of differential equations. This system can
be solved, giving informations on the distribution of X and Y : these distributions
have a density on the whole real axis, they are infinitely divisible, their Laplace
series (exponential series of the moments) have a radius of convergence equal to
0, ... Details can be found in [8].

A natural extension of the method should provide results for Pólya urns with
more than two colors. Indeed, we still get a system of fixed point distributional
equations, which in general is impossible to be solved. Nevertheless, for a par-
ticular case, corresponding to the classical sorting algorithm of so-called m-ary
search trees, some results on the limit distribution can be obtained.

4 m-ary search trees

4.1 Definition

For m ≥ 3, m-ary search trees are a generalization of binary search trees (see for
instance Mahmoud [18]). A sequence (Tn, n ≥ 0) of m-ary search trees grow by
successive insertions of keys in their leaves. Each node of these trees contains at
most (m − 1) keys. Keys are i.i.d. random variables xi, i ≥ 1 with any diffusive
distribution on the interval [0, 1]. The tree Tn, n ≥ 0, is recursively defined as
follows:

T0 is reduced to an empty node-root; T1 is reduced to a node-root which
contains x1, T2 is reduced to a node-root which contains x1 and x2, ... , Tm−1

has a node-root containing x1, . . . xm−1. As soon as the m − 1-st key is inserted
in the root, m empty subtrees of the root are created, corresponding from left to
right to the m ordered intervals I1 =]0, x(1)[, . . . , Im =]x(m−1), 1[ where 0 < x(1) <
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· · · < x(m−1) < 1 are the ordered (m − 1) first keys. Each following key xm, . . .
is recursively inserted in the subtree corresponding to the unique interval Ij to
which it belongs. As soon as a node is saturated, m empty subtrees of this node
are created.

Ex : for m = 4, draw the tree containing the following data:
0.3, 0.1, 0.4, 0.15, 0.9, 0.2, 0.6, 0.5, 0.35

For each i = {1, . . . ,m− 1} and n ≥ 1, let

X(i)
n := number of nodes in Tn which contain (i− 1) keys (and i gaps).

Such nodes are named nodes of type i. We don’t worry about the number of
saturated nodes. The vector XDT

n is called the composition vector of the m-
ary search tree. It provides a model for the space requirement of the sorting
algorithm.

When the data are i.i.d. random variables, one gets a random m-ary search
tree, and with this dynamics, the insertion of a new key is uniform on the gaps.
We want to describe the asymptotic behavior of the vector XDT

n as n tends to
infinity.

4.2 Vectorial discrete martingale

The dynamics of the nodes is illustrated by Figure 1 and it gives the expression
of Xn+1 as a function of Xn. The (n+ 1)-st data is inserted in a node of type i,

i = 1, . . . ,m−1 with probability
iX

(i)
n

n+ 1
and in this case, the node becomes a node

of type i+ 1 for i = 1, 2, . . . ,m− 2, and gives m nodes of type 1, if i = m− 1.
In other words, for i = 1, . . . ,m− 1, let

∆1 = (−1, 1, 0, 0, . . . )
∆2 = (0,−1, 1, 0, . . . )

...
∆m−2 = (0, . . . , 0,−1, 1)
∆m−1 = (m, 0, . . . , 0,−1).

,
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Figure 1: Dynamics of insertion of data, in the case m = 4.

Then

P(Xn+1 = Xn + ∆i|Xn) =
iX

(i)
n

n+ 1
.

The remarkable fact is that the transition from Xn to Xn+1 is linear in Xn.
Consequently, denote

A =



−1 m(m− 1)
1 −2

2 −3
. . . . . .

. . . −(m− 2)
m− 2 −(m− 1)


so that

E
(
Xn+1|Xn

)
=

(
I +

A

n+ 1

)
Xn.

Denoting

Γn(z) :=
n−1∏
j=0

(
1 +

z

j + 1

)
,

we immediately deduce

Proposition 4.11 ( 2004, [7])
(Γn(A)−1Xn)n is a Fn vectorial martingale.
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The spectrum of matrix A gives the asymptotic behavior of Xn. The eigenvalue
are the roots of the characteristic polynomial

χA(λ) =
m−1∏
k=1

(λ+ k)−m! =
Γ(λ+m)

Γ(λ+ 1)
−m! (9)

where Γ denotes Euler’s Gamma function. In other words, each eigenvalue λ is a
solution of

m−1∏
k=1

(λ+ k) = m!

All eigenvalues are simple, 1 being the one having the largest real part. Let λ2

be the eigenvalue with a positive imaginary part and with the greatest real part
σ2 among all the eigenvalues different from 1. The asymptotic behaviour of Xn

is different depending on σ2 ≤ 1
2

or σ2 >
1
2
. The results in the following theorem

can be found in [18, 15, 7, 20].

Theorem 4.12

• When σ2 <
1
2
, m ≤ 26 and

Xn − nv1√
n

D−→
n→∞

N (0,Σ2)

where v1 is an eigenvector for the eigenvalue 1, and where Σ2 can be calculated.
• When 1 > σ2 >

1
2
, m ≥ 27 and

Xn = nv1 + <
(
nλ2WDTv2

)
+ o(nσ2)

where v1, v2 are deterministic, nonreal eigenvectors; WDT is a C-valued random
variable which a martingale limit; o( ) means a convergence a.s. and in all the
Lp, p ≥ 1; the moments of WDT can be recursively calculated.

4.3 Embedding in continuous time. Multitype branching
process

For m ≥ 3, define a continuous time multitype branching process, with m − 1
types

XCT (t) =

 XCT (t)(1)

...
XCT (t)(m−1)
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with XCT (t)(j) = # particles of type j alive at time t.
Each particle of type j is equipped with a clock Exp(j)-distributed. When

this clock rings, the particle of type j dies and gives birth to

→ a particle of type j + 1 when j ≤ m− 2
→ m particles of type 1 when j = m− 1.

Call 0 = τ0 < τ1 < · · · < τn < · · · the successive jumping times. It is easy to
see that τn − τn−1 is Exp(u+ n− 1)-distributed, where u =

∑m−1
k=1 kX

CT (0)(k) is
the numbers of free places at time 0.

The embedding principle can be expressed(
XCT (τn)

)
n

L
= (Xn)n .

For this multitype branching process, it is classical to see that

Proposition 4.13 (
e−tAXCT (t)

)
t≥0

is a Ft vectorial martingale.

By projection on the eigenlines (v1, v2 are eigenvectors and u1, u2 are eigen linear
forms), we get

Theorem 4.14 ([6], Janson [15])

XCT (t) = et
(
1 + o(1)

)
ξv1 + <

(
eλ2tWCTv2

)
+ o(eσ2t)

where ξ is a real-valued random variable Gamma(u)-distributed;

WCT := lim
t
e−λ2tu2(XCT (t))

is a complex valued random variable, which admits moments of any order p ≥ 1;
o( ) means a convergence a.s. and in all the Lp, p ≥ 1. Moreover, the following
martingale connection holds

WCT = ξλ2 WDT a.s.

with ξ and WDT independent.

15



4.4 Asymptotics

Notations

In the following, we denote

T = τ(1) + · · ·+ τ(m−1). (10)

where the τ(j) are independent of each other and each τ(j) is Exp(j) distributed.
Let us make precise some elementary properties of T . It is easy to see that T has

fT (u) = (m− 1)e−u(1− e−u)m−21R+(u), u ∈ R, (11)

as a density, so that e−T has a Beta distribution with parameters 1 and m− 1. A
straightforward change of variable under the integral shows that for any complex
number λ such that <(λ) > 0,

Ee−λT =

∫ +∞

0

e−λufT (u)du = (m− 1)B(1 + λ,m− 1) (12)

=
(m− 1)!∏m−1
k=1 (λ+ k)

, (13)

where B denotes Euler’s Beta function:

B(x, y) =

∫ 1

0

ux−1(1− u)y−1du =
Γ(x)Γ(y)

Γ(x+ y)
, <x > 0,<y > 0. (14)

In particular,

mE|e−λT |


< 1 if <(λ) > 1,
= 1 if <(λ) = 1,
> 1 if <(λ) < 1.

(15)

A complete description of the C-valued random variable WCT is wanted. Since
it is a limit of a branching process after projection and scaling, the branching
property applied at the first splitting time provides fixed point equations on the
limit distributions. Denoting by W1 the distribution of WCT starting from a
particle of type 1 (which is indeed the case for the m-ary search tree), then W1

is a solution of the following equation in distribution

W
L
= e−λ2T (W (1) + · · ·+W (m)),

where T is defined in (10), W (i) are C-valued independent copies of W , which are
also independent of T .

Several results can be deduced from this equation, namely the existence and
the unicity of solutions, properties of the support. Some are described in the
following section.
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5 Smoothing transformation

In this section, inspired from [6], the following fixed point equation coming from
the previous multitype branching process is studied, thanks to several methods.
The different methods are general ones, they are used for other distributional
equations, the following is just a motivation in relation with Section 4.

W
L
= e−λT (W (1) + · · ·+W (m)), (16)

where λ ∈ C, T is defined in (10), W (i) are C-valued independent copies of W ,
which are also independent of T . We successively see the contraction method
(to prove existence and unicity of a solution, in a suitable space of probability
measure), some analysis on the Fourier transforms in order to prove that W has a
density, and a cascade type martingale which is a key tool to obtain the existence
of exponential moments for W .

5.1 Contraction method

This method has been developed in [21] and [22] for many examples in analysis of
algorithms. The idea is to get existence and unicity of a solution of equation (16)
thanks to the Banach fixed point Theorem. The key point is to chose a suitable
metric space of probability measures on C where the hereunder transformation
K : µ 7→ Kµ is a contraction.

Kµ := L
(
e−λT (X(1) + · · ·+X(m))

)
, (17)

where T is given by (10), X(i) are independent random variables of law µ, which
are also independent of T .

First step: the metric space.

For any complex number C, let M2(C) be the space of probability distribu-
tions on C admitting a second absolute moment and having C as expectation.
The first work is to see that K maps M2(C) into itself.

Then, define d2 as the Wasserstein distance onM2(C) (see for instance Dudley
[11]): for µ, ν ∈M2(C),

d2(µ, ν) =

(
min
(X,Y )

E
(
|X − Y |2

)) 1
2

, (18)

where the minimum is taken over couples of random variables (X, Y ) having re-
spective marginal distributions µ and ν; the minimum is attained by the Kantorovich-
Rubinstein Theorem – see for instance Dudley [11], p. 421. With this distance
d2, M2(C) is a complete metric space.
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Second step: K is a contraction on (M2(C), d2).

It is a small calculation, taking some care when choosing the random variables:
let (X, Y ) be a couple of complex-valued random variables such that L(X) =
µ, L(Y ) = ν and d2(µ, ν) =

√
E|X − Y |2. Let (Xi, Yi), i = 1, . . . ,m be m

independent copies of the d2-optimal couple (X, Y ), and T be a real random
variable with density fT defined by (11), independent from any (Xi, Yi). Then,

L(e−λT
m∑
i=1

Xi) = Kµ and L(e−λT
m∑
i=1

Yi) = Kν,

so that

d2(Kµ,Kν)2 ≤ E

∣∣∣∣∣
(
e−λT

m∑
i=1

Xi

)
−

(
e−λT

m∑
i=1

Yi

)∣∣∣∣∣
2

= E

∣∣∣∣∣e−λT
m∑
i=1

(Xi − Yi)

∣∣∣∣∣
2

= E
∣∣e−λT ∣∣2 E ∣∣∣∣∣

m∑
i=1

(Xi − Yi)

∣∣∣∣∣
2

= E
∣∣e−λT ∣∣2( m∑

i=1

E |Xi − Yi|2 +
∑
i 6=j

E (Xi − Yi)
(
Xj − Yj

))

= mE
∣∣e−2λT

∣∣ d2 (µ, ν)2 .

Since 2<(λ) > 1, we have mE
∣∣e−2λT

∣∣ < 1 (see (15)). Therefore K is a contraction
on M2(C). We have proved the following theorem.

Theorem 5.15 Let λ ∈ C be a root of the characteristic polynomial (9) such
that <(λ) > 1

2
, and let C ∈ C. Then K is a contraction on the complete metric

space (M2(C), d2), and the fixed point equation (16) has a unique solution W in
M2(C).

Another distance on M2(C)

Take µ, ν ∈ M2(C) and denote respectively ϕ and ψ their characteristic
functions. By definition of M2(C), both ϕ and ψ admit the expansion ϕ(t) =
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1 + i〈t, C〉+O (|t|2) when t tends to 0. Therefore, one can define d∗2(µ, ν) by

d∗2(µ, ν) = sup
t∈C\{0}

|ϕ(t)− ψ(t)|
|t|2

.

Clearly, d∗2(µ, ν) < ∞, and d∗2 is a distance on M2(C). It can be easily checked
that (M2(C), d∗2) is a complete metric space.

The following result is a counterpart of Theorem 5.15. It gives an alternative
proof for the existence and uniqueness in the distributional equation (16) in the
class of probability measures on C with a given mean and finite second moments.

Theorem 5.16 Let λ ∈ C be a root of the characteristic polynomial (9) such
that <(λ) > 1

2
, and let C ∈ C. Then K is a contraction on the complete metric

space (M2(C), d∗2), and the fixed point equation (16) has a unique solution W in
M2(C).

5.2 Analysis on Fourier transforms

The aim is to prove that W solution of equation (16) has the whole complex plane
C as its support and that W has a density with respect to the Lebesgue measure
on C. The method relies on [16] and [17] adapted in [6] for C-valued variables.
It runs along the following lines.

Let ϕ be the Fourier transform of any solution W of (16). It is a solution of
the functional equation

ϕ(t) =

∫ +∞

0

ϕm(te−λu)fT (u)du, t ∈ C, (19)

where fT is defined by (11).
It is sufficient to prove that ϕ is in L2(C) because it is dominated by |t|−a for ref ?

some a > 1 so that the inverse Fourier transform provides a density for W . For
a distributional equation in R, it is proved that ϕ is in L1(R).

To prove that ϕ(t) = O(|t|−a) when |t| → ∞, for some a > 1, we use a
Gronwall-type technical Lemma which holds as soon as A := e−λT has good mo-
ments and once we prove that lim

|t|→+∞
ϕ(t) = 0. It is the same to prove that

lim
r→+∞

ψ(r) = 0 where ψ(r) := max
|t|=r
|ϕ(t)|. This comes from iterating the distribu-

tional equation (19) so that

ψ(r) ≤ E(ψm(r|A|)).
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By Fatou lemma, we deduce that lim supr ψ(r) equals 0 or 1. And it cannot be 1
because of technical considerations and because the only point where ψ(r) = 1 is
r = 0. This key fact comes from a property of the support of W strongly related
to the distributional equation with a non lattice type assumption: as soon as a
point z is in the support of W , then the whole disc D(0, |z|) is contained in the
support of W . Finally, the result is

Theorem 5.17 Let W be a complex-valued random variable solution of the dis-
tributional equation

W
L
= e−λT (W (1) + · · ·+W (m)),

where λ is a complex number, W (i) are independent copies of W , which are also
independent of T . Assume that λ 6= 1, <(λ) > 0, EW <∞ and EW 6= 0. Then

(i) The support of W is the whole complex plane C;

(ii) the distribution of W has a density with respect to the Lebesgue measure
on C.

5.3 Cascade type martingales

The distributional equation (16) suggests to use Mandelbrot’s cascades in the
complex setting (see [2] for independent interest about complex Mandelbrot’s
cascades).

As in Section 4, take λ ∈ C be a root of the characteristic polynomial (9)
with <(λ) > 1/2. Still denote A = e−λT . Then mEA = 1 because λ is a root
of the characteristic polynomial (9) and mE|A|2 < 1 because <(λ) > 1/2 (see
(15)). Let Au, u ∈ U be independent copies of A, indexed by all finite sequences
of integers

u = u1...un ∈ U :=
⋃
n≥1

{1, 2, . . . ,m}n

and set Y0 = 1, Y1 = mA and for n ≥ 2,

Yn =
∑

u1...un−1∈{1,...,m}n−1

mAAu1Au1u2 . . . Au1...un−1 . (20)

As mEA = 1, (Yn)n is a martingale. This martingale has been studied by many
authors in the real random variable case, especially in the context of Mandelbrot’s
cascades, see for example [17] and the references therein. It can be easily seen
that

Yn+1 = A
m∑
i=1

Yn,i (21)
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where Yn,i for 1 ≤ i ≤ m are independent of each other and independent of A and
each has the same distribution as Yn. Therefore for n ≥ 1, Yn is square-integrable
and

VarYn+1 = (E|A|2m2 − 1) +mE|A|2 VarYn,

where VarX = E (|X − EX|2) denotes the variance of X. Since mE|A|2 < 1, the
martingale (Yn)n is bounded in L2, so that the following result holds.

Yn → Y∞ a.s. and in L2

where Y∞ is a (complex-valued) random variable with

Var(Y∞) =
E|A|2m2 − 1

1−mE|A|2
.

Notice that, passing to the limit in (21) gives a new proof of the existence of
a solution W of Eq. (16) with EW = 1 and finite second moment whenever
<(λ) > 1/2.

The previous convergence allows to think on Y∞ instead of W and a technical
lemma then leads to the following theorem, showing that the exponential mo-
ments of W exist in a neighborhood of 0, so that the characteristic function of
W is analytic at 0.

Theorem 5.18 Let λ ∈ C be a root of the characteristic polynomial (9) with
<(λ) > 1/2 and let W be a solution of Equation (16). There exist some constants
C > 0 and ε > 0 such that for all t ∈ C with |t| ≤ ε,

Ee〈t,W 〉 ≤ e<(t)+C|t|2 and Ee|tW | ≤ 4e|t|+2C|t|2 .
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