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Univariate polynomial interpolation

A polynomial of degree at most d over a field K

f (x) = a0 + a1x + ...+ ad xd ∈ K[x ]

depends on d + 1 parameters: its coefficients.

Fix d + 1 distinct points
x0, ..., xd ∈ A1

K
∼= K

and set the values
f (xi ) = fi ∈ K, i = 0, ..., d .

Then there is a unique such polynomial f (x).

Reason: linear algebra plus the fact that there is no non–zero polynomial of degree d
with zeros at x0, ..., xd .
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Univariate Hermite interpolation

Fix distinct points and positive integers

x1, ..., xh ∈ A1
K, m1, ...,mh ∈ N, m1 + ...+ mh = d + 1

and set the values of the derivatives

f (j−1)(xi ) = fi,j , i = 1, ..., h, j = 1, ...,mi

Again there is a unique such polynomial f (x), because there is no non–zero
polynomial of degree d with zeros of multiplicities at least m1, ...,mh at x1, ..., xh, i.e.
Ruffini’s theorem holds.

Consequence: given a differentiable function F (x) of a real variable, we can uniquely
approximate it with a polynomial of degree d by fixing d + 1 values of F (x) and of its
derivatives.

What is the situation for n ≥ 2 variables?
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The multivariate case

In general a polynomial f (x0, ..., xn) ∈ K[x0, ..., xn] of degree at most d depends on

Nn,d + 1 :=

„d + n

n

«

parameters, i.e. its coefficients. Fix points, positive integers and constants in K

pi = (xi,1, ..., xi,n) ∈ An
K
∼= Kn, mi > 0, fi,j ∈ K, i = 1, ..., h, j = 1, ...,mi

with the condition
hX

i=1

„mi + n − 1

n

«
= Nn,d + 1

and impose
D(j−1)f (pi ) = fi,j , i = 1, ..., h, j = 1, ...,mi

where D(k) is any derivative of order k . Is the resulting polynomial f uniquely
determined?

This is a linear system in the coefficients of f , whose associated homogeneous system
is

D(j−1)f (pi ) = 0, i = 1, ..., h, j = 1, ...,mi

Is the only solution to this system the 0 polynomial?

It is convenient to address this question in a more general, different, geometric setting.
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Linear systems with multiple base points

X is a projective, complex manifold of dimension n.

L is a linear system of codimension one subvarieties, i.e. divisors, on X .

p1, ..., ph are distinct points on X .

m1, ...,mh are positive integers.

L(−
Ph

i=1 mi pi ) ⊆ L is the sublinear system formed by all divisors in L having
multiplicity at least mi at the base points pi , i = 1, ..., h, i.e.

the local equation of the divisors in L(−
Ph

i=1 mi pi ) vanishes at pi with all its
derivatives of order ` ≤ mi − 1.

This imposes

hX
i=1

“mi + n − 1
n

”
linear conditions on L.
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Special systems

The expected dimension of L(−
Ph

i=1 mi pi ) is:

e := max{dim(L)−
hX

i=1

“mi + n − 1
n

”
,−1}

By linear algebra

dim(L(−
hX

i=1

mi pi )) ≥ expdim(L(−
hX

i=1

mi pi ))

L(−
Ph

i=1 mi pi ) is said to be non–special if

dim(L(−
hX

i=1

mi pi )) = expdim(L(−
hX

i=1

mi pi ))

it is called special otherwise: in this case the conditions imposed on L are dependent.

Note: according to the definition, an empty system is non–special.
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The main question in this talk will be the ...

Problem (The dimensionality problem)

Classify all special linear systems.

Though more refined questions could be asked.

However even this question is far too complicated! The answer depends on too many
circumstances, e.g., it depends on the position of the points p1, . . . , ph on X .

Example (An easy example of special position of the points)

If X = Pr , and p1, . . . , ph are on a line, they give dependent conditions to all
hypersurfaces of degree d ≤ h − 2.

In any case, dim(L(−
Ph

i=1 mi pi )) is upper–semicontinuous in the position of the
points p1, ..., ph, hence it reaches its minimum for p1, ..., ph in sufficiently general
position on X , i.e. for (p1, ..., ph) in a suitable not empty Zariski open subset Um1,...,mh

of X h.
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The general dimensionality problem

Take p1, ..., ph sufficiently general on X and set

L(−
hX

i=1

mi pi ) := L(m1, ...,mh) = L(ml1
1 , ...,m

lt
t )

The case t = 1 is called homogeneous. Define the general dimension of the system as

gendim(L(−
hX

i=1

mi pi )) := dim(L(m1, ...,mh))

Problem (The GDP)

If p1, . . . , ph are general, is gendim(L(−
Ph

i=1 mi pi )) equal to the expected dimension
of L(−

Ph
i=1 mi pi )? If not then classify all systems L(m1, ...,mh) which are special.

The GDP is easy in the curve case (the answer is that no system with general base
points is special in this case), but very complicated in general as soon as
n = dim(X) ≥ 2.

However a trivial situation is when mi = 1: general simple base points always impose
independent conditions.
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A wise reduction

Given the complexity of the problem, it is wise to consider particular varieties X and
linear systems L on them. Typically we take

X = Pn, L = Ln,d := all degree d hypersurfaces.

In this case

e := expdim(Ln,d (−
hX

i=1

mi pi )) = max{virtdim(Ln,d (−
hX

i=1

mi pi )),−1}

where

v := virtdim(Ln,d (−
hX

i=1

mi pi )) =
“d + n

n

”
− 1−

hX
i=1

“mi + n − 1
n

”

is the so-called virtual dimension of the system.

The GDP here coincides with the original polynomial interpolation problem. This is in
general widely open, and there is even no conjectural answer to it.

Except for the planar case ...
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The planar case

p1, . . . , ph general points in P2, m1, . . . ,mh ∈ N multiplicities

L = Ld (m1, . . . ,mh) = Ld (m`1
1 , . . . ,m

`t
t )

is the linear system of plane curves of degree d > 0 having multiplicity at least mi
at pi for each i = 1, . . . , h.

The virtual dimension of L is

v := v(L) = d(d + 3)/2−
X

i
mi (mi + 1)/2

The expected dimension is

e := e(L) = max{−1, v}

L is special if
dim(L) > e(L)
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Blow–up
One may formulate this on the blow–up of P2 at p1, . . . , ph.

The blow–up is an algebraic surgery operation which substitutes to a point p in the
plane (or on a surface) an exceptional curve E ∼= P1, with normal bundle of degree −1,
called a (-1)–curve. This is shown in red in the picture below:
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Line bundles and cohomology

X is the blow–up of P2 at p1, . . . , ph, with the following divisor classes generating
the Picard group Pic(X), i.e. the group of divisors modulo linear equivalence
(which can be identified with the group of line bundles, i.e. vector bundles of rank
1, modulo isomorphism, on X ):

• H the pull–back of a line

• E1, . . . ,Eh the exceptional divisors over p1, . . . , ph

The relevant line bundle on X is

L = OX (dH −
hX

i=1

mi Ei )

and the virtual dimension is

v = χ(L)− 1 = h0(X ,L)− h1(X ,L)− 1.

So L is non special if and only if

h0(X ,L) · h1(X ,L) = 0

i.e. L has natural cohomology.
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The Segre–Harbourne–Gimigliano–Hirschowitz conjecture

Naive conjecture: for general base points, L always has the expected dimension.

This is wrong: e.g. look at L2(22) or to L4(25).

(−1)–special systems: if L is not empty and C is a (−1)–curve on X then

L · C = −N < 0 =⇒ h1(X ,L) ≥
“N

2

”
The two above examples are of this type.

a (−1)–curve on X is a curve C ∼= P1, with C2 = −1, equivalently it can be blown
down to a smooth point (Castelnuovo’s theorem).

Conjecture (SHGH)

L is special if and only if it is (−1)–special.

Equivalently, L is special if and only if the general curve in L has some multiple
component (which turns out to be a fixed (−1)–curve).
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Nagata’s conjecture

Conjecture (Nagata, 1959)

If h > 9, the base points are very general and Ld (m1, . . . ,mh) is not empty, then

hX
i=1

mi < d
√

h

Conjecture (Stronger Nagata’s Conjecture (SNC))

If the h ≥ 0 base points are very general and L = Ld (m1, . . . ,mh) is not empty, not
(−1)–special, then

hX
i=1

m2
i ≤ d

In particular, if C ∈ L is an irreducible curve different from a (−1)–curve, one has
C2 ≥ 0 on the blow–up.

The SHGH Conjecture implies SNC, the converse does not hold. However Nagata’s
conjecture is an asymptotic form of the SHGH Conjecture.

Nagata’s original paper dealt with a negative answer to Hilbert’s fourteenth problem.

Nagata’s conjecture arises also in other contexts, like in symplectic packing problems
(D. MacDuff–L. Polterovich, P. Biran).
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Nagata’s conjecture and Seshadri constants (Chudnovski, Demailly)

Definition (MSC)

Given p1, . . . , ph ∈ P2, the Multipoint Seshadri Constant is defined as

ε(P2, p1, . . . , ph) := inf{
dPh

i=1 mi
: Ld (−

hX
i=1

mi pi ) 6= ∅, mi ≥ 0,
hX

i=1

mi > 0}

If the points are very general denote it by εh.

One has

ε(P2, p1, . . . , ph) ≤
1
√

h

Nagata’s conjecture asserts equality holds for very general points

εh =
1
√

h
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Nagata’s conjecture and the Mori cone
If X is a complex, projective manifold, the Mori cone NE(X) of X is the closure of the
convex cone spanned by the classes of effective curves inside N1(X), the R–vector
space dual to the space of R–divisors modulo numerical equivalence.

If X is the plane blown up at h points and ` is the class of a line in N1(X) ∼= Pic(X)⊗R,
consider the quadratic cone in N1(X)

Q := {α : α2 ≥ 0, α · ` ≥ 0}

Conjecture (Strong Nagata’s Conjecture in Mori’s setting)

If X is the plane blown up at h very general points, then

NE(X) = Q +
X

i

Ei

where Ei are the classes of (−1)–curves on X.

The figure illustrates the case h ≥ 10. The • denote the classes of (−1)–curves. The
curved boundary of the Mori cone in the K + region has not yet been proved.

� �
••
••
•

••
••
•

K−

K⊥

K +

Q ∩ K +
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SHGH and Nagata in the homogeneous case

For homogenous linear systems Nagata´s and Strong Nagata´s conjectures coincide.

�
�
�
�
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

d

d = m
√

h

d = mx

xd = mh

Sx

0 < x ≤
√

h

Nx

m

If for all (d ,m) ∈ Sx the system Ld (mh) is non–special, then for all (d ,m) ∈ Nx
the system Ld (mh) is empty;

if for all (d ,m) ∈ Nx the system Ld (mh) is empty, then for all (d ,m) ∈ Sx the
system Lkd ((km)h) is non–special for k >> 0, actually Sx is contained in the
ample cone.
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Results (not comprehensive)

SHGH holds for h ≤ 9 (Castelnuovo, 1891; Nagata, 1960; Gimigliano, Harbourne,
1986).

SHGH holds for mi ≤ 11 (Dumnicki–Jarnicki, 2005; Arbarello–Cornalba, 1981:
mi = 2; Hirschowitz, 1985: mi ≤ 3; Lorentz–Lorentz, 1986; Mignon, 1998:
mi ≤ 4; Yang, 2004: mi ≤ 7).

SHGH holds for Ld (mh) for m ≤ 42 (Dumnicki, 2005; Ciliberto–Miranda, 1998:
m ≤ 12; Ciliberto–Cioffi–Miranda–Orecchia, 2003: m ≤ 20).

SHGH holds for Ld (mh) for h = k2 points (Evain, 2005; Ciliberto–Miranda, 2006;
Roé, 2006; Nagata, 1960 proved Nagata Conjecture in this case).

Hirschowitz and his followers (Gimigliano, Mignon, Evain, etc.) use a degeneration
technique called the Horace method (i.e. divide et impera), consisting in exploiting
subsequent specializations of the points on curves of (relatively) low degree.

Ciliberto–Miranda’s approach is based on a different degeneration technique called the
blow–up and twist method, consisting in degenerating the plane together with the linear
system.
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The first interesting case h = 10

The virtual dimension of Ld (m10) is equal to −1, and one expects no such curves, for (d,m) in the
following table:

d m empty
3 1 easy: cubic through ten general points

19 6 posed by Dixmier, solved by Hirschowitz early 80s
38 12 Gimigliano’s thesis

174 55 le cas inviolé, according to A. Hirschowitz, see theorem below
778 246 ?
1499 474 ?
6663 2107 ?

...
... ?

Theorem (Ciliberto–Miranda, 2008)

Ld (m10) has the expected dimension if d
m ≥

174
55 . In particular L174(5510) is empty.

Theorem (Eckl, Ciliberto—Dumitrescu–Miranda—Roé, 2008)

1
√

10
∼ 0.31622 . . . ≥ ε10 ≥

117
370
∼ 0.31621 . . .
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Projective toric varieties

To give a pair (X ,L), where:

• X is a projective, n–dimensional toric variety
• an embedding X ⊂ Pr given by the sections of a line bundle L

is equivalent to the datum of:

• an n dimensional integral compact convex polytope P ⊂ Rn
+, determined up to

integral affine isomorphisms.

If
P ∩ Zn = {mi = (mi1, . . . ,min), 0 ≤ i ≤ r}

consider the monomial map:

φP : x ∈ (C∗)n → (xm0 : . . . : xmr ) ∈ Pr

where x = (x1, . . . , xn) and xmi = xmi1
1 · . . . · xmin

n

The closure XP of the image of φP is the image of X via the map determined by
the sections of L.
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Example

The d–Veronese surface V2,d in Pd(d+3)/2 corresponds to the triangle:

∆d = {(x , y) : x ≥ 0, y ≥ 0, x + y ≤ d}

@
@
@
@
@
@
@
@
@

d

d

It is the image of the plane via all monomials of degree d .

For d = 1 we get the plane P2 itself.

For d = 2 we get the famous Veronese surface V2,2 of degree 4 in P5.
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Example

P1 × P1 embedded in Pab+a+b via all monomials of bidegree (a, b) in the variables
(x0, x1) and (y0, y1), corresponds to the rectangle:

Ra,b = {(x , y) : 0 ≤ x ≤ a, 0 ≤ y ≤ b}

b

a

For a = b = 1 we get four monomials Xij = xi yj , 1 ≤ i ≤ j ≤ 2, verifying a unique
quadratic relation

X11X22 − X12X21 = 0

i.e. we get a smooth quadric surface in P3.
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Toric degenerations (I)

Consider a subdivision D of the polytope P defining the toric variety XP of
dimension n, i.e., a finite family of n dimensional convex polytopes whose union is
P and any two of them intersect only along a common face.

D is called regular if there is a piecewise linear, positive function F defined on P
such that:

(i) the polytopes of D are the orthogonal projections on the hyperplane z = 0 of
Rn+1 of the n–dimensional faces of the graph polytope

G(F ) := {(x , z) ∈ P × R : 0 ≤ z ≤ F (x)}

which are neither vertical, nor equal to P;

(ii) the function F is strictly convex i.e., the hyperplanes determined by each face of
G(F ) intersect G(F ) only along that face.
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Example (A simple example of a regular subdivision)

��
�
��
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�
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Z
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�
�
�
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J
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J
JJ
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Toric degenerations (II)

Given a regular subdivison D, there is a one parameter, flat degeneration of XP , to
a reducible toric variety

X0 =
[

Q∈D
XQ

If Q and Q′ have a common face R, then

XQ ∩ XQ′ = XR

Description of the degeneration:

φD : (x , t) ∈ (C∗)n × C∗ → (t−F (m0)xm0 : . . . : t−F (mr )xmr ) ∈ Pr

Xt = closure of the image of φD(∗, t), for t 6= 0, is a copy of XP .

X0 is the limit of Xt when t tends to 0.
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Example (The quadric degeneration of V2,d )

The regular subdivision illustrated below for d = 6

@
@
@
@
@
@
@
@
@

gives a degeneration of V2,d to a union of d planes and
`d

2

´
quadrics.

A corresponding strictly convex piecewise linear function is determined by the
conditions F (i, j) = i2 + j2 for i, j non–negative integers.

The vertices of this configuration of planes and quadrics are linearly independent
in the ambient Pd(d+3)/2 and can be taken as the coordinate points.
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Example (Planar degenerations of V2,d )

Each quadric can independently degenerate to a union of two planes, in two possible
ways:

�
�
� or @

@
@

for each quadric.

This way one finds several different degenerations of the Veronese into a union of
planes, i.e. a a planar degeneration.
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Tropical geometry

There are connections with tropical geometry here: toric degenerations of V2,d
are closely related (essentially equivalent, indeed) to plane tropical curves of
degree d .

E.g., we see below a subdivison of ∆2 corresponding to a planar degeneration of
the Veronese surface V2,2 in P5 and a related tropical conic (in green).

@
@
@
@
@
@
@
@
@

@
@
@
@@

��

�
�
�
��

�
�
�
��
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Double point interpolation

This is the only general result in interpolation in more than two variables:

Theorem (Alexander–Hirschowitz, 1996)

Ln,d (2h) is non–special unless

n any 2 3 4 4
d 2 4 4 4 3
h 2, ..., n 5 9 14 7

The original, complicated proof used the Horace method. Simplifications, with the
same technique, by K. Chandler (2002), Brambilla–Ottaviani (2008).

The blow–up–and twist method has been applied by E. Postinghel (2010) in her
thesis.

There has been recent activity in trying to find a combinatorial (tropical) proof of
this theorem using the above techniques: Draisma (2004),
Ciliberto–Dumitrescu–Miranda (2007), for n = 2; Brannetti (2007), for n = 3.

Similar ideas also work for other toric varieties (Draisma, 2007).
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An idea of the combinatorial proof

In case n = 2, one uses the following:

Lemma (The basic combinatorial lemma)

Suppose there is a planar degeneration D of V2,d , and a set of h pairwise disjoint
planes of D. Then Ld (2h) has the expected dimension

e =
d(d + 3)

2
− 3h

Sketch of the proof of Alexander–Hirschowitz theorem for n = 2: verify that
Ld (2h) has the expected dimension whenever d ≥ 5 and

h = b(d + 1)(d + 2)/6c

With this number of points, the virtual dimension of Ld (2h) is

v = d(d + 3)/2− 3h =

(
−1 if d ≡ 1, 2 mod 3
0 if d ≡ 0 mod 3.
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Do by hands the cases 5 ≤ d ≤ 10, using the basic combinatorial lemma, e.g.

D5:

@
@
@
@
@
@
@
@
@

@
@

�
�
�
�

@
@

�
�

@
@

�
�

�
�
�
�

�
�

x

x

x

x

x

x x

D6:

@
@
@
@
@
@
@
@
@
@@

@
@

�
�

@
@

@
@

�
�

@
@

@
@

�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�

x

x

x
x

x

x

x

x

x

Ciro Ciliberto–University of Roma Tor Vergata Geometric aspects of polynomial interpolation in more variables



Then proceed by induction, assuming the result holds for d − 6.

Make a planar degeneration of V2,d , starting with:

strip of height 1

@
@
@
@
@
@

Dd−6

@
@
@@

strip of height 5

By induction, we know how to subdivide Dd−6 in order to get the maximal number
of pairwise disjoint triangles.

Triangulate the central strip of height 1 as you like, and take no triangles there.
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It remains to triangulate the lower strip of height 5 and choose the pairwise disjoint
triangles there.

The strip contains b(d + 1)/2c − 3 copies of the rectangle:

��
��
��
��
��

��
��
��
��
��

x

x

x

x

· · ·
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On the far right complete using the configurations D5 and D6 presented above:

@
@
@
@
@
@
@
@
@
@
@
@
@

Dd−6

D5
x

x

x

x

x

x

x

x

· · ·

x

x

x

x

d odd

@
@
@
@
@
@
@
@
@
@
@
@
@
@

Dd−6

D6x

x

x

x

x

x

x

x

· · ·

x

x

x

x

d even

Brannetti’s proof for r = 3 is in the same style.
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Secant varieties
Why does the basic combinatorial lemma hold? The reason is geometric, related to
secant varieties.

X ⊂ Pr a projective variety of dimension n, spanning Pr .

Sk (X) =
[

p0,...,pk∈X ,p0,...,pk l.i.

〈p0, . . . , pk 〉

is the k–secant variety of X .

One has

expdim(Sk (X)) = min{r , (k + 1)(n + 1)− 1} ≥ dim(Sk (X))

X is called k–defective if strict inequality holds.

By Terracini´s lemma, X is k–defective if and only if L(2k+1) is special, with

L = the linear system of hyperplane sections of X .

Secant varieties are an authentic crossroad in mathematics (and not only!): besides
their interest in algebraic geometry, secant varieties arise in a number of other fields,
like algebra, representation theory, projective differential geometry, topology,
stochastics and algebraic statistics. Recently they became particularly useful in
biology, especially in phylogenetics.
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An example of applications to algebra: the Waring’s problem

Alexander–Hirschowitz Theorem provides the list of k–defective Veronese
varieties Vn,d ⊂ PNn,d , Nn,d =

`n+d
n

´
− 1.

This answer the so–called Waring’s problem for forms.

Fix positive integers d , k , n. When may we write a form f (x0, ..., xn) of degree d as
a sum of k + 1 d–th powers of linear forms li (x0, ..., xn), i = 0, ..., k , i.e. as

f (x0, ..., xn) =
kX

i=0

li (x0, ..., xn)d ?

If this happens, we say that the k–Waring property holds for f .

Vd,n can be seen as the proportionality classes of non–zero forms of type
l(x0, ..., xn)d with l(x0, ..., xn) linear. Then the k–Waring property holds for f if and
only if [f ] ∈ Sk (Vn,d ).

The Waring problem has its roots in number theory: given positive integers d , h,
may we write any positive integer as a sum of h non-negative d–th powers?

E.g., for d = 2 and h = 4, this is affirmatively answered by the celebrated Gauss’
Theorem.
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Strict Waring property and ranks

We say that the strict (n, d , k)–Waring property holds for a general [f ] ∈ Sk (Vn,d ),
if the expression

f (x0, ..., xn) =
kX

i=0

li (x0, ..., xn)d

with li linear forms, is unique up to multiplication by a constant. This what biologist
call the identifiability condition.

It is equivalent to the geometric condition: the general point in Sk (Vn,d ) sits in a
unique k–dimensional subspace which is (k + 1)–secant to Vn,d .

Strict Waring property provides a canonical form for forms enjoying it.

In general, Waring property gives notions of rank for forms, similar to the rank of
tensors which are useful in numerical analysis: f has rank k + 1 if k is the
minimum such that

f (x0, ..., xn) =
kX

i=0

li (x0, ..., xn)d

and has border rank k + 1 if k is the minimum such that [f ] ∈ Sk (Vn,d ). In general
the border rank is smaller than the rank.
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Degenerations and secant varieties

Problem

Let D be a planar degeneration of a toric surface X. What is the limit of Sk (X)?
(Similar questions can be asked for higher dimensional toric varieties.)

References: Sturmfels—Sullivant (delightful degenerations), Cox–Sidman,
Ciliberto–Dumitrescu–Miranda.

A remark: if there is a (k + 1)–tuple of independent planes in D, then they span a
linear space of dimension 3k + 2 sitting in the limit of Sk (X), which is therefore
not k–defective. This proves the Basic Combinatorial Lemma.

A speculation: if Sk (X) has the expected dimension 3k + 2, then the limit of
Sk (X) is the union of all (3k + 2)–subspaces spanned by (k + 1)–tuples of
independent planes in D.

If this happens, we say the degeneration is almost k–delightful.

The existence of almost delightful degenerations helps in computing the degree of
Sk (X), which is a hard problem, unsolved in general.
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Hilbert’s Theorem revisited

Theorem (Hilbert’s Theorem; see also Ein–Sheperd-Barron)

There is a unique 6–space passing through a general point of P20 and 7–secant the
Veronese surface V2,5, i.e. the strict Waring property holds in this case, giving a
canonical form for the general quintic homogeneous polynomial in three variables.

Indeed, the configuration of 7 independent planes in D5 shown below is unique:

D5:
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There is work in progress on these ideas about: higher multiplicities, higher
dimension, influence of the singularities of the degeneration on calculations of the
degrees of secant varieties, etc.
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Conclusions

I tried to show how interpolation, originated from elementary analysis and algebra,
has deep algebro–geometric aspects as well as applications to other seemingly
distant mathematical fields, e.g. symplectic geometry.

Inside algebraic geometry, we see relations with the projective geometry of secant
varieties, which in turn applies again to algebra via tensor rank computation,
Waring problem, canonical forms, enumerative problems, etc. They have also
recent striking applications to natural science, e.g. to phylogenetics.

Various techniques are used in this field, among others:

degeneration techniques;
toric and tropical geometry;
combinatorial techniques.

The field is active and most of the basic, deepest problems like
Segre–Harbourne–Gimigliano–Hirschowitz conjecture, Nagata’s conjecture, etc.
are widely open.
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