An Introduction to Approximation Theory

1. Introduction and Preliminary Observation
 • Norms, Convexity, Strict Convexity, Uniform Convexity
2. Weierstrass Theorem and Bernstein Polynomial
 • Weirestrass Theorem and the Bernstein Constructive proof of convergence
3. Best Uniform Approximation
 • Sufficient Conditions for Uniqueness of the Best Approximation, Characterization of the Best Approximation in the Uniform Norm, Jackson Theorems and It’s Applications
4. Interpolation and Optimal Approximation
 • Optimal interpolation and Chebyshev polynomials
5. Best Approximation in L_2-norm and Orthogonal Polynomials
 • Orthogonal Polynomials and Best L_2 Approximation, Trigonometric Approximation
6. Properties of orthogonal polynomials
 • Orthogonal polynomials and it’s applications in best L_2 approximation
7. Best L_1-norm Approximation
 • Existence and Uniqueness of the best approximation in L_1 norm
8. Piecewise Polynomials and Spline Theory
 • Interpolation and approximation using splines
9. High Dimensional Interpolation and Approximation using Radial Basis Functions
 • Radial basis functions and interpolation in higher dimension
10. Compressed Sensing and Best k-term Approximation
 • Introduction to CS and Best k-term approximation
References:

- and some recent papers.