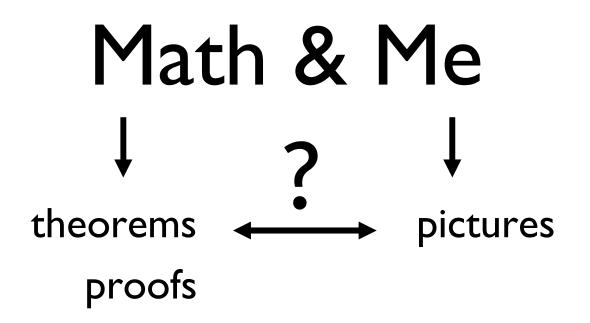
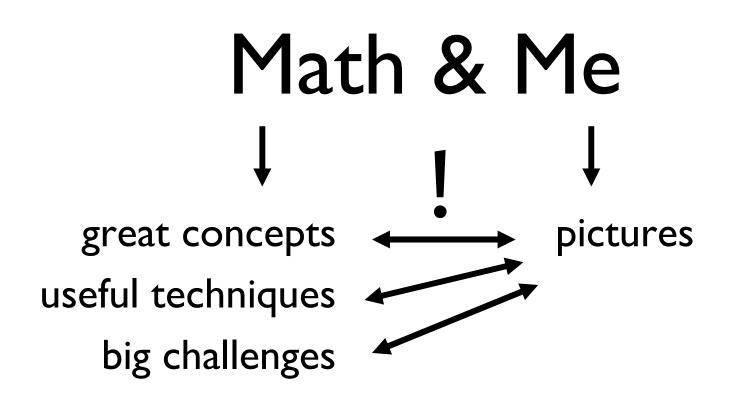
Knots, Maps, and Tiles Three Mathematical Visualization Puzzles

Jack van Wijk TU Eindhoven

BMS colloquium, December 4, Berlin

Download SEQUOIAVIEW Join the INFODECODATA exhibition!





Overview

• Knots

What does a surface bounded by a knot look like?

• Maps

How to map the earth without distortion?

• Tiles

How to tile a closed surface symmetrically?

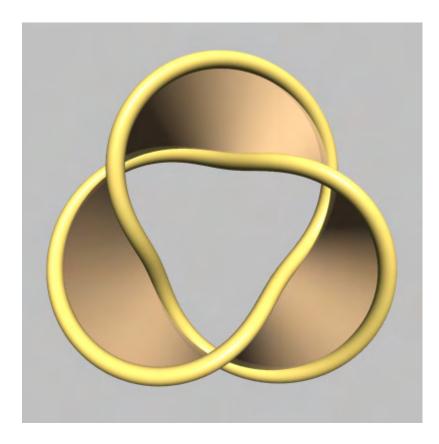
Knots

J.J. van Wijk & A.M. Cohen, Visualization of the Genus of Knots. IEEE Visualization 2005. J.J. van Wijk & A.M. Cohen, Visualization of Seifert Surfaces . IEEE TVCG 12(4), p. 485-496, 2006.

Puzzle 0

 Given a trefoil, find a surface that is bounded by this knot.

Puzzle 0 – solution



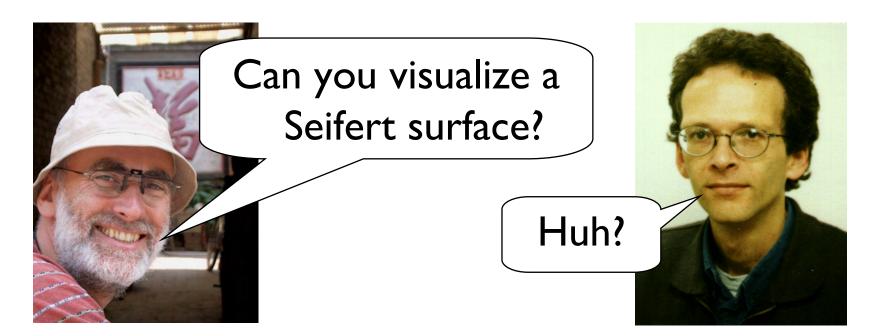
- Given a trefoil, find a surface that is bounded by this knot.
- Möbius strip. Not orientable!

Puzzle I

 Given a trefoil, find an *orientable* surface that is bounded by this knot.

15 minutes

How this started

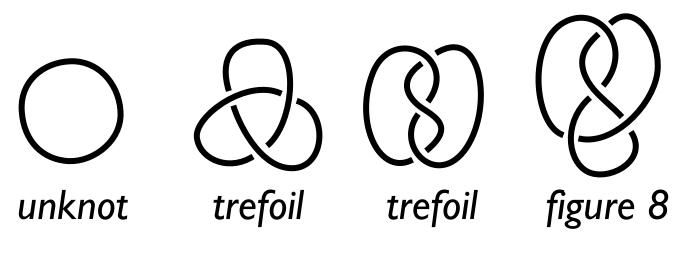


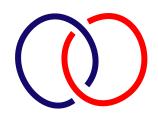
Arjeh Cohen discrete algebra and geometry

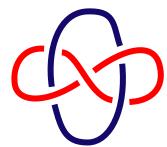
Jack van Wijk visualization

Mathematical knots and links

Knots and links: closed curves







Hopf link

Whitehead link

Borromean rings

Knot theory

Typical questions:

- Are two knots identical?
- Is a knot equal to the unknot?
- How many different knots do exist?

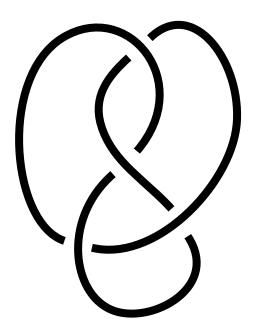
Categorize knots via invariants:

- Minimal #crossings
- Polynomials
- Genus

Genus of knot

- Genus \cong number of holes in object
- Sphere: genus 0; torus: genus 1
- Closed curve: always genus 0

Genus of knot: Minimal genus of orientable surface that is bounded by the knot Orientable surface: Seifert's algorithm (1934)

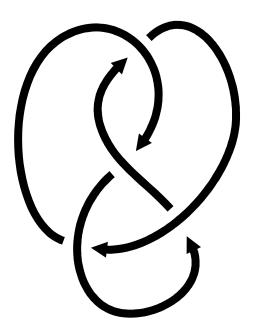


Orient knot...

A_{out}

Seifert's algorithm

B_{in}



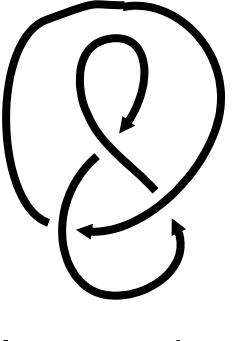
Oriented knot

A_{in} B_{out} A_{in} B_{out} B_{out} Eliminate crossings: Connect incoming strand

B_{in}

A_{out}

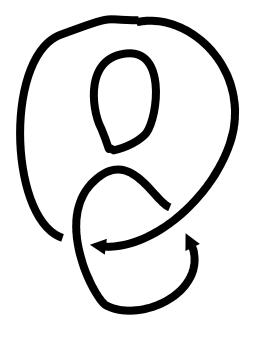
with outcoming



removed...

B_{in} A_{out} A_{in} B_{out} B_{in} A_{in} A_{out} B_{out} A_{in} B_{out}

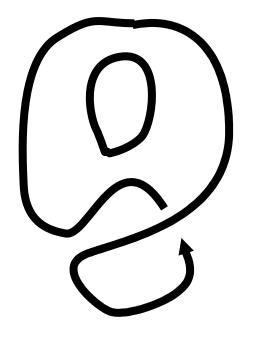
Eliminate crossings: Connect incoming strand with outcoming



2 removed...

B_{in} A_{out} A_{in} B_{out} A_{in} A_{out} A_{out} A_{out} B_{out} A_{out} B_{out}

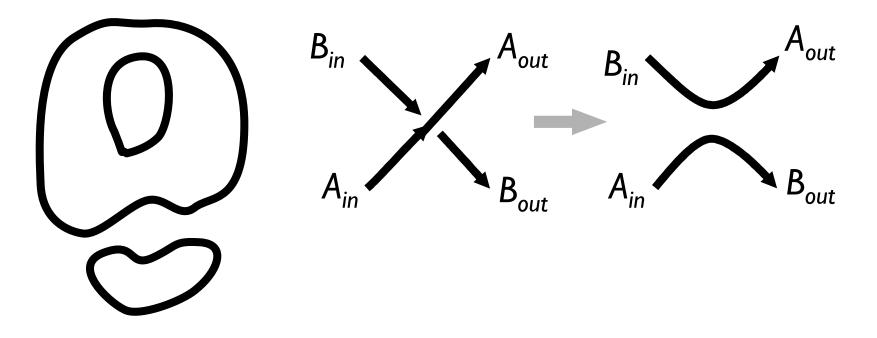
Eliminate crossings: Connect incoming strand with outcoming



3 removed...

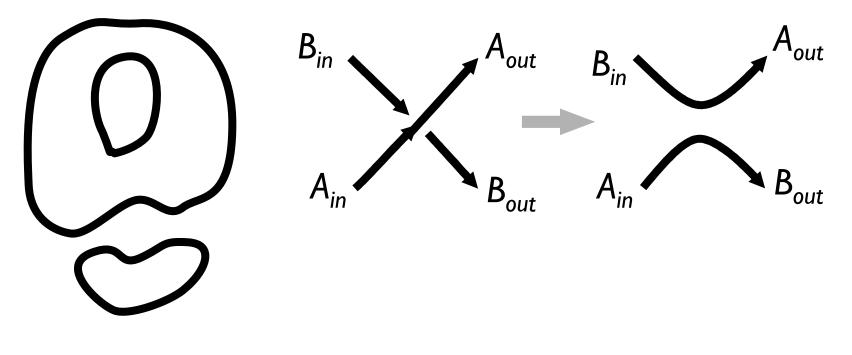
B_{in} A_{out} A_{in} B_{out} A_{in} A_{out} A_{out} A_{out} B_{out} A_{out} B_{out}

Eliminate crossings: Connect incoming strand with outcoming

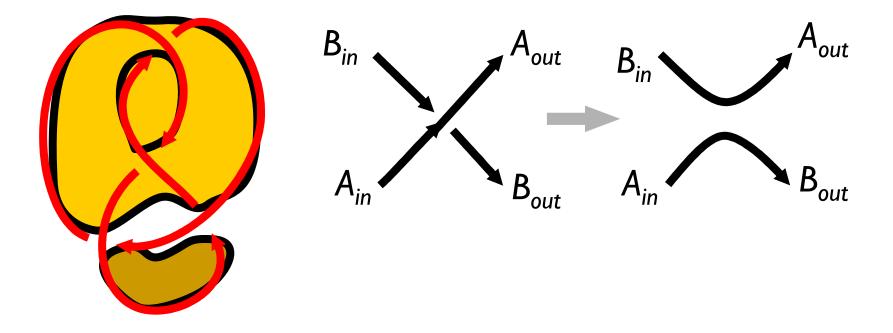


All removed:

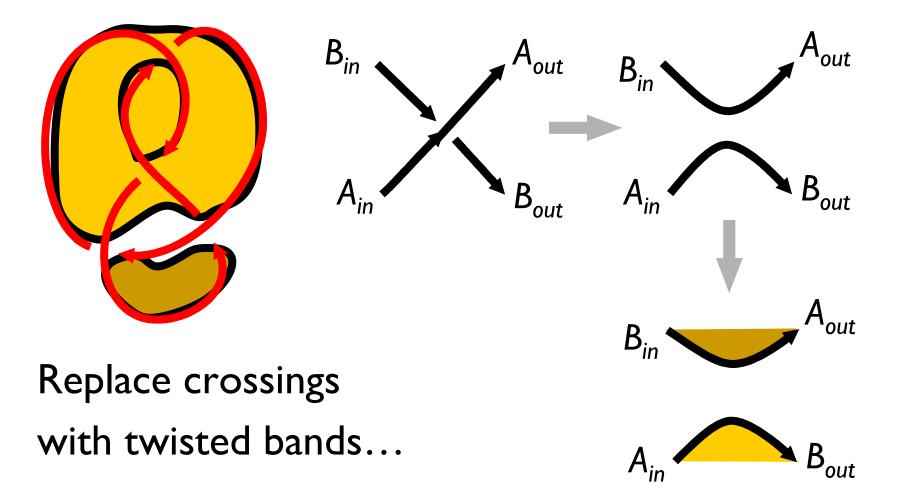
3 (topological) circles remain

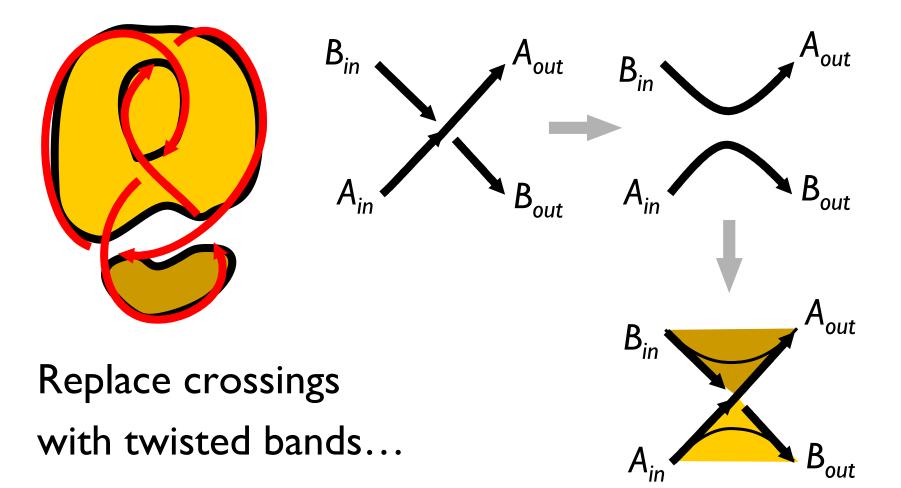


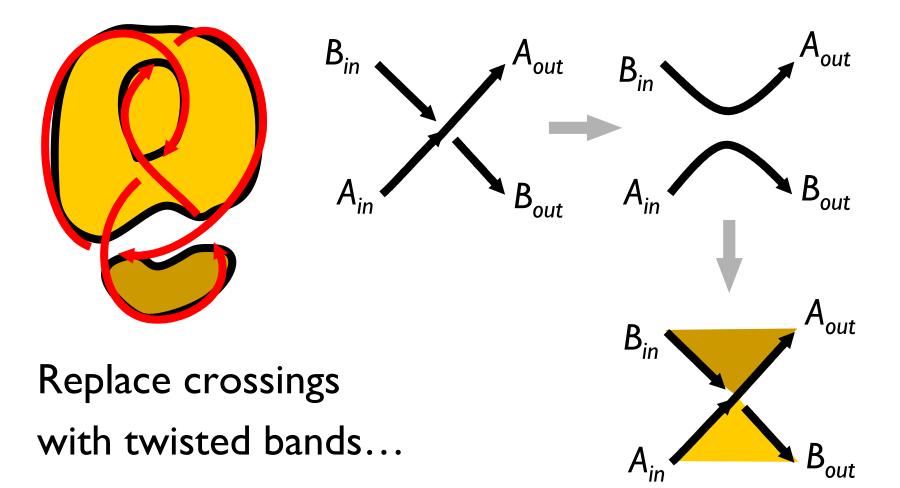
Fill in circles...

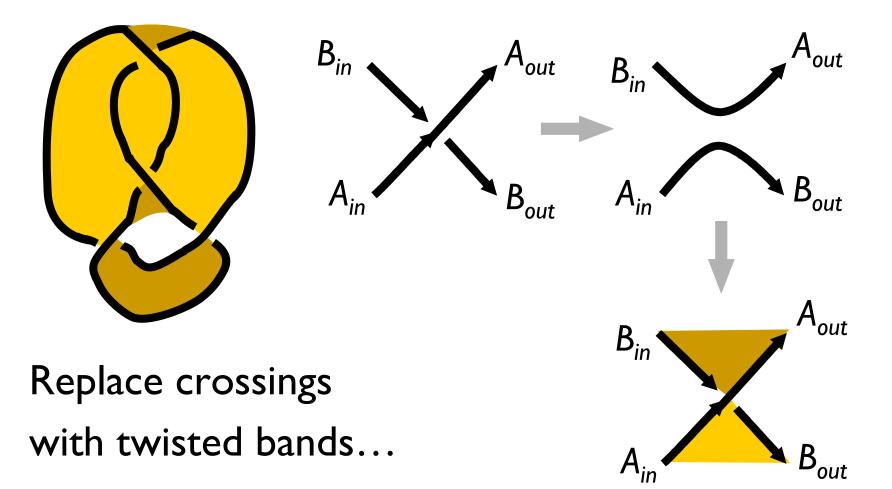


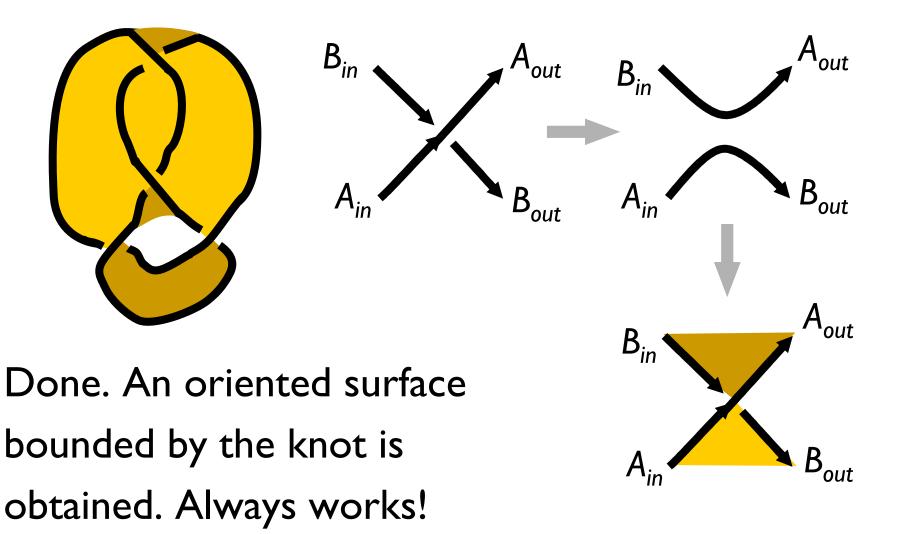
Fill in circles, get 3 disks

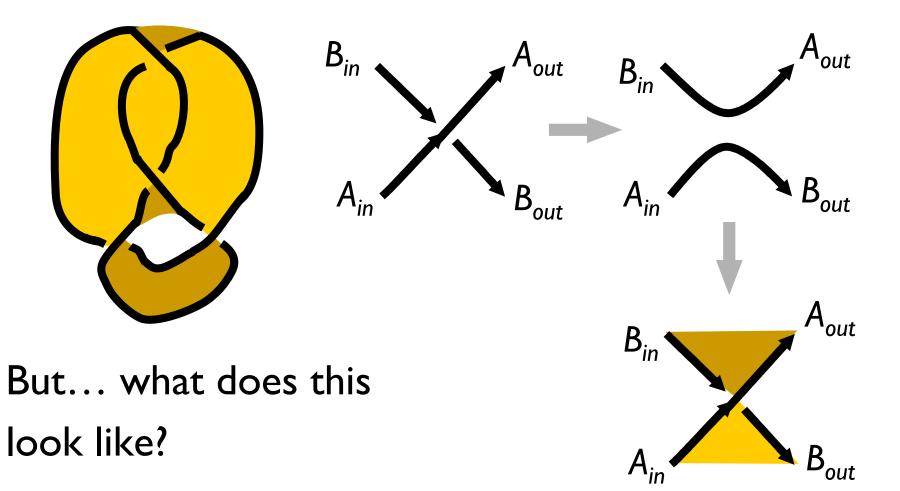












?

Challenge

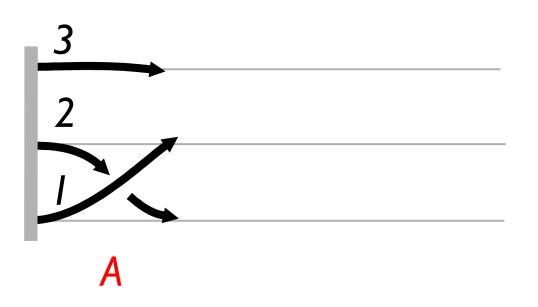
Can we make something, such that

- Arbitrary knots and links can be defined;
- Seifert surfaces are generated;
- Seifert surfaces can be viewed and inspected?

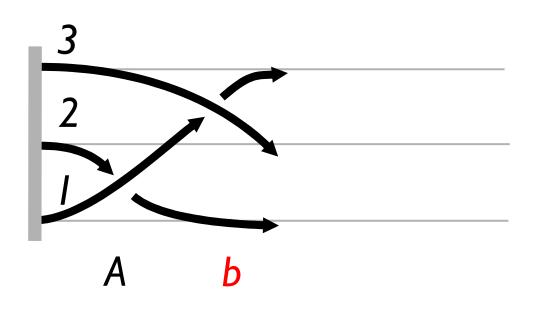
Knot notation

- 3D shape
- Gauss notation
- Conway notation
- Dowker-Thistlethwaite notation
- Braid representation

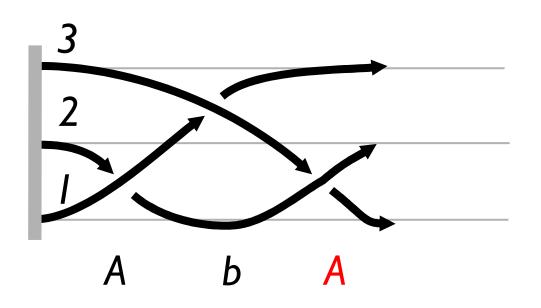
Take some strands



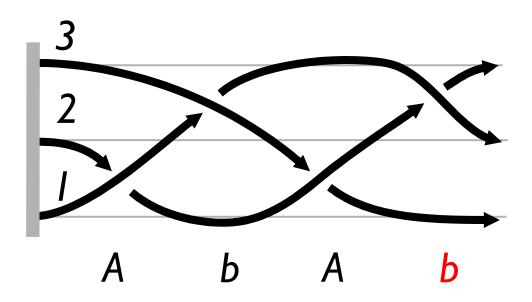
A: move I over 2



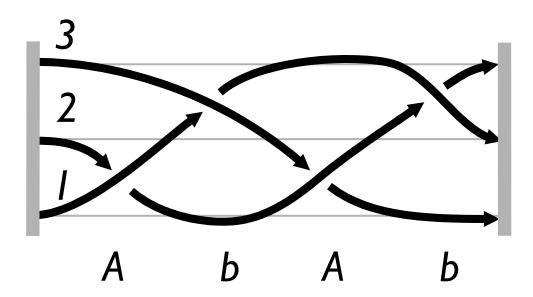
b: move 3 over 2



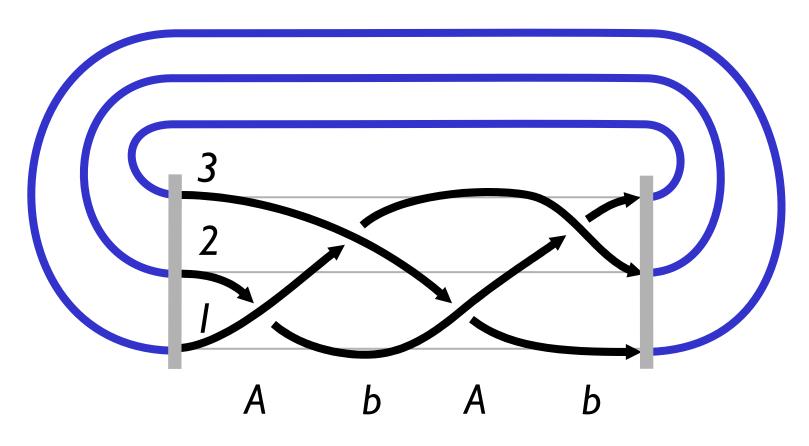
A: move I over 2 again



b: move 3 over 2 again



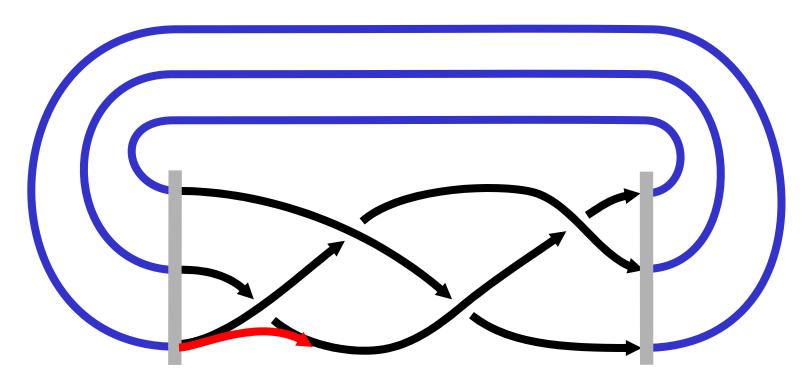
Braid rep: AbAb

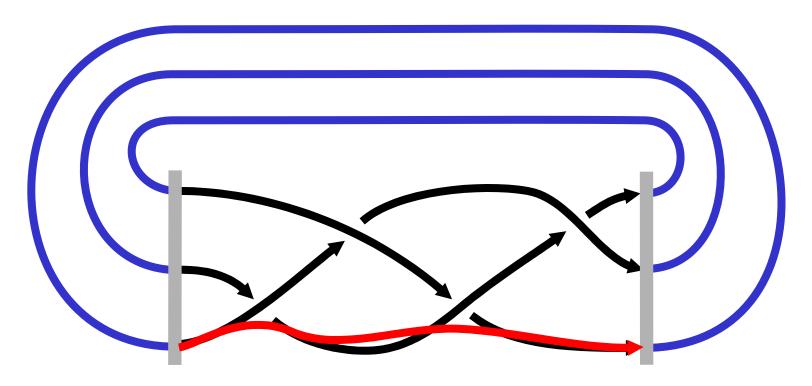


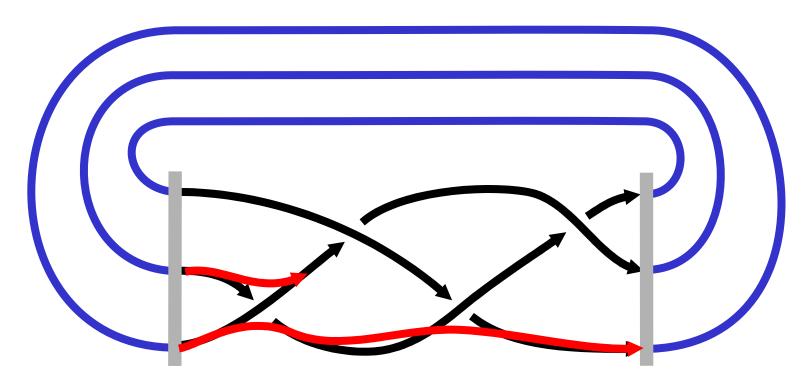
Close without further crossings

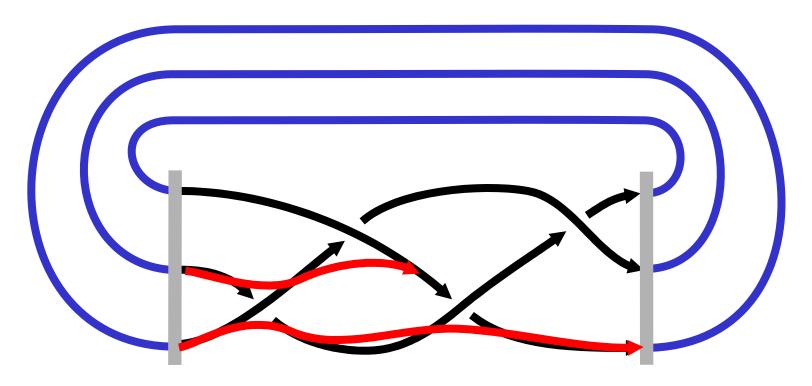
Braid representation

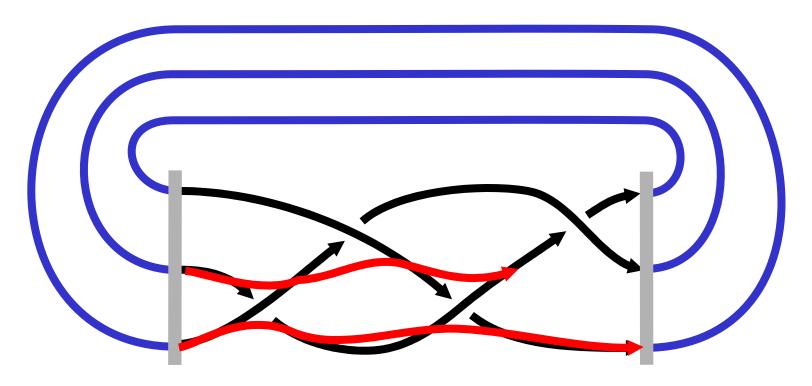
- Can be used to define any knot or link
 - Though not always with the minimal number of crossings
- Finding Seifert surfaces is trivial

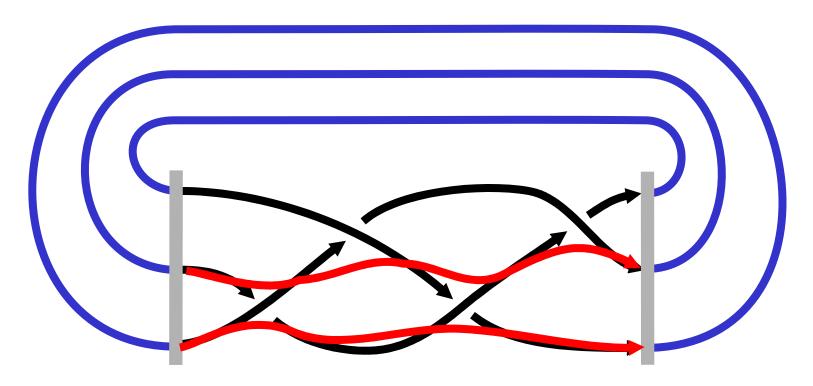


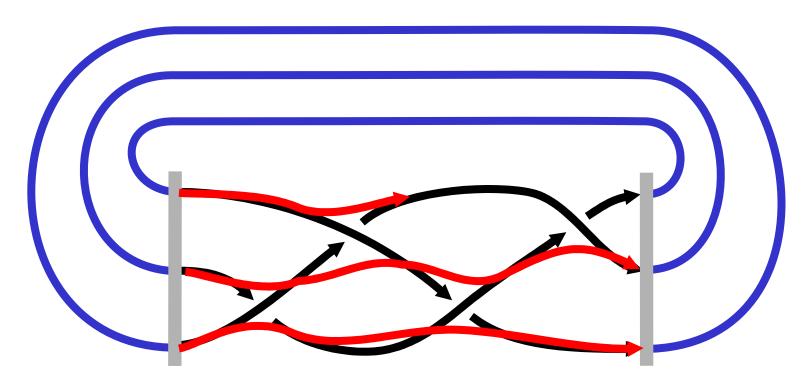


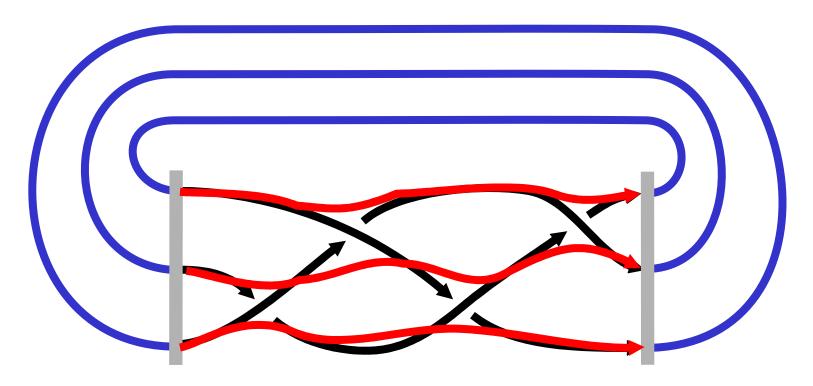


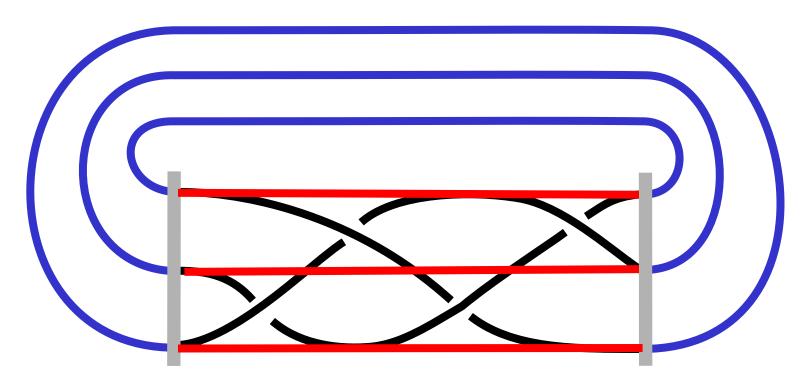




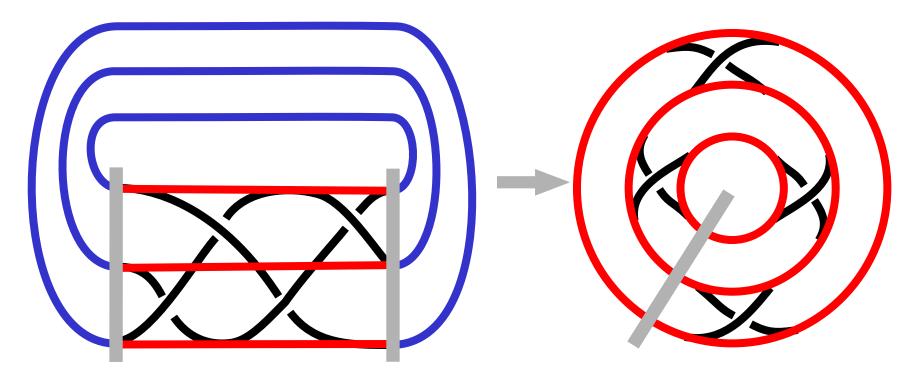




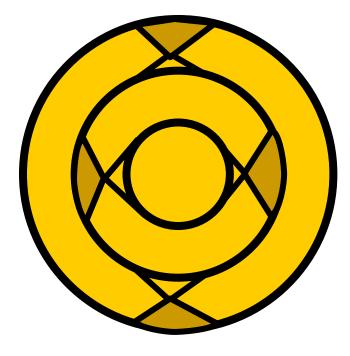




Straighten...



Distribute on circle...



- Each strand: disk
- Disks are stacked
- Bands connect disks

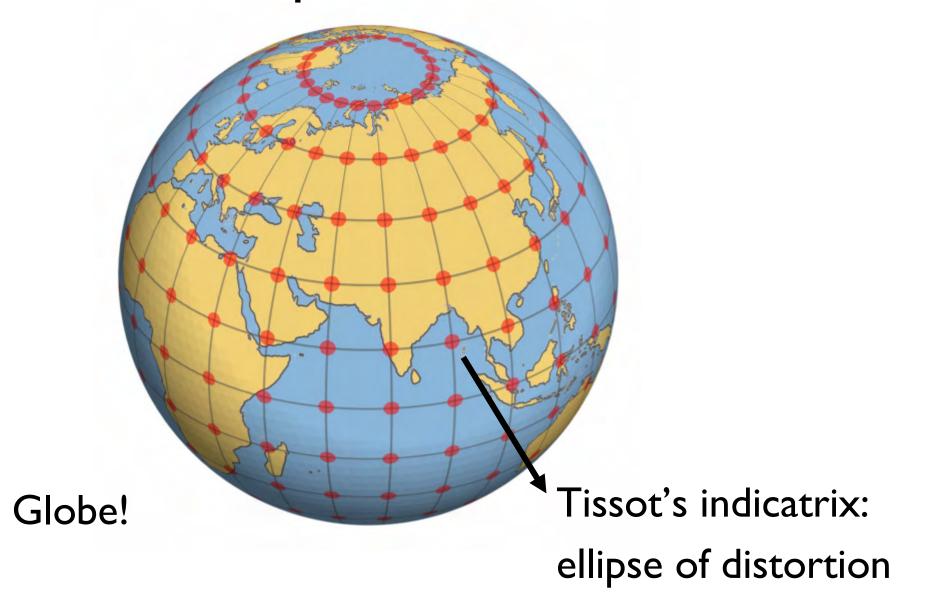
SeifertView

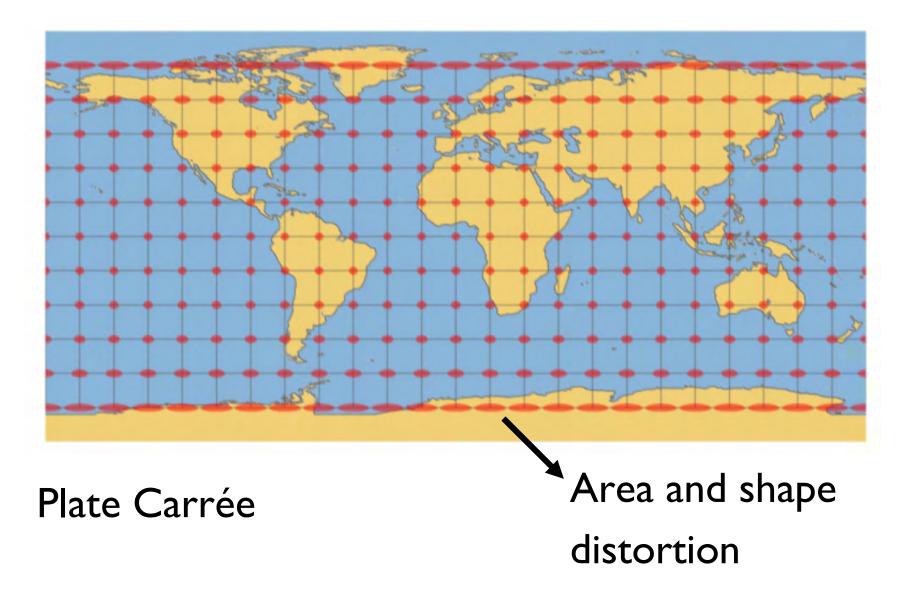
Demo

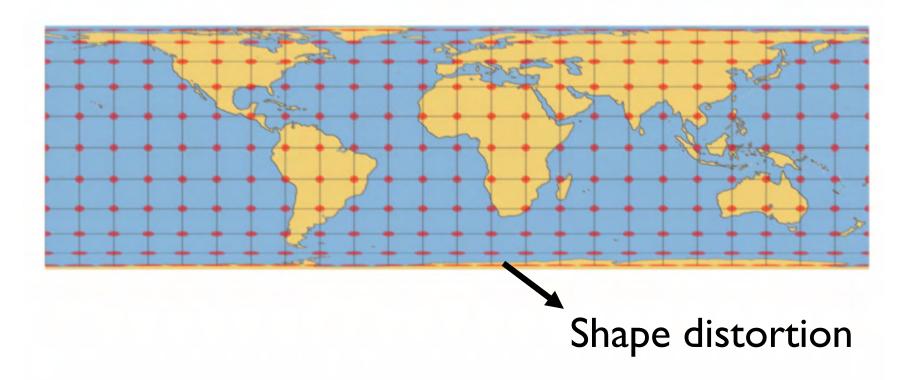
 Downloadable from www.win.tue.nl/~vanwijk/seifertview

Maps

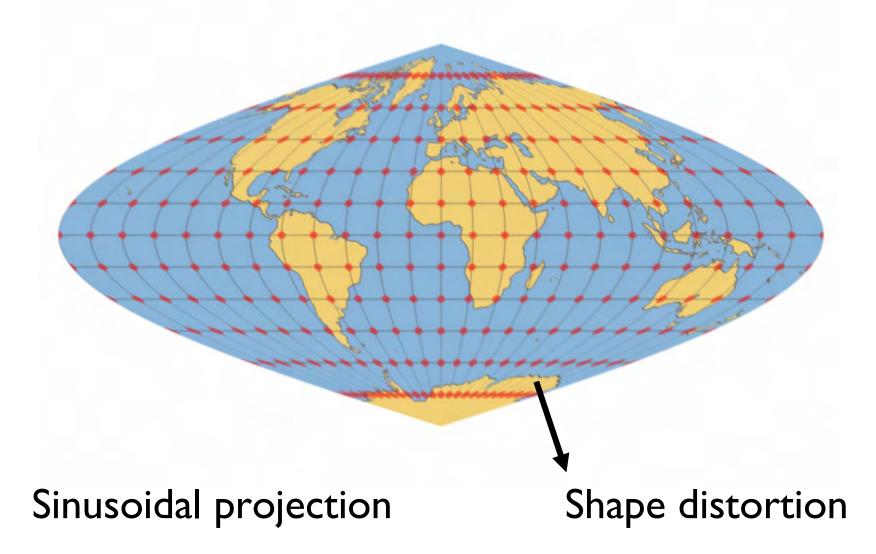
J.J. van Wijk, Unfolding the Earth: Myriahedral Projections. The Cartographic Journal, 45(1), p. 32-42, February 2008.

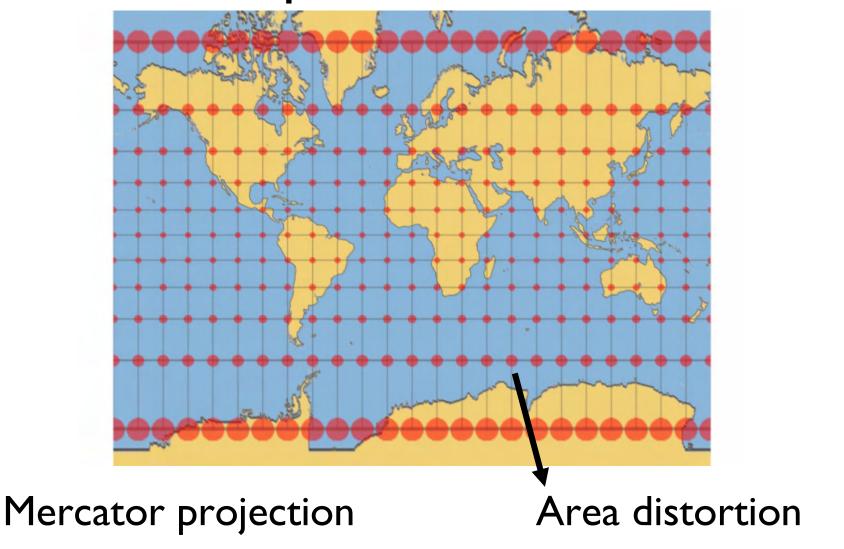






Lambert cylindrical equal area



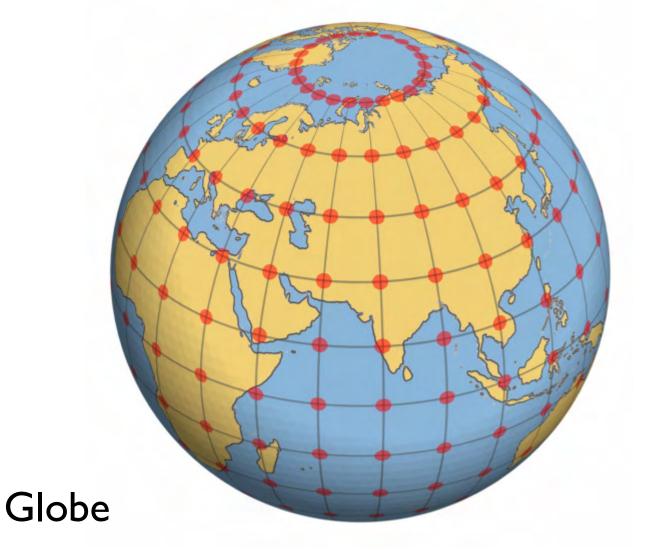


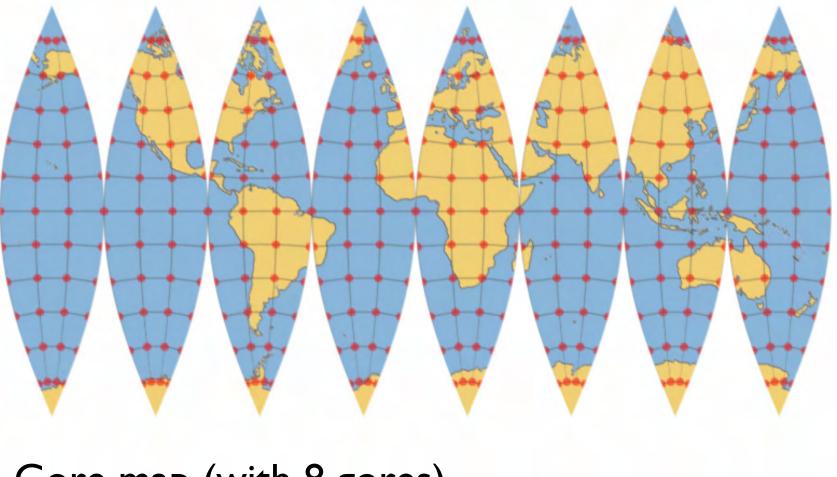
Projecting a curved surface on a plane gives:

- area distortion;
- shape distortion;
- or both.

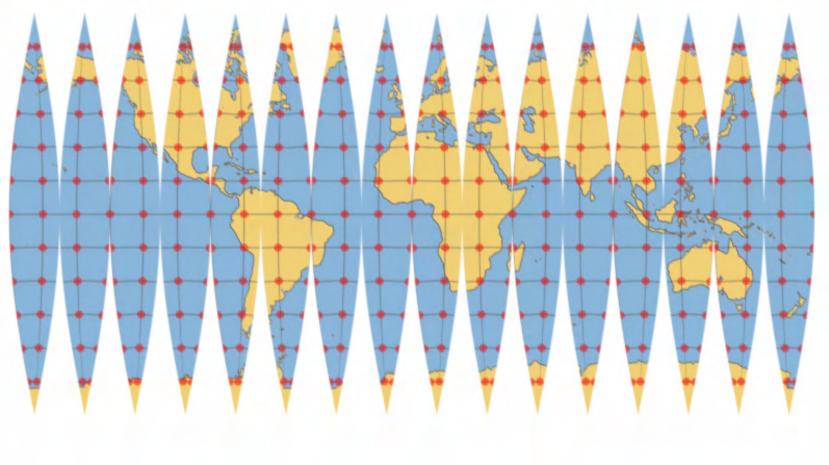
Can we do better?

• Yes we can!

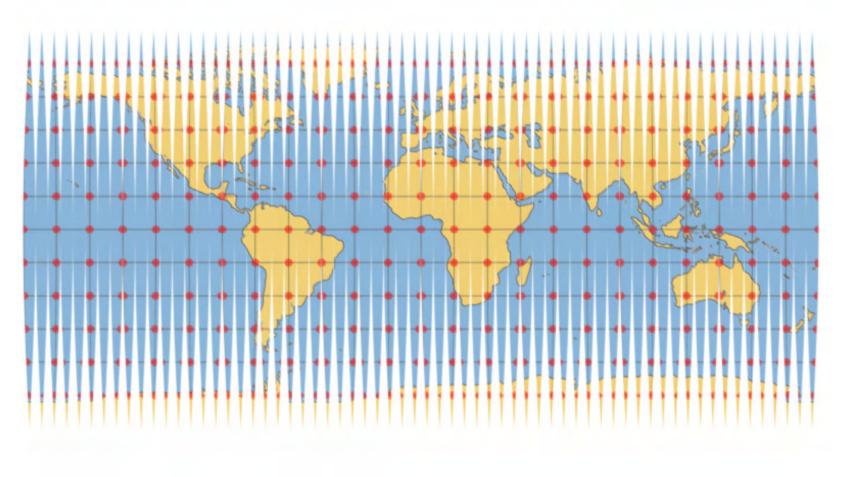




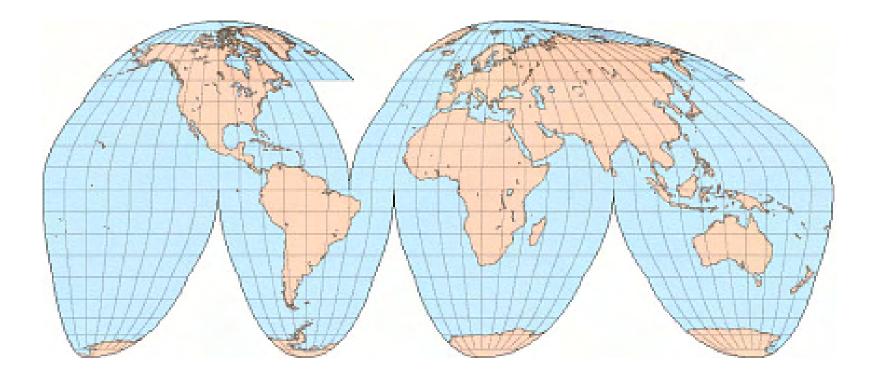
Gore map (with 8 gores)



Gore map (with 16 gores)



Gore map (with 64 gores)



Goode's homolosine projection, 1946

Buckminster Fuller's Dymaxion map, 1946

- What if we allow *many* interrupts?
- What choices can we make?
- How to control these?

Top down view:

• Given a globe, where to cut?

Bottom up view:

• Given many small maps, how to glue these into one big, interrupted flat map?

Myriahedron

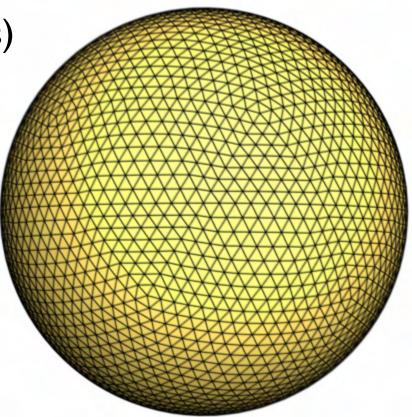
tetrahedron (4 faces)

hexahedron (6)

octahedron (8)

dodecahedron (12)

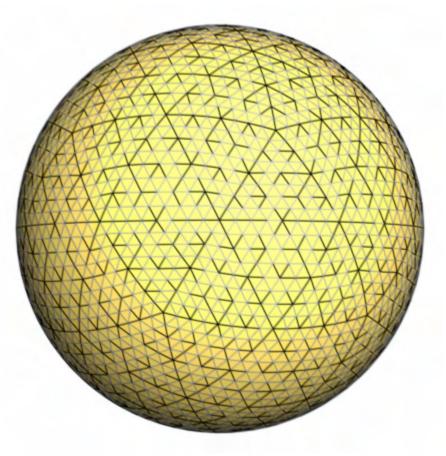
icosahedron (20)



myriahedron (myriads)

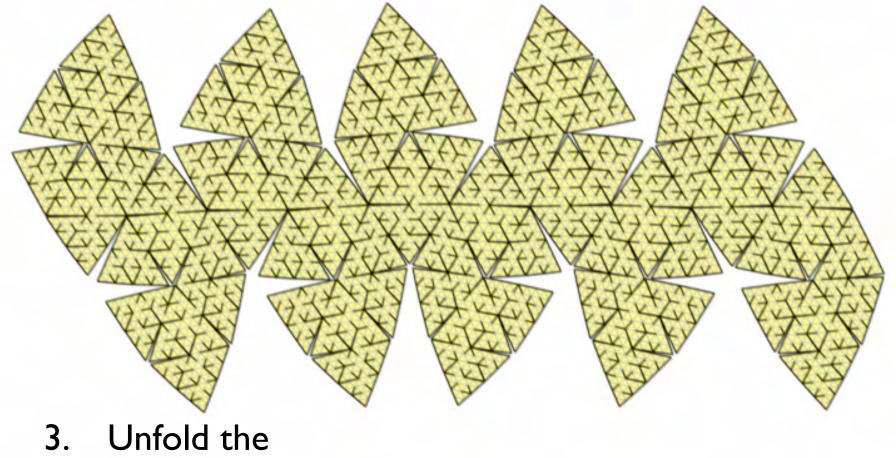
Myriahedral projections

- Define a mesh on a sphere, giving a myriahedron
- 2. Decide which edges are cuts, which are folds
- 3. Unfold the myriahedron



myriahedron (myriads)

Myriahedral projections



myriahedron...

Where to cut?

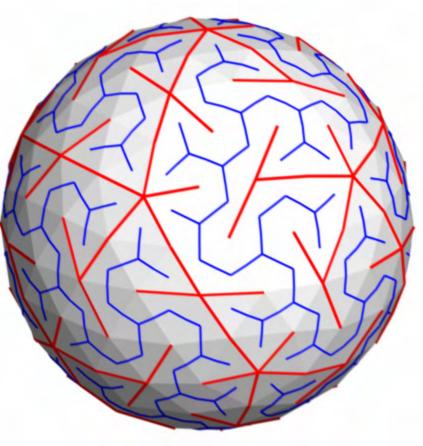
- vertices and edges form a graph
- label edges as cuts or folds

Required:

- around each vertex: at least one cut, to enable flattening
- no cycles in cuts
- \rightarrow cuts: spanning tree

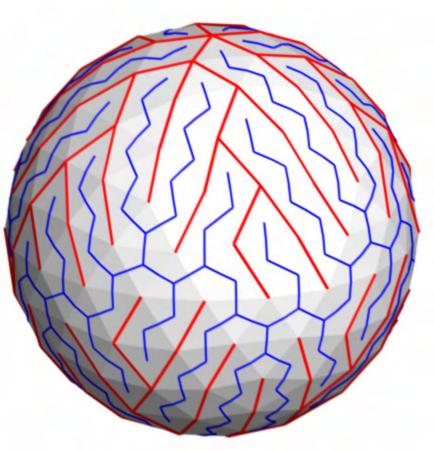
Where to fold?

- similar reasoning, on dual of edge graph
- No cycle of folds around vertex
- All faces connected
- \rightarrow folds: spanning tree



More control

- assign weights to edges, indicating their 'strength'
- determine *minimal* spanning tree for cuts: turn weak edges into cuts



Mesh styles

- Use parallels and meridians
- Use Platonic solids with recursive subdivision
- Use image driven mesh

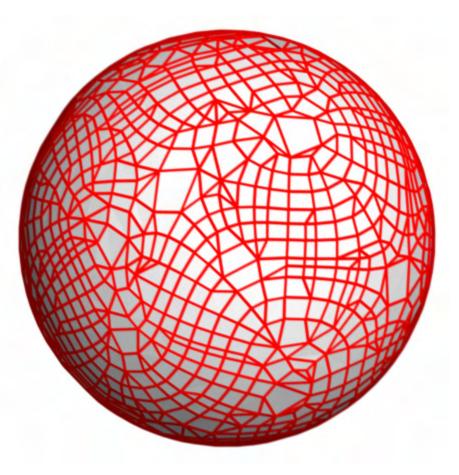
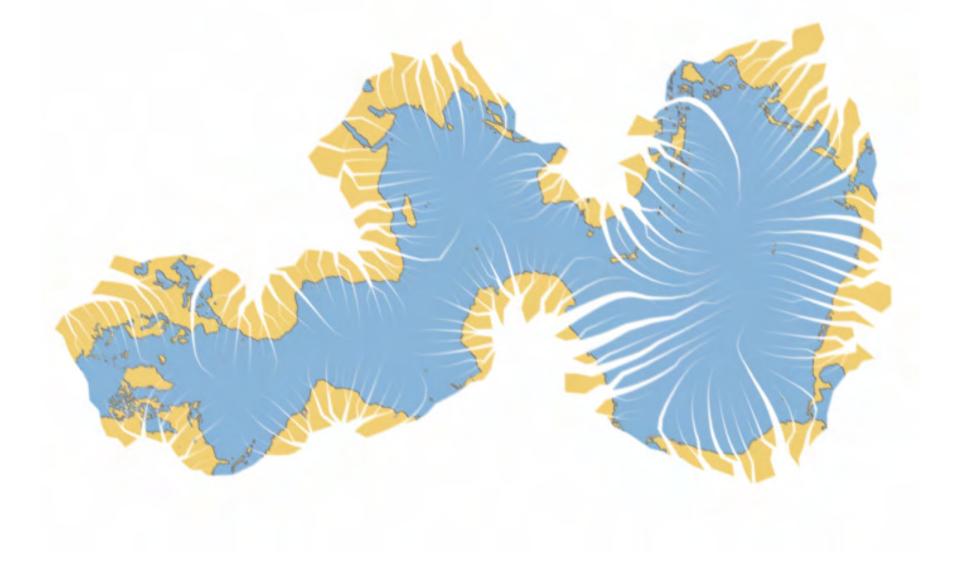


Image driven mesh

- Edges: contours and descent lines of grey shade image F
- Use F as weight
- → Avoid cutting through continents

Image driven mesh unfolded



Video

- http://www.win.tue.nl/~vanwijk/myriahedral
- google: myriahedral

Myriahedral Projections

Jarke J. van Wijk TU Eindhoven

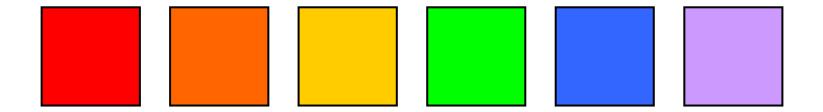
Tiles

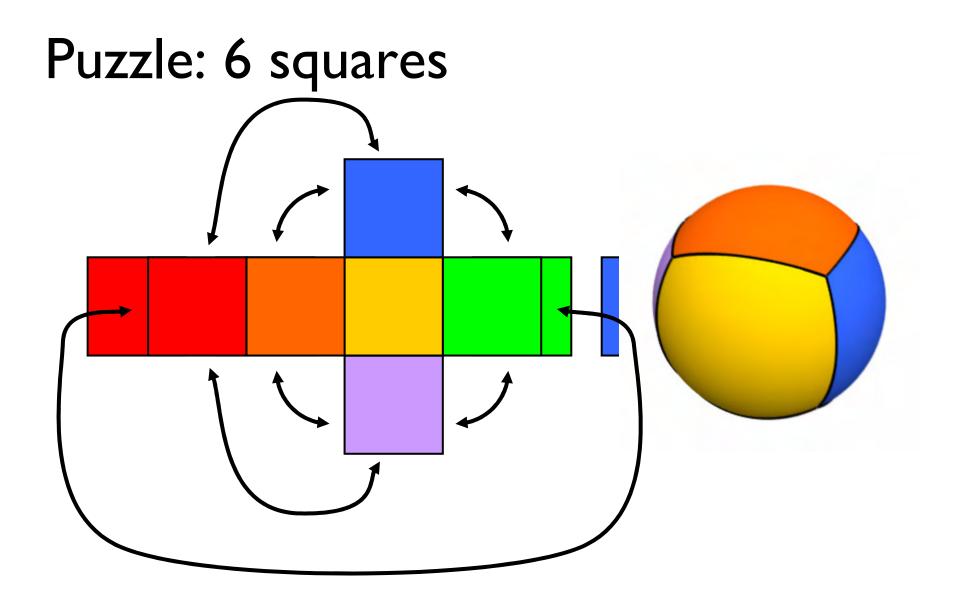
J.J. van Wijk, Symmetric Tiling of Closed Surfaces: Visualization of Regular Maps. ACM Transactions on Graphics, 28(3), (proceedings SIGGRAPH 2009), 12p.

- Take a highly elastic, colorful fabric
- Cut out 6 squares

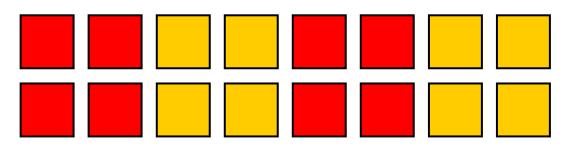
• Stuff tightly with polyester fiber

What shape could you get?



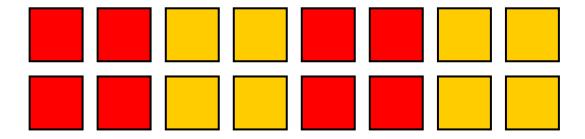


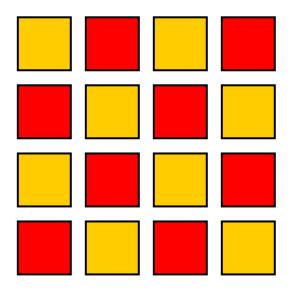
- Take a highly elastic, colorful fabric
- Cut out 16 squares

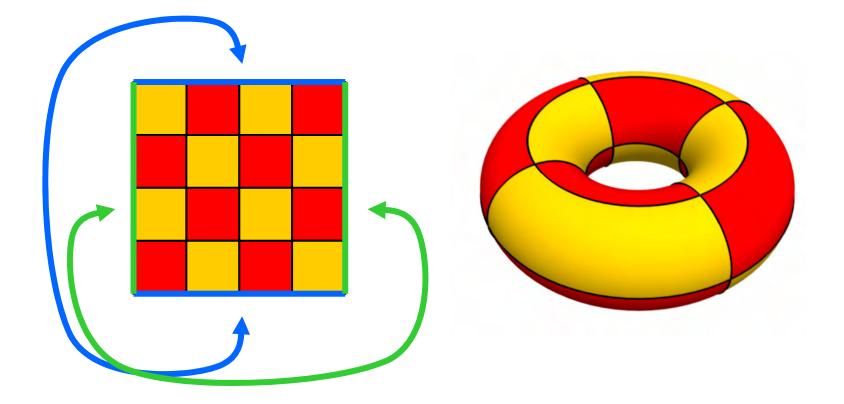


- Stitch them together, with maximal symmetry
- Stuff with polyester fiber

What shape could you get?



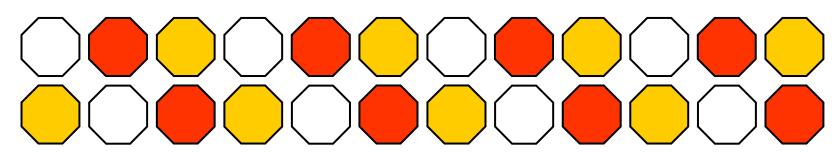




Torus (genus I), with checkerboard pattern

Puzzle: 24 octagons

- Take a highly elastic, colorful fabric
- Cut out 24 octagons



- Sew them together, to get a closed surface
- Stuff with polyester fiber

What shape could you get?

More puzzles

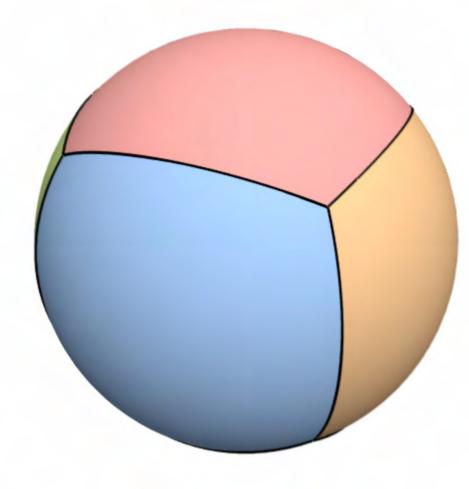
Take N polygons with p sides, stitch them together, such that at each corner q sides meet.
Find shapes for (N, p, q) =

$$(16, 3, 8), (6, 6, 4), (2, 8, 5), (2, 6, 6), (1, 8, 8), (12, 8, 3), (12, 4, 6), (6, 4, 12), (4, 8, 4), (2, 12, 4), (18, 4, 6), (10, 4, 10), (64, 3, 8), (40, 4, 5), (16, 6, 4), (16, 4, 8), (12, 4, 12), (4, 14, 4), (48, 4, 6), (32, 6, 4), (8, 12, 4), (20, 4, 20), (54, 4, 6), (60, 4, 6), (96, 3, 12), (96, 4, 6), (16, 12, 4), (56, 3, 7), (168, 4, 6), ...$$

The general puzzle: regular maps

Construct space models of regular maps

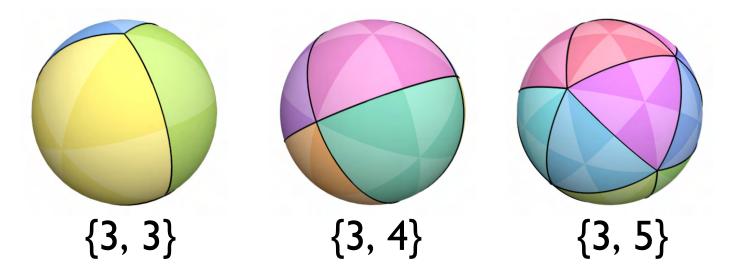
• Surface topology, combinatorial group theory, graph theory, algebraic geometry, hyperbolic geometry, physics, chemistry, ...

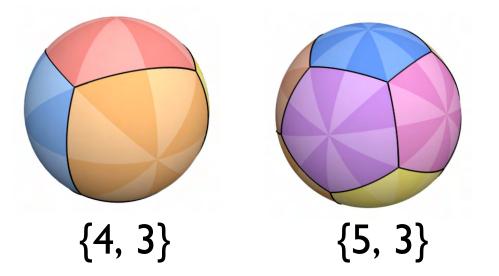


Regular map: Embedding of a graph in a closed surface, such that topologically

- faces are identical
- vertices are identical
- edges are identical

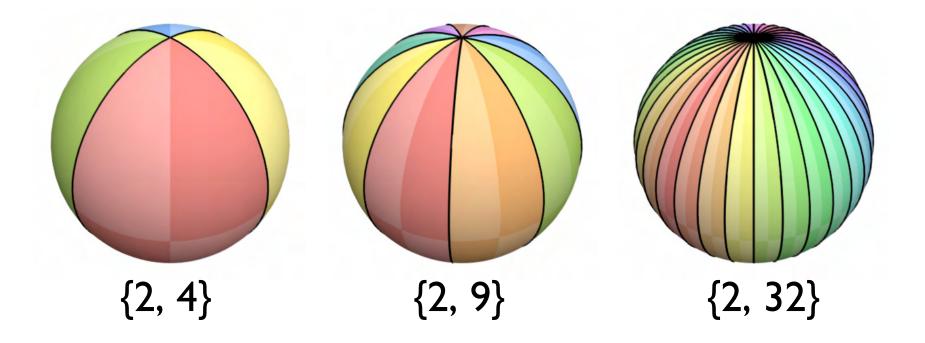
Genus 0: Platonic solids





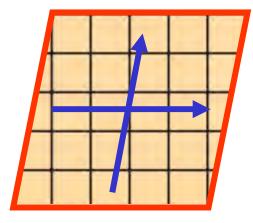
Genus 0: hosohedra

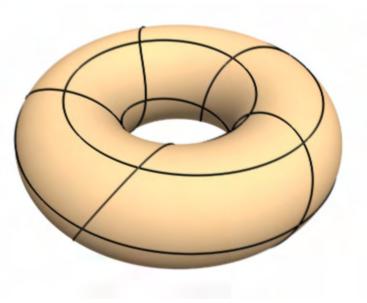
hosohedron: faces with two edges

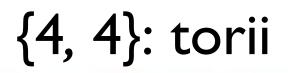


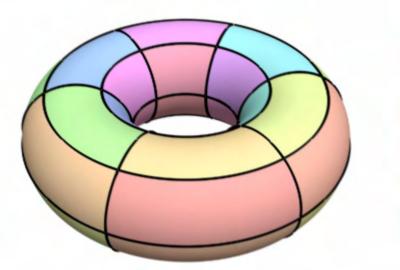
Tori (genus 1)

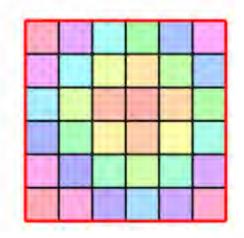
- Tile the plane
- Define a rhombus (all sides same length)
- Project tiling
- Fold rhombus to torus

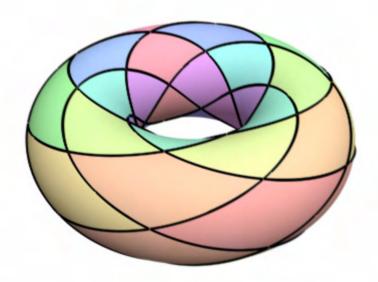


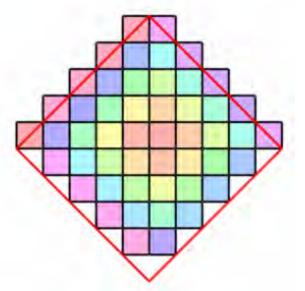


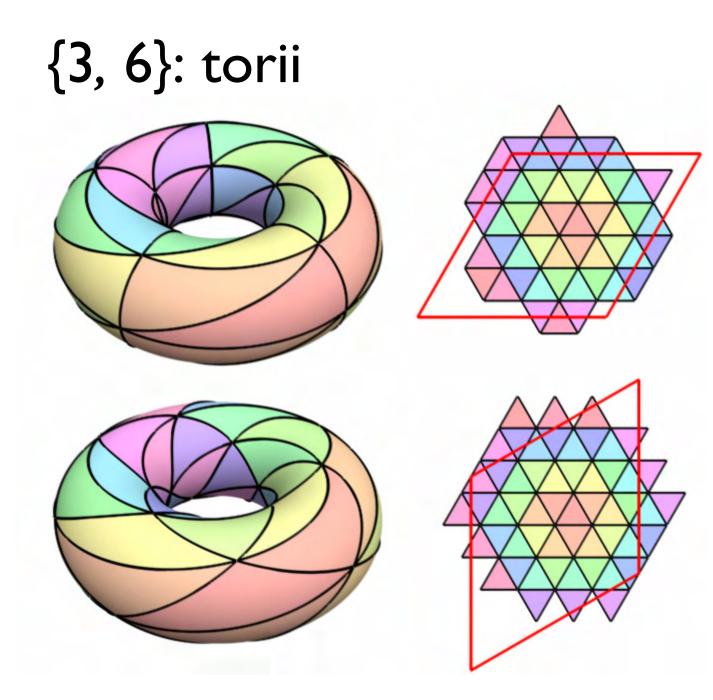


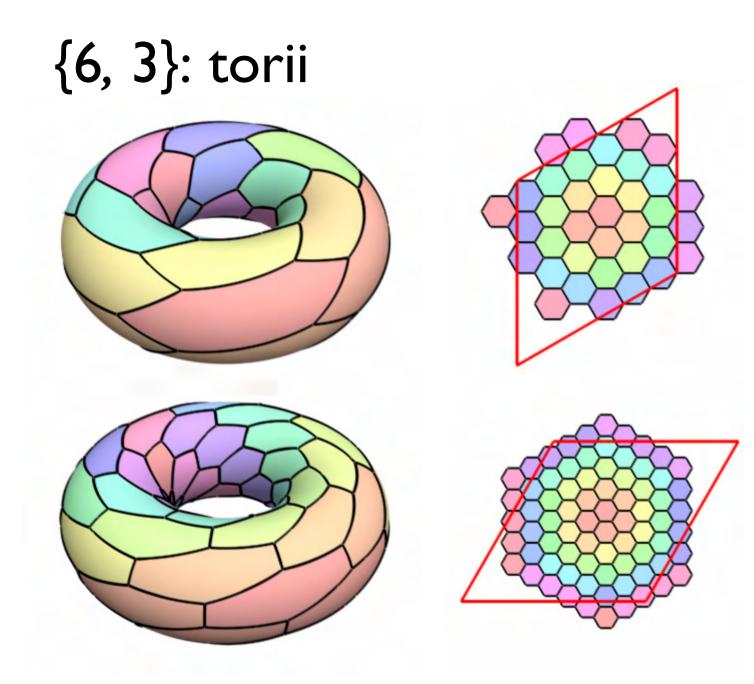








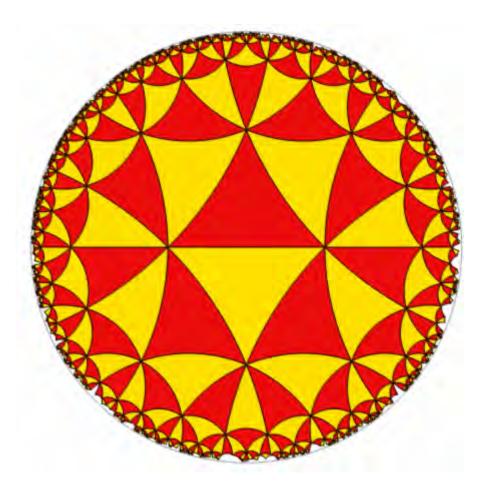




Genus $g \ge 2$

g	shape	geometry	transf.	tilings
0	sphere	spherical	3D rotation	{3,3}, {3,4}, {4,3}, {3,6}, {6,3}, {2, <i>n</i> }
I	torus	planar	2D Euclidean	{4,4}, {3,6}, {6,3}
≥ 2	?	hyperbolic	Möbius	{3,7}, {4,5}, {5,4}, {4,6}, {6,4}, {5,5},

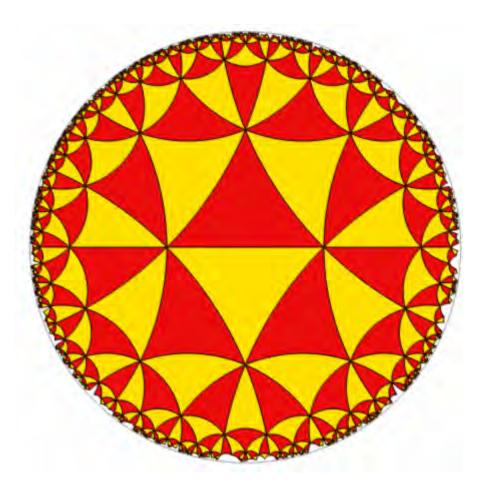
Hyperbolic geometry



Poincaré model of hyperbolic plane:

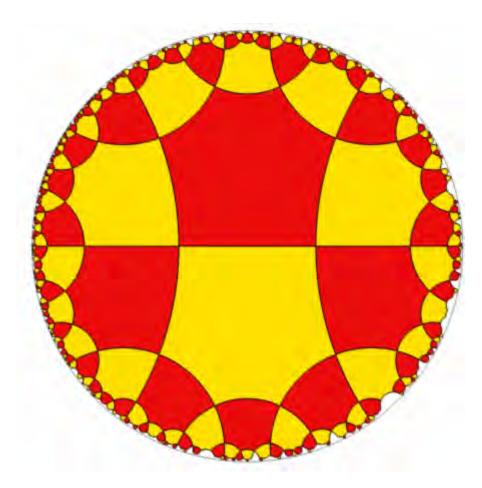
- conformal
- area distorted: all triangles equal
- hyperbolic line: circle

Tilings



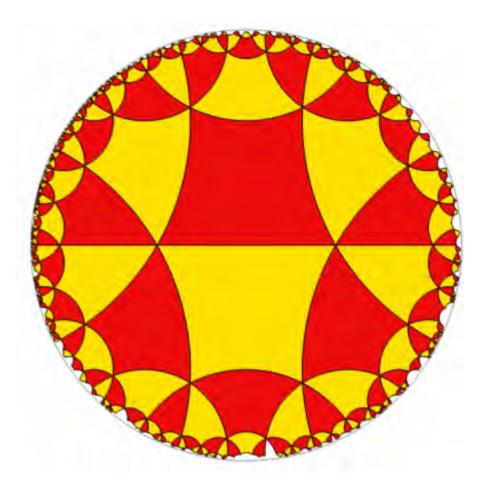
{3, 8} tilinghyperbolic plane

Tiling



{6, 4} tilinghyperbolic plane

Tilings

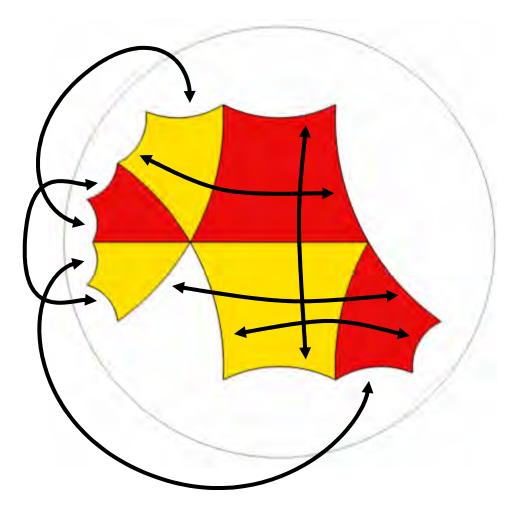


{4, 6} tilinghyperbolic plane

Regular map: Cut out part of tiling hyperbolic plane

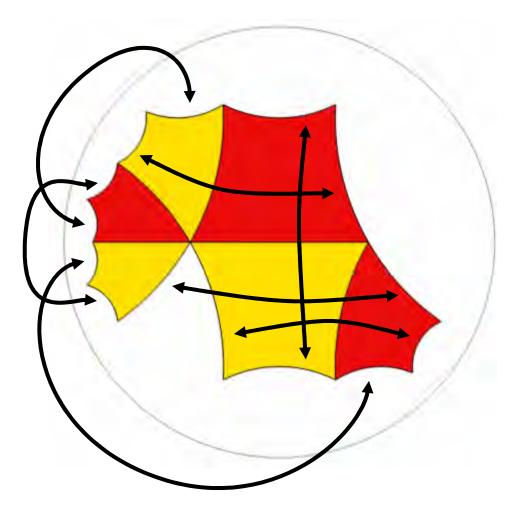
For instance:

6 quads



Regular map: Cut out part of tiling hyperbolic plane

For instance: 6 quads, and match edges



Regular map: Cut out part of tiling hyperbolic plane

M. Conder (2006): enumerated all regular maps for $g \le 101$

Conder's list

R2.1 : Type {3,8}_12 Order 96 mV = 2 mF = 1 Defining relations for automorphism group: [T^2, R^-3, (R * S)^2, (R * T)^2, (S * T)^2, (R * S^-3)^2]

R2.2 : Type $\{4,6\}$ _12 Order 48 mV = 3 mF = 2 Defining relations for automorphism group: [T^2, R^4, (R * S)^2, (R * S^-1)^2, (R * T)^2, (S * T)^2, S^6]

R2.3 : Type {4,8}_8 Order 32 mV = 8 mF = 2 Defining relations for automorphism group: [T^2, R^4, (R * S)^2, (R * S^-1)^2, (R * T)^2, (S * T)^2, S^-2 * R^2 * S^-2]

R2.4 : Type {5,10}_2 Order 20 mV = 10 mF = 5 Defining relations for automorphism group: [T^2, S * R^2 * S, (R, S), (R * T)^2, (S * T)^2, R^-5]

•••••

R101.55 : Type {204,204}_2 Order 816 mV = 204 mF = 204 Self-dual Defining relations for automorphism group: [T^2, S * R^2 * S, (R, S), (R * T)^2, (S * T)^2, R^92 * S^-1 * R^3 * T * S^2 * T * R^16 * S^-89 * R]

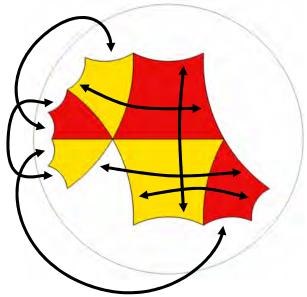
R101.56 : Type {404,404}_2 Order 808 mV = 404 mF = 404 Self-dual Defining relations for automorphism group: [T^2, S * R^2 * S, (R, S), (R * T)^2, (S * T)^2, R^98 * T * S^2 * T * R^10 * T * R^-3 * T * R^4 * S^-85]

Total number of maps in list above: 3378

Conder's list

R2.2 : Type {4,6}_12 Order 48 mV = 3 mF = 2 Defining relations for automorphism group: [T^2, R^4, (R * S)^2, (R * S^-1)^2, (R * T)^2, (S * T)^2, S^6]

- Rg.i: genus g, member i
- complete definition topology (connectivity)
- combinatorial group theory

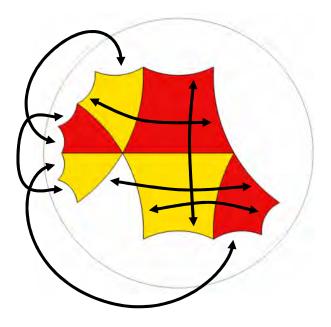


Conder's list

R2.2 : Type {4,6}_12 Order 48 mV = 3 mF = 2 Defining relations for automorphism group: [T^2, R^4, (R * S)^2, (R * S^-1)^2, (R * T)^2, (S * T)^2, S^6]

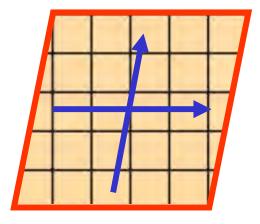
The challenge:

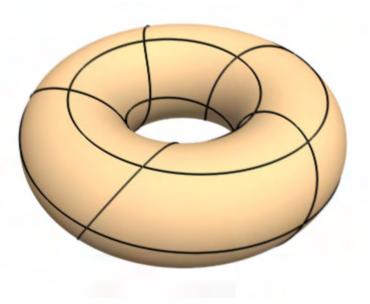
Given the complete topology, find a *space model*: an embedding of faces, edges and vertices in 3D space



Tori (genus I) (reprise)

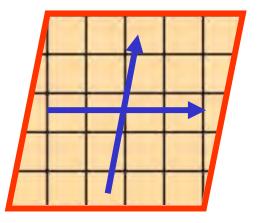
- Tile the plane
- Take a torus
- Unfold to square
- Warp to a rhombus
- Project tiling
- Map rhombus to torus

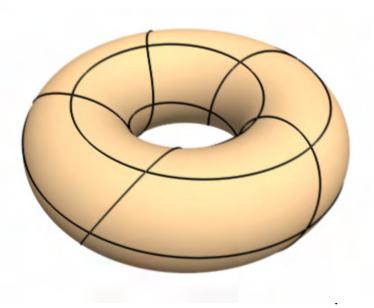




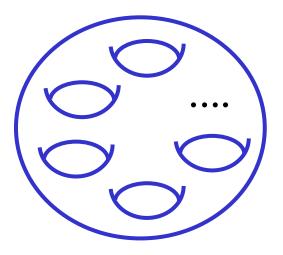
Approach for $g \ge 2$

- Tile the hyperbolic plane
- Take a nice genus g shape
- Unfold to cut out
- Warp to match shape
- Project tiling
- Map cut out to nice shape

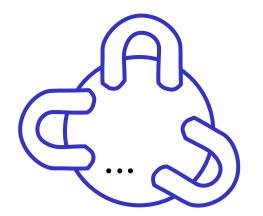




Nice genus g shape?



Solid shape with holes?

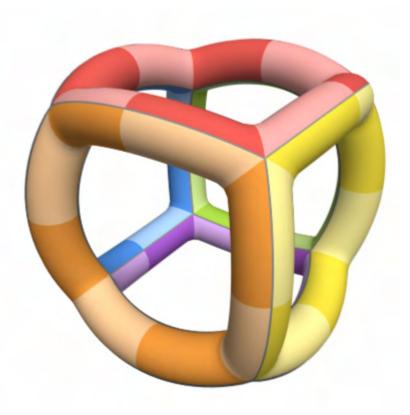


Sphere with handles?

Where to place holes or handles to get maximal symmetry? For g = 6, 13, 17, ...?

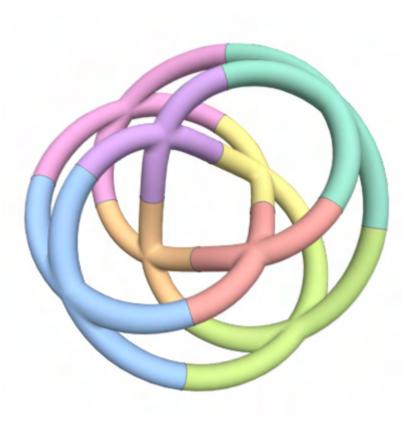
Tubified regular maps

- Take a regular map
- Turn edges into tubes
- Remove faces
- edges \rightarrow tubes
- vertices \rightarrow junctions
- faces \rightarrow holes
- triangles \rightarrow 1/4 tubes

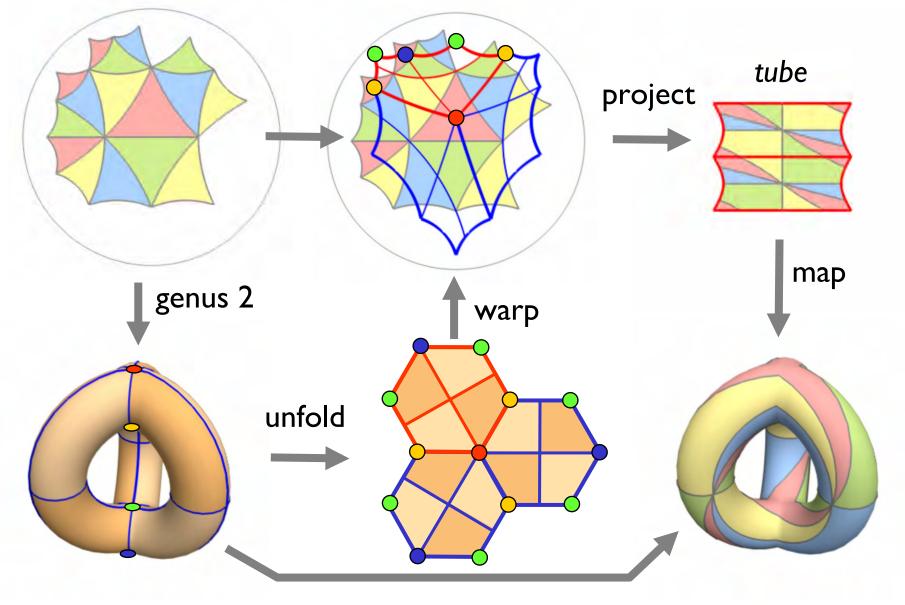


Tubified regular maps

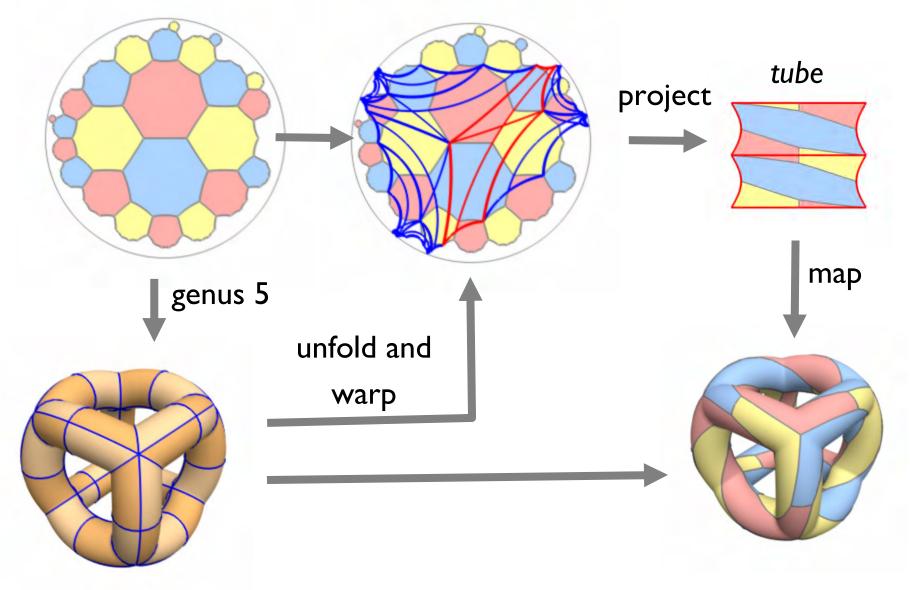
- Take a regular map
- Turn edges into tubes
- Remove faces
- edges \rightarrow tubes
- vertices \rightarrow junctions
- faces \rightarrow holes
- triangles \rightarrow 1/4 tubes



Solving R2.1{3, 8}, 16 triangles



Solving R5.1{3, 8}, 24 octagons



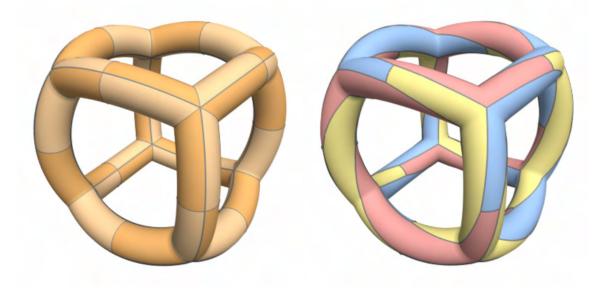
Symmetric Tiling of Closed Surfaces:

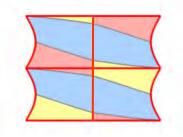
Visualization of Regular Maps

ACM SIGGRAPH 2009

Status

- About 50 different space models for regular maps found automatically
- Future work: solve more cases, by using less symmetric target shapes





4 fold symmetry

Finally

- Three puzzles: Knots, maps, and tiles
- Much more detail in the papers
- Thanks!