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Abstract. We discuss the following topics: n-dimensional local fields and adelic groups;
harmonic analysis on local fields and adelic groups for two-dimensional schemes (func-
tion spaces, Fourier transform, Poisson formula); representations of discrete Heisenberg
groups; adelic Heisenberg groups and their representations arising from two-dimensional
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What do we mean by local 7 To get an answer to this question let us start
from the following two problems.
First problem is from number theory. When does the diophantine equation

f(x,y,z):x2fay2—bz2:0, CL,b, EQ*

have a non-trivial solution in rational numbers ? In order to solve the problem, let
us consider the quadratic norm residue symbol (—, —), where p runs through all
primes p and also co. This symbol is a bi-multiplicative map (—, —), : Q* x Q* —
{£1} and it is easily computed in terms of the Legendre symbol. Then, a non-
trivial solution exists if and only if, for any p, (a,b), = 1. However, these conditions
are not independent:

[1(a.b), =1. (1)

P

This is essentially the Gauss reciprocity law in the Hilbert form.

The “points” p correspond to all possible completions of the field Q of rational
numbers, namely to the p-adic fields Q, and the field R of real numbers. One
can show that the equation f = 0 has a non-trivial solution in Q, if and only if
(a,b)p, = 1.

The second problem comes from complex analysis. Let X be a compact Rie-
mann surface (= complete smooth algebraic curve defined over C). For a point

*I am very thankful to Lawrence Breen, Denis V. Osipov, Vladimir L. Popov and Yuri G.
Zarhin who have read the text and made many valuable remarks. The author was supported by
RFBR (grant no. 08-01-00095-a).
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P € X, denote by Kp = C((tp)) the field of Laurent formal power series in a
local coordinate ¢p at the point P. The field Kp contains the ring Op = C[[tr]]
of Taylor formal power series. These have an invariant meaning and are called
the local field and the local ring at P respectively. Let us now fix finitely many
points Pi,..., P, € X and assign to every P in X some elements fp such that
frp € Kp,,...,fp, € Kp, and fp = 0 for all other points.

When does there exist a meromorphic (=rational) function f on X such that

fP—fG@P for every P € X7 (2)

The classical answer to this Cousin problem is the following: there exists such an
f whenever for any regular differential form w on X

ZreSp(fpw) =0. (3)

P

The space of regular differential forms has dimension g (= genus of X) and in
this way one gets finitely many conditions on the data (fp). The residue is an
additive map resp : Q'(Kp) — C and is easily computed in terms of the local
decomposition of the differential form w € Q'(Kp). Note that “locally”, problem
(2) can be solved for any point P. Behind our global conditions (3), we have the
following residue relation:

ZTGSP(T]> =0 (4)

P

for any meromorphic differential form n on X.

We see some similarity between these two problems, which belong to very dif-
ferent parts of our science. The explanation lies in the existence of a very deep
analogy between numbers and functions, between number fields and fields of al-
gebraic functions. This analogy goes back to the nineteenth century, possibly to
Kronecker. The leading role in the subsequent development belongs to Hilbert.
The analogy was one of his beloved ideas, and thanks to Hilbert it became one of
the central ideas in the development of number theory during the twentieth cen-
tury. Following this analogy, we can compare algebraic curves over C (= compact
Riemann surfaces) and number fields (= finite extensions of QQ). In particular, this
includes a comparison of local fields such as that between the fields C((¢)) and Q,.
Their similarity was already pointed out by Newton!.

In modern terms, we have two kinds of geometric objects. First, a complete
algebraic curve X, containing an affine curve U = Spec(R)?, where R is the ring
of regular functions on U:

(geometric picture) X DU and finitely many points P € X.

1He compared the power series and the expansions of rational numbers in powers of p (for
p = 10).

2Here, Spec(R) is the set of prime ideals in the ring R together with the additional structure
of a scheme.
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Next, if we turn to arithmetic, we have a finite extension K O Q and the ring
R C K of integers. We write

(arithmetic picture) X D U = Spec(R) and finitely many infinite places P € X.

The places (“points”) correspond to the embeddings of K into the fields R or C.
Here, X stands for the as yet not clearly defined complete “arithmetical” curve,
an analogue of the curve X in the geometric situation. The analogy between both
U’s is very clear and transparent. The rings R are the Dedekind rings of the
Krull dimension® 1. The nature of the additional points (outside U) are more
complicated. In the geometric case, they also correspond to the non-archimedean
valuations on the curve X, whereas in the arithmetical case these infinite places
are a substitute for the archimedean valuations of the field K.

In algebraic geometry, we also have the theory of algebraic curves defined over
a finite field F, and this theory, being arithmetic in its nature, is much closer to
the theory of number fields than the theory of algebraic curves over C. The main
construction on both sides of the analogy is the notion of a local field. These local
fields appear into the following table:

dimension | geometric case | arithmetic case
> 2
2 ! R((£)), C((t))
1 F,((t)) Qp, R, C
0 F, Fy

Here IF; is the so-called “field” with one element, which is quite popular nowadays.
We will see soon why the fields R((¢)) and C((¢)) belong to the higher level of
the table than the fields @, or R. More on the analogy between geometry and
arithmetic can be found in [61].

1. n-dimensional Local Fields and Adelic Groups

Let us consider algebraic varieties X (or Grothendieck schemes) of dimension
greater than one. It appears that we have a well established notion of some-
thing local attached to a point P € X. One can take a neighborhood of P, e.g.
affine, complex-analytic if X is defined over C, formal and so on. In this talk we
will advocate the viewpoint that the genuine local objects on the varieties are not
the points with some neighborhoods but the maximal ordered sequences (or flags)
of subvarieties, ordered by inclusion.
If X is a variety (or a scheme) of dimension n and

XoCcXjC..Xp1CX,=X

3That is, the length of a maximal chain of prime ideals. The ring R itself is not a prime ideal.
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is a flag of irreducible subvarieties (dim(X;) = 4) then one can define a certain ring

KXO ----- Xn-1

associated to the flag. In the case where all the subvarieties are regularly embedded,
this ring is an n-dimensional local field.

Definition 1. Let K and k be fields. We say that K has a structure of an
n-dimensional local field with the last residue field k if either n = 0 and K =k or
n > 1 and K is the fraction field of a complete discrete valuation ring O whose
residue field K is a local field of dimension n — 1 with the last residue field .

Thus, an n-dimensional local field has the following inductive structure:
K=K%9>50k K=K > Or — KW = K® 5 Ope — ... — KM =

where Op denotes the valuation ring of the valuation on F and F denotes the
residue field.
The simplest example of an n-dimensional local field is the field

K = E((t2))((t2)) - - ((tn))

of iterated Laurent formal power series. In dimension one, there are examples
from the table. However, fields such as R or C are not covered by this definition.
Concerning classification of the local fields see [17].

One can then form the adelic group (actually, the ring)

!/
Ax =[] Exoooxuss

where the product is taken over all the flags with respect to certain restrictions
on components of adeles. For schemes over a finite field Fy, this is the ultimate
definition of the adelic space attached to X. In general, one must extend it by
adding archimedean components, such as the fields R or C in dimension one.

In dimension one, the local fields and adelic groups are well-known tools of
arithmetic. They were introduced by C. Chevalley in the 1930s and were used to
formulate and solve many problems in number theory and algebraic geometry (see,
for example, [1, 74]). These constructions are associated with fields of algebraic
numbers and fields of algebraic functions in one variable over a finite field, that is
with schemes of dimension 1. A need for such constructions in higher dimensions
was realized by the author in the 1970s. They were developed in the local case
for any dimension and in the global case for dimension two [53, 54, 17, 58]. This
approach was extended by A. A. Beilinson to the schemes of an arbitrary dimension
[3, 25]. In this talk, we restrict ourselves to the case of dimension two.

Let X be a smooth irreducible surface over a field k (or an arithmetic surface),
let P be a closed point of X and let C' C X be an irreducible curve such that
P € C. We denote by Ox p the local ring at the point P, that is the ring of
rational functions which are regular at P. We denote also by O¢ the ring of
rational functions on X which have no pole along the C.
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If X and C are smooth at P, then we pick a local equation t € Ox p of C at
P and choose u € Ox p such that u|lc € O¢, p is a local parameter at P. Denote
by g the ideal in Ox p defining the curve C' near P. We can introduce a two-
dimensional local field Kp ¢ attached to the pair P,C by the following procedure
which includes completions and localizations:

Ox,p
|
(’A)T,p = k(P)[[u,t]] > 9 = (1)
((5)()19)p = discrete valuation ring with residue field k(P)((u))
|
Opc:=(0Oxp), = k(P)((w))[[t]

|
Kpc :=Frac(Opc)

o
PN
J
N
—
N
<
=
=
=~
—
~
=
=

Note that the left-hand construction is meaningful even without smoothness of the
curve C' (it is sufficient to assume that C' has only one formal branch near P). In
the general case, the ring Kp ¢ is a finite direct sum of 2-dimensional local fields.
If P is smooth then the field Kp ¢ has the following informal interpretation. Take
a function f on X. We can, first, develop f as a formal power series in the variable
t along the curve C' and then every coeflicient of the series restricted to C can be
further developed as a formal power series in the variable u. The local field Kp ¢
is a kind of completion of the field of rational functions K = k(X) on X. It carries
a discrete valuation v¢ : Kp » — Z defined by the powers of the ideal g.

Let Kp be the minimal subring of Kp ¢ which contains both k(X) and (5X7 P.
In general, the ring Kp is not a field. Then K C Kp C Kp ¢ and there is another

intermediate subring K¢ = Frac (@C) C Kpc. We can compare the structure of
the local adelic components in dimensions one and two:

Kp Kpc
VRN
P Ke
N S
K

K

K

The global adelic group is a certain subgroup of the ordinary product of all two-
dimensional local fields. Namely, a collection (fp ) where fpc € Kpc belongs
to Ax if the following two conditions are satisfied:

{frc} € Ac((te))

for a fixed irreducible curve C' C X and a local equation tc = 0 of the curve
C on some open affine subset U C X and
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e we have vo(fp,c) > 0, or equivalently

{frct € Aclltc]],
for all but finitely many irreducible curves C' C X.

Here we reduced the definition of the adelic group to the classical case of algebraic
curves C. Recall that a collection (fp, P € C) belongs to the adelic (or restricted)
product Ac of the local fields Kp if and only if for almost all points P we have
fpeOp.

What can one do with this notion of the local field and why is it really local ?
To get some understanding of this, we would like to develop the above examples
(of residues and symbols) in dimension two. For any flag P € C on a surface X
and a rational differential form w of degree 2 we can define the residue

resp,c(w) = Trypy/p(a—1,-1)

where w =}, . a; ju't’du A dt in the field Kpc = k(P)((u))((t)). Then, instead
of the simple relation (4) on an algebraic curve, we get two types of relations on
the projective surface X [54]

Z respc(w) =0, for any fixed curve C, (5)
pPeC
Z respc(w) =0, for any fixed point P. (6)
C>P

At the same time, we can define certain symbols (bi-multiplicative and three-
multiplicative) [53]

) * * . * * * *
(= —)pc:KpecxKpe—2Z and (—,—,—)pc:Kpc X Kpo X Kpo —k

which are respectively generalizations of the valuation vp : Kj, — Z and the norm
residue symbol (—,—)p : K5 x K} (actually, the tame symbol) on an algebraic
curve C. The reciprocity laws have the same structure as the residue relations. In
particular, if f,g,h € K* then

H (f,9.h)pc =1, for any fixed curve C,
PeC

H (f,g9,h)pc =1, for any fixed point P.
C>P
This shows that in dimension two there is a symmetry between points P and
curves C' (which looks like the classical duality between points and lines in projec-
tive geometry).
If C' is a curve then the space A¢ contains the important subspaces Ag = K =
k(C) of principal adeles (rational functions diagonally embedded into the adelic
group) and Ay = [[pce 0 p of integral adeles. These give rise to the adelic complex

Ay A — Ac. (7)
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This complex computes the cohomology of the structure sheaf O¢. If D is a divisor
on C then the cohomology of the sheaf O¢(D) can be computed using the adelic
complex (7) where the subgroup A; is replaced by the subgroup A;(D) = {(fp) €
Ac :vp(fp)+vp(D) >0 for any P € C}.

In dimension two, there is a much more complicated structure of subspaces in
Ax (see [58]). Among the others, it includes three subspaces Ajs = H;,ec(’)pp,
A()l = H/CCXKC and AOQ = H/PEXKP' We set AO = A()l N AOQ,Al = A()l n A12
and Ay = Ags N A5, and arrive at an adelic complex

Ag®A DAy — Ag DA D A1p — Ax.

Once again, the complex computes the cohomology of the sheaf Ox. One can
extend these complexes to the case of arbitrary schemes X and any coherent sheaf
on X (see [3, 25, 17]).

The last issue which we will discuss in this section is the relation between the
residues and Serre duality for coherent sheaves. We will only consider the con-
struction of the fundamental class for the sheaf of differential forms. For curves
C, we have an isomorphism H'(C, Q) = Q' (Ac)/Q' (Ag) ® Q'(A1). The funda-
mental class isomorphism H'(C,Q}) = k can be defined as the sum of residues on
QY(A¢). The residues relation (3) shows that this sum vanishes on the subspace
Q'(Ag) (and it vanishes on the other subspace Q!(A;) for trivial reasons). The
same reasoning works in the case of surfaces. We have an isomorphism

H?(C,9%) = Q% (Ax) /0 (Ao1) & Q*(Ag2) & Q*(Ar2) — k,

where the last arrow is again the sum of residues over all flags P € C C X. The
correctness of this definition follows from the residues relations (5) and (6). We
refer to [54, 3, 17] for the full description of the duality.

2. Harmonic Analysis on Two-dimensional Schemes

In the 1-dimensional case, local fields and adelic groups both carry a natural topol-
ogy for which they are locally compact groups and classical harmonic analysis on
locally compact groups can therefore be applied to this situation. The study of
representations of algebraic groups over local fields and adelic groups is a broad
subfield of representation theory, algebraic geometry and number theory. Even
for abelian groups, this line of thought has very nontrivial applications in number
theory, particularly to the study of L-functions of one-dimensional schemes (see
below). The first preliminary step is the existence of a Haar measure on locally
compact groups. The analysis starts with a definition of certain function spaces.

We have two sorts of locally compact groups. The groups of the first type are
totally disconnected such as the fields Q, or F,((t)). These groups are related with
varieties defined over a finite field. The groups of the second type are connected
Lie groups such as the fields R or C.
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If V is a locally compact abelian group of the first type let us consider the
following spaces of functions (or distributions) on V:

V) = {locally constant functions with compact support}

{uniformly locally constant functions}

{all locally constant functions}

{the dual to D(V), i.e. all distributions}

{the “continuous” dual to £(V)}

= {the “continuous” dual to £(V), i.e. distributions with compact support}.

SS=EES
I

These are the classical spaces introduced by F. Bruhat [10] and the more power-
ful way to develop the harmonic analysis is the categorical point of view. First,
we need definitions of direct and inverse images with respect to the continuous
homomorphisms.

Let f : V — W be a strict homomorphism* of locally compact groups V and
W. Then the inverse image f* : D(W) — D(V) is defined if and only if the kernel
of f is compact. The direct image f. : D(V) ® (V) — D(W) is defined if and
only if the cokernel of f is discrete. Here, u(V') is a (1-dimensional) space of Haar
measures on V. For the spaces like £, € the inverse image is defined for any f, but
the direct image is defined if and only if the kernel is compact and the cokernel
is discrete. For the distribution spaces the corresponding conditions are the dual
ones. Therefore, we see that these maps do not exist for arbitrary homomorphisms
in our category and there are some “selection rules”.

The Fourier transform F is defined as a map from D(V) @ u(V) to D(V) as
well as for the other types of spaces. Here, V is the dual group. The main result
is the following Poisson formula

F(Ow,po ® 1) = Opps 1

for any closed subgroup i : W — V. Here pg € u(W) ¢ D'(W),p € (V) C
D'(V), 0w o = ix(lw @ pio) and W+ is the annihilator of W in V.

This general formula is very efficient when applied to the self-dual (!) group Ac.
The standard subgroups in Ac have their characteristic functions d,, (py € D(A¢)

and dx € D'(Ac) . We have
F(da, (D)) = vol(A1(D))da, (w)-D)> (8)

F(0x) = vol(Ac/K) ok, (9)

where K = F (C) and (w) is the divisor of a nonzero rational differential form w €
QL on C. There is the Plancherel formula (f, g) = (F(f),F(g)) where f € D(A¢),
g € D'(A¢) and (—,—) is the canonical pairing between dual spaces. When we
apply this formula to the characteristic functions da,(p) and dx the result easily
yields Riemann-Roch theorem together with Serre duality for divisors on C' (see
for example [58]).

4This means that f is a composition of an open epimorphism and a closed monomorphism.
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Trying to extend the harmonic analysis to the higher local fields and adelic
groups we meet the following obstacle. The n-dimensional local fields and con-
sequently the adelic groups are not locally compact topological groups for n > 1
in any reasonable sense whereas by a theorem of Weil the existence of Haar mea-
sure (in the usual sense) on a topological group implies its local compactness.
Unfortunately, the well-known extensions of this measure theory to the infinite-
dimensional spaces or groups (such as the Wiener measure) do not help in our
circumstances. Thus, we have to develop a measure theory and harmonic analysis
on n-dimensional local fields and adelic groups ab ovo.

The idea for dealing with this problem came to me in the 1990s. In dimension
one, local fields and adelic groups are equipped with a natural filtration provided
by fractional ideals p™, n € Z, which correspond to the standard valuations. For
example, this filtration on the field Fy((¢)) is given by the powers of ¢t. If P D Q
are two elements of such a filtration on a group V, then the Bruhat space D(V)
is canonically isomorphic to the double inductive limit of the (finite-dimensional)
spaces F(P/Q) of all functions on the finite groups P/Q. The other function spaces
listed above can be represented in the same way if we use all possible combinations
of projective or inductive limits.

In dimension two, local fields K such as Kp c again have a filtration by frac-
tional ideals, which are powers of . But now, the quotient P/Q = p™ /o™, n > m
will be isomorphic to a direct sum of finitely many copies of the residue field
K =TF,((u)). Thus this group is locally compact and the functional space D(P/Q)
is well defined. To define the function spaces on K one can try to repeat the pro-
cedure which we know for the 1-dimensional fields. To do that, we need to define
the maps (direct or inverse images) between the spaces D(P/Q), D(P/R), D(Q/R)
for P O @ D R. The selection rules mentioned above restrict the opportunities for
this construction. This enables us to introduce the following six types of spaces of
functions (or distributions) on V:

Dp(V) = lim lim D(P/Q)® u(Fo/Q),
D'p(V) = 1im 1:_:1} D'(P/Q) @ u(Po/Q)~ ",
ev) = {fin ﬁ_ﬂ} E(P/Q),
gw) = é}n 1;31 g'(P/Q),
V) = lf_H} 1;31 E(P/Q),
vy = {fin éﬂ £'(P/Q),

be  Ju

where P D Q D R are some elements of the filtration in V' (with locally compact
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quotients), Py is a fixed subgroup from the filtration and j : Q/R — P/R, i :
P/R — P/Q are the canonical maps.

This definition works for a general class of groups V including the adelic groups
such as A x, which has a filtration by the subspaces A12(D) where D runs through
the Cartier divisors on X.

Thus, developing of harmonic analysis may start with the case of dimension
zero (finite-dimensional vector spaces over a finite field representing a scheme of
dimension zero, such as Spec(F,), or finite abelian groups) and then be extended
by induction to the higher dimensions.

An important contribution was made in 2001 by Michael Kapranov [33] who
suggested using a trick from the construction of the Sato Grassmanian in the theory
of integrable systems (known as a construction of semi-infinite monomials)®. The
idea consists of using the spaces u(Py/Q) of measures instead of pu(P/Q) in the
above definition of the spaces Dp, (V) and D’ p,(V): without it one cannot define
the functional spaces for all adelic groups in the two-dimensional case and, in
particular, for the whole adelic space Ax.

In 2005 Denis Osipov has introduced the notion of a C,, structure in the cat-
egory of filtered vector spaces [49]. With this notion at hand, harmonic analysis
can be developed in a very general setting, for all objects of the category Cs.
The crucial point is that the C,-structure exists for the adelic spaces of any n-
dimensional noetherian scheme. The principal advantage of this approach is that
one can perform all the constructions simultaneously in the local and global cases.
The category C; contains (as a full subcategory) the category of linearly locally
compact vector spaces (introduced and thoroughly studied by S. Lefschetz [42])
and there one can use the classical harmonic analysis.

When we go to general arithmetic schemes over Spec(Z), fields like C((¢1)) ... ((tn))
appear and we need to extend the basic category C,,. In dimension one, this means
that connected Lie groups must also be considered. It is possible to define cat-
egories of filtered abelian groups CZ", (n = 0,1,2), which contain all types of
groups which arise from arbitrary schemes of dimension 0, 1 and 2 (in particular
from algebraic surfaces over F, and arithmetic surfaces). Harmonic analysis can
be developed for these categories if we introduce function spaces which are close
to that of classical functional analysis, such as Schwartz space S(R) of smooth
functions on R, which are rapidly decreasing together with all their derivatives.
Recall that in the case of dimension one we had to consider, in addition to the
genuine local fields such as @Q,, the fields R and C. In the next dimension, we have
to add to the two-dimensional local fields such as Fq((w))((t)) or Q,((t)) the fields
R((t)) and C((¢)). They will occupy the entire row in the table above. This theory
has been developed in papers [50, 51].

Just as in the case of dimension one, we define direct and inverse images in
the categories of groups, which take into account all the components of the adelic
complex, the Fourier transform F which preserves the spaces D and D’ but in-
terchanges the spaces £ and &'. We also introduce the characteristic functions
Oow of subgroups W and then prove a generalization of the Poisson formula. It is

5A construction of this kind for the local fields is also contained in [35].
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important that for a certain class of groups V' (but not for A x itself) there exists a
nonzero invariant measure, defined up to multiplication by a constant, which is an
element of D’(V). Another important tool of the theory are the base change the-
orems for the inverse and direct images. They are function-theoretic counterparts
of the classical base change theorems in the categories of coherent sheaves.

The applications of the theory includes an analytic expression for the intersec-
tion number of two divisors based on an adelic approach to the intersection theory
[65] and an analytic proof of the (easy part of) Riemann-Roch theorem for divisors
on X.

This theory is the harmonic analysis on the additive groups of the local fields
and adelic rings (including their archimedean cousins). In the classical case of
dimension one, the analysis can be developed on arbitrary varieties (defined either
over K, or over A). This has already been done by Bruhat in the local case
[10]. For arbitrary varieties defined over a two-dimensional local field K, this kind
of analysis was carried out by D. Gaitsgory and D. A. Kazhdan in [18] for the
purposes of representation theory of reductive groups over the field K. This was
preceded by a construction [34] of harmonic analysis on homogenous spaces such
as G(K)/G(O%) (introduced in [56]). We note that the construction of harmonic
analysis (over K and A) is a nontrivial problem even in the case G = G,,,. This
will be the topic of our discussion in the following sections.

3. Discrete Adelic Groups on Two-dimensional Schemes

The harmonic analysis discussed above can be viewed as a representation theory
of the simplest algebraic group over local or adelic rings, namely, of the additive
group. In general, 1-dimensional local fields and adelic rings lead to a vastly
developed representation theory of reductive groups over these fields and rings.
The simplest case of this theory is still the case of an abelian group, namely GL(1).
Let K be a local field of dimension 1. Then GL(1, K) = K*, the multiplicative
group of K, and the irreducible representations are the abelian characters, i.e.
continuous homomorphisms y : K* — C*. For arithmetic applications one requires
the morphisms to C*, not to the unitary group U(1) C C*.

The 1-dimensional local field K contains a discrete valuation subring O with a
maximal ideal p. Then the local group K* has the following structure

K*={t"n€Z} x 0" = {t" n € Z} x K* x {1 + p},

where ¢ is a generator of the ideal p, K = F, and the group {1+ p} is the projective
limit of its finite quotients {1 + p}/{1 + p"™}. Thus, our group K* is a product
of the maximal compact subgroup O* and a discrete group = Z. When K is the
local field Kp attached to a point P of an algebraic curve C' defined over a finite
field Fy, let us set I'p := K5/O%. In the adelic case, we set

Io:=AL/[[0F =P Kp/0p =Pz
P P P
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This group is the group of divisors on C.
We now introduce the groups dual to these discrete groups viewing them as
algebraic groups defined over C:
Tp = Hom(I'p,C*), Ts = [lpesTrps Te = lim Tg,

—

S

where S runs through all finite subsets in C. Let us consider the divisor Dg with
normal crossings on Tg that consists of the points in the product Tg for which at
least one component is the identity point in some Tp. Let C,[Ts] be the space of
rational functions on Tg that are regular outside Dg and may have poles of first
order on Dg. The space C;[T¢] can be defined as an inductive limit with respect
to the obvious inclusions.

We would like to show that harmonic analysis on the adelic space A can be
reformulated in terms of complex analysis on the dual groups. We need one more
torus Ty = C*, which corresponds by the duality to the image of the degree map

deg:T'c — Z with deg(D) = an deg(P) for a divisor D = anP.
P P

Denote by j : Tg — T¢ the natural embedding. Then the following diagram

D(Ac)? =Dy (Tc) —— Cy[Tc] —L— Fi[Ty)

p| | | (10)

*

D(Ac)® = D4 (To) —5— C4[Tc] —L— Fi[Ty)

commutes. Here, the map F is induced by the Fourier transform on the adelic group
Ac, the map i : Tg — T sends z € Ty to ¢~ *2~! and the space F[To] consists
of the functions that are regular outside the points z = 1 and z = ¢~ ' and may
have poles of the first order at these points. We denoted here by £ a duality map,
a version of the Fourier transform in this situation (completely different however
from the Fourier map F). If g € G and z € T¢ = Hom(G, C*) for some group G
then (Lf)(=) = ¥, £(9)z(g).

The next important fact is a reformulation of the Poisson formula on the group
AcS. Tt can be shown that for any function f € D(Ag)®”

Y f() = resioy(w) + resqry (W),

yeK

Z (Ff)(7) = —res(g-1)(w) — res(oo)(w),

yeEK
where w = j*Lfdz/z is the differential form on the compactification of the torus
Ty and the points we have chosen for the residues are z = 0,z = ¢~ !,z = 1 and
z = 00. Since the poles of the form w are contained in this set, we deduce that the

6For the sake of simplicity, we assume that Pic®(C)(Fq) = (0), that is Ker(deg) = Div;(C).
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Poisson formula on the curve C' (with an appropriate choice of Haar measure on
A¢) is equivalent to the residue formula (4) for the form w on the compactification
of the torus Ty (the general case see in [62]).

Our main goal now is to understand what correspond to these constructions
in the case of dimension two”. Let us first consider the local situation, that is we
fix a flag P € C on X and assume, for the sake of simplicity, that P is a smooth
point on C. The local field Kp ¢ has the discrete valuation subring Op¢. It is
mapped onto the local field k(C)p on C. This local field contains his own discrete
valuation subring Op and we denote its preimage in 6]3,0 by (53370 We set

A/
I'pc:=Kpo/Opc

where I'p ¢ is a certain abelian group, which is (non-canonically) isomorphic to
Z @ Z. However, there is a canonical exact sequence of abelian groups

0—-Z—-Tpc—Z—0. (11)

The map to Z in the sequence corresponds to the discrete valuation v with respect
to C and the subgroup Z corresponds to the discrete valuation vp on C at P. A
choice of local coordinates u, ¢ in a neighborhood of P such that locally C' = {¢t = 0}
provides a splitting of this exact sequence. The group I'p ¢ will then be isomorphic
to the subgroup {t"u™,n,m € Z} in K} .

The group of coordinate transformations u — u,t +— tuf, k € Z preserves
extension (11). Therefore, this determines an embedding

7 — Aut(l—‘p’c). (12)

which in fact is canonical.

We are now going to produce a global analogue of the local construction given
above. For that purpose, consider the subgroup O'* of A%, defined as the adelic
product of the local groups A};*C for all flags on an algebraic surface X. Let us
consider the quotient ’

FX = A}/@/* = H /Fpﬁc.
(P,C)
We have a natural surjective homomorphism A% — I'x and all subgroups in A%
such as Af;, Als, ..., Af have their images I'g1,I'12, ..., in I'x.
Then the structure of I'x can be described by an exact sequence

0—J[pivic) —Tx =P [[ 'z~ 0, (13)
C

C PeC

where, as above, Div(C') denotes the group of divisors on a curve C' C X and the
restricted product [[’Z denotes the set of collections of integers with components
whose absolute values are bounded. More precisely,

"We consider here the case of an algebraic surface. The main definitions remain valid for the
scheme part of an arithmetic surface.
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(1) The subgroups [[, Div(C) and I'12 in I'x coincide.

(2) The restriction of the homomorphism 7 to the subgroup I'ps C I'x is an

isomorphism:
~ !
7T|1"02 ZFOQ —_— @ H Z
C PeC

In other words, we see that there is a canonical splitting I'xy = I'12® T2 of exact
sequence (13) which is independent of any possible choice of the coordinates. The
groups which we have constructed are abelian. In our two-dimensional case, the
crucial point is that they are provided with certain canonical central extensions.

Let us start once more with the local situation, that is we fix a flag P € C on
X. Following [2](see also [30]) we have a canonical central extension of groups

1= kO)p = Ko — Kpo — 1. (14)
such that the corresponding commutator map in the central extension is a skew
form (-,-) : Kp o x Kp o — k(C)p given by the tame symbol (without sign), that
is by

(f.9) = fre@get (modp) € k(C)p, (15)

where g is the ideal which defines the curve C. R
There exists a canonical section of extension (14) over the subgroup O’PE’"C C
Kp . Denote by @};"C the image of (’3};0 in IN(I*D’C with respect to this section.

If we take the quotient of the extension (14) by the subgroup (5}2 of the center
k(C)p and then by the subgroup OF . we obtain a new central extension

0—Z—Tpc—Tpc— 0. (16)

It is well known that H%(Z @ Z,Z) = Z and the extension (16) is a generator
of this group. The commutator in this central extension defines a non-degenerate
symplectic form (—, —) on I'p ¢ with values in Z. Let us fix local parameters u, ¢
at P. Then I'p ¢ is isomorphic to the group of matrices

1
0 (17)
0

o~ 3
_g 0

with integer entries and (n,p) = np. We denote this group by Heis(3,Z). Hence,
we arrive at the following class of discrete nilpotent groups.

Definition 2. Let H, H’, and C be abelian groups and let (—, =) : H X
H' — C be a biadditive pairing. The set H x H' x C with the composition law
(n,p,c)(m,q,a) = (n+m,p+q,c+a+ (n,q)), where n,m € H,p,q € H' and
c,a € C, is called the discrete Heisenberg group G.

One then constructs the Heisenberg group G as a group of upper triangular
unipotent matrices with H and H' on the second diagonal and C in the right top
corner. There is the obvious natural central extension

0-C—G—H®H —0.
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In the global case, we have the Heisenberg group I'yx with

H=Tp=][Div(C)=]][ Pz H=Te=P ][]z
C

C PeC C PeC
C:IX:ZEBEBZ
C PeC

and the pairing H x H' — C is given by a component-wise multiplication. We
thus get a central extension

O—>IX—>fX—>FX—>O (18)

and for each flag P € C the restriction of extension (18) to I'p ¢ coincides with
extension (16). So, we obtain in this way a global analogue of the local construction,
since we could describe T'x as an “adelic” product of the local groups T p,c in an
appropriate sense.

There is a natural surjective homomorphism ¢ : Ix — Z%(X), (npc) —

Y (Y npc)[P], where Z?(X) denotes the group of zero-cycles on X. We set
CsP

Ipo :=Ker(p), Ioi:= @Divl(C) C @DiV(C) =Ix.
C C

The Heisenberg group [y is closely related to the main arithmetic groups attached
to the surface X. The quotient Ix/(Io; + Io2) is the second Chow group CH?(X)
of X. Also, there are isomorphisms

Lo1/(To 4 T1) = (P12 N (Coy + Loz)) /Ty =

= (F()Q N (Fol + P12))/F0 = PIC(X)

Moreover, the pairing I'1o X T'gs — Ix corresponds to the intersection pairing
Pic(X) x Pic(X) — CH?(X).

It is remarkable that the groups Kp (and the global adelic groups), which
are very far from being locally compact, nevertheless have a non-trivial discrete
quotient.

4. Representations of Discrete Heisenberg Groups

We have seen that in the case of dimension two the first non-trivial nilpotent
groups have occured. To define their duals one needs to develop an appropriate
representation theory for this class of groups.

For the discrete groups the classical theory of unitary representations on a
Hilbert space is not so well developed since these groups are mostly not of type I.
By Thoma’s theorem, a discrete group is of type I if and only if it has an abelian
subgroup of finite index.
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This implies a violation of the main principles of representation theory on
Hilbert spaces: non-uniqueness of the decomposition into irreducible components;
too bad topology of the unitary dual space; non-existence of characters... . V.
S. Varadarajan wrote in 1989: “A systematic developement of von Neumann’s
ideas led eventually (in the 1950s) to a deep understanding of the decomposition
of unitary representations and to results which implied more or less that a rea-
sonable generalization of classical Fourier analysis and representation theory could
be expected only for the so-called type I groups; i.e. groups all of whose factor
representations are of type I”[70].

We can also say that the class of unitary representations is too restrictive for
the arithmetic purposes.

On the other hand, there exists a theory of smooth representations for p-adic
algebraic groups. This theory is also valid for a more general class of totally dis-
connected locally compact groups. Discrete groups are a simple particular case of
this class of groups and the general theory delivers a reasonable class of represen-
tations, namely representations on a vector space without any topology. The new
viewpoint consists in a systematic consideration of purely algebraic representations
in place of unitary representations on Hilbert spaces.

Following [63], we consider now this representation theory for the discrete
Heisenberg groups G = (H, H', C, (—, —)) where all three groups are finitely gener-
ated. We introduce the complex tori Ty = Hom(H,C*), Ty = Hom(H’,C*) and
T¢ = Hom(C,C*), and set Tg = Ty X Ty x Te. The group H is homomorphically
mapped to Ty according to the rule:

h e Hw— {h — xc((h, 1))} (19)

Denote the kernel of this map by H,. If x € Ty then let h(x) be the translate
of the character x by the image of h in Tg-. We have h(xu/)(p) = xu (p)xc((h,p))
for any p € H'. For any x € Tg,x = Xz @ xa’ ® Xxc, let G, = H, H'C be the
subset in G. Then G, is a normal subgroup in &, which depends only on x¢ and
X|Gy is a character of the group G, [65].

Definition 3. Let V) be the space of all complex-valued functions f on G
which satisfy the following conditions:

1. f(gh) = x(h)f(g) for all h € G,.

2. The support Supp(f) is contained in the union of a finite number of left
cosets of G.

Left translations define a representation m, of the group G on the space V,. One
can prove that these representations m, are irreducible in both possible senses:
there are no nontrivial invariant subspaces, and the Schur lemma holds. Fur-
thermore, these representations can be completely classified. Namely, the repre-
sentations V,, and V,. are equivalent if and only if three following conditions are
satisfied:

1. xc = Xx¢-
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2. There exists h € H such that x, = h(xa)-

3. Xg(h) = xu(h) for all h € H, or equivalently there exists t € Ty, =
Hom(H/H,,C*) C Ty such that Xy = t(x#).

Here the torus T/, acts on the ambient torus Ty by translations. The equiv-
alence classes of representations V) therefore correspond to orbits of the groups
Ta/m, x H/Hy in subsets Ty x Ty x {xc} of the torus T .

The group G is a semidirect product of the groups H and H'C and the main
tool for obtaining the results stated above is the Mackey formalism [43] which de-
scribes the category of induced representations for semi-direct products of abelian
locally compact groups. In the classical theory, this is well-known for unitary rep-
resentations on Hilbert spaces. In our case, we can use the version of this formalism
developed in the theory of representation of p-adic reductive groups [4, 15, 71].

The restriction of functions from the group G to the subgroup H defines a
bijection of V,, with a certain space of functions on H. This space has an explicit
basis and we can now define the character of the representation 7, as the matrix
trace of the representation operators m,(g) with respect to this basis. It is easy
to see that in many cases the corresponding infinite sum of diagonal elements will
diverge. The simplest example is the group Heis(3,7Z), see (17).

It is nevertheless possible to define the character if we apply a well-known
construction from the theory of loop groups [64][ch. 14.1]. Namely, we have to
add some ”loop rotations ” to the group G . In our context, this means that
the group G has to be extended to a semi-direct product G = G x A, where
A C Hom(H, H') is a non-trivial subgroup.

In the case of the group I'pc = Heis(3,Z), this extension is suggested by
the existence of the group of coordinate transformations on the surface X (see
(12)). According to the analogy between algebraic and arithmetic surfaces we
discussed above, these coordinate transformations in the two-dimensional local
field Fy((w))((t)) indeed correspond to the loop rotations in the field C((¢)).

To construct the group G = G x A, one needs to extend the automorphisms of
the abelian groups H @ H' to the automorphisms of the entire Heisenberg group.
Note that the group A acts on H & H' by unipotent transformations. When we
fix an r € H and choose k € A, the expression

k(m,p,c) = (m,p+k(m),c+1/2(m —r,k(m))) me Hpe H,ce C
defines an automorphism of the group G if the following conditions hold:
1. (m,k(m'))y = (m/,k(m)) for all m,m’ € H
2. (m —r,k(m)) €2C for all m € H.

When k(H,) C Ker(xn+) the representation of G on V, can be extended to a
representation 7, of the extended group G on the same space. Let

(Te x A)4 :={x € Tc,k € A:| xc((n,k(n))) |<1forall n € H/H,,n # 0}
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be a relation in T¢ x A, let A(x) be the projection of the set (T x A)+N({x} x A)
to A and let G(x) = G x A(x) C G.

We can now solve the existence problem for the characters. The trace Tr 7, (g)
exists for all g € G(x) and we have

Tr 1y (9) = xu(m)xm (P)xcle) - Y xa(k(n)xc((n,p) +1/2(n = r,k(n))).
neH/Hy

for g = (m,p,c, k), k € A(x), m € H,. The trace is zero if m does not belong to
H,.

The trace is well-defined, but does not determine a function on the set of
equivalence classes of representations. To overcome this difficulty, we have to
consider representations of the extended group G.

Let T4 = Hom(A,C*) and T = Tg x Ta. If X = (X, xa) € T4, then we set
Ty = Ty @ XA-

We therefore have Tr 7y = Tr 7, - x4. For a given g € G’(X), the trace Tr 74 (g)
can be considered as a function on the domain 77 = Ty X Ty x Ta(k) x T4 in
the torus T, where Tc(k) is the projection of the set (T¢ x A)4 N (T¢ x {k}) to
the torus Tc.

Let us define an action of the group Ty, < H on the set Ty x Tys X {xc} X
T4 C T’ by the formula

(t, 1) (X, a7 Xos xa) = (), h(xa)s xos X a), (20)

where
Xa(k) = xa(k)xa (k(h)xc(1/2(h — r, k(h))), k € A.

We define the space Mg (k),k € A as the quotient of the domain 7" by this
action. The quotient-space is a complex-analytic manifold, in fact a fibration
over a domain in Tc. For a given g = (m,p,c, k) € G(x) the trace Tr 74(g) is
invariant, under a simple additional condition, under the action (20) and defines a
holomorphic function F, = F,(x) on Mg(k). We now obtain the main property
that the characters must enjoy:

Let x, )2/ € Ty. The representations 7y and 7/ are equivalent if and only if
G(x) = G(x'") and F,(x) = F,(’) for all g € G(x).

Thus we see that the space Mg (k) is actually a moduli space for a certain class
of representations of G.

Let us consider the simplest example, that of the group Heis(3,Z). Let A =
7 = Hom(H,H'), r =1, G = G xZ and yc(c) = X, xc € Te(k > 0) where
Tc(k > 0) = {0 < |A] < 1}. Then Ty //ImH =: E) is an elliptic curve, where
2z € Ty = C*, ImH = {\?}. We have a degree map

Pic(Ey\) = H'(E\,0*) = H'(H,0*(Tg')) — Hom(H, H') = A,
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and
Pic(Ey) = {p(n, 2) = a "z k) 71/2knn=1) g c € k€ A=17}.
Let L be the line bundle which corresponds to a 1-cocycle ¢. Then

HO(Ex, L) = {f(2),2 € T : f(\"2) = ¢(n, 2)f(2)}.
The theta-series

ﬁp,k,a(za )\) — P Z anzkn)\anrl/an(nfl)
nez

(which are the Poincaré series with respect to ¢) converge for all z € C*, 0 < |A\| <
1, k> 0, and form a basis of the space H°(Ej, L) for 0 < p < k. Finally,

Tr 74(0,p, ¢, k) = ANt*0, 1.1(2,\), (2,\) € Ag(k), t € Ta. (21)

In this case, the theta-series lifted to Ag(k) = C x {upper halfplane} are Jacobi
modular forms (up to some powers of A and z) with respect to the standard action
of a finite index subgroup of the group (Z @ Z) x SL(2,Z)). This last statement
is completely parallel to a well-known property of characters for representations of
affine Kac-Moody algebras [31, 64].

In the more general situation in which H and H’ are torsion-free groups and
C =127, |xc(c)] # 1 for ¢ # 0, the map k : H — H' is a monomorphism with finite
cokernel, A = Zk and the form (—,k(—)) is positive-definite, we have two dual
abelian varieties £ = Ty /ImH and E' = Ty /ImH’ with the Poincaré bundle P
over E X E’. The morphism k defines an isogeny ¢y : £ — E’ and the sheaf L is
defined as (Id x ¢p)*P. By Mumford’s theory [44], there exists a finite Heisenberg
group I/(E}(gok), which is a central extension of the group Ker(yg). Then for all
g = (m,p,c,k) € G(x) the values of the characters Tr 75 (g)xg (¢)x 5 (k) are
theta-functions for the bundle L.

If x =1®xa ®xc®1, then the functions Tr 74 (0,p, 0, k) for p € H'mod k(H)
form a basis of the space H°(E,L). This basis is a standard Mumford basis for
the action of the Heisenberg group I?&(gok) = (H'/H, Ty, C*) on the space
HY(E,L).

In addition, certain orthogonality relations are satisfied by the characters [63].

The boundary of the domain T¢(k) can contain those characters xo € T¢ for
which H,, has a finite index in H. These characters correspond to the roots of
unity in C*, so that the representations m,, are finite-dimensional. Let V = H®R
and @ be the extension of the pairing (n,k(n)), n € H to the space V. Also, let
xc(c) = A€ and let us choose a boundary point xo. The classical limit formulas for
theta-functions imply the following behavior of the trace near the xo (we assume
that xg =1 and x% = 1):

. N _ _ T, _1,
Tr 5 (g) ~ Tr 7y, (9)-[H : Hy,) ™ (Dety Q) 1(%) K 1og A 72" when ¢ — xo.
(22)



20 A. N. Parshin

The trace of the representation 7y, can be computed in terms of a Gauss sum.

Thus, we see that, in our situation, the change in the class of representations
will cause the moduli spaces of induced representations to be complex-analytic
manifolds. Characters do exist and are the modular forms. It seems that this
more general holomorphic dual space is more adequate for this class of groups
than the standard unitary dual which goes back to the Pontrjagin duality for
abelian groups.

5. Problems and Perspectives

We collect here several problems related to the issues we have discussed in the talk.

1. Harmonic analysis for local fields and adelic groups of arbitrary
dimension n.

The basic category for this study has to be the category C,, [49] and its version
that includes fields of the archimedean type [51]. When one tries to extend the
measure theory and harmonic analysis to n-dimensional local fields and adelic
groups for n > 2 the following problem arises. The selection rules become too
severe to go further in a straightforward way. This obstacle appears already for
n-dimensional local fields with n = 3. We can define the spaces analogous to D(V)
or D/(V) only under some strong restrictions on the groups V (= objects in C,,).
Note that spaces such as (V) can be easily defined for any n and arbitrary group
V.

2. The Tate-Iwasawa method for two-dimensional schemes.

J. Tate [68] and independently K. Iwasawa [29] reformulated the classical prob-
lem of analytic continuation for zeta- and L- functions for the fields of algebraic
numbers and the fields of algebraic functions in one variable over a finite field.
They introduced a new type of L-functions:

o) = [ Fan@lalds

where d* g is a Haar measure on A*, the function f belongs to the Bruhat-Schwartz
space of functions on Ay and y is an abelian character of the group A* associated
to a character

X : Gal(Kab/K) — C*

of the Galois group by the reciprocity map A* — Gal(K ab /K) . They also proved
the analytic continuation of L(s,x, f) to the entire s-plane and the functional
equation

L(57X’ f) = L(l -5 XﬁlaF(f))
by means of the Fourier transform F and the Poisson formula for functions on A x

(8), (9)-

For a special choice of f and xy = 1 we obtain the zeta-function

(x(s) =[] (1= (#k()~") ",

zeX
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of any scheme X of dimension one (to which we have to add, if necessary, the
archimedean factors). Here x runs through the closed points of X. The product
converges for Re(s) > dimX.

There exists a general Hasse-Weil conjecture [23, 73] which asserts that these
zeta- (and more general L-) functions can be meromorphically extended to the
entire s-plane and satisfy the functional equation (for regular proper schemes X
of dimension n) of the type (x(n — s) = {elementary factors} (x(s).

This conjecture has been completely proved for algebraic varieties defined over
a finite field F,. For this goal the powerful machinery of the étale cohomology
has been developed by A. Grothendieck. For schemes over Spec(Z), the general
results are known only in dimension one, thanks to the Hecke’s theorem. Later this
was included into the Tate-Iwasawa approach. At the same time, this approach
works for algebraic curves defined over F,;. For the higher dimensions over Spec(Z),
there are only scattered results; however these include the proof of the Hasse-Weil
conjecture for elliptic curves over Q [75, 8.

For a long time the author has advocated the following

Problem. Extend Tate-Iwasawa’s analytic method to higher dimensions (see
in particular [58]).

The higher adeles were introduced precisely for this purpose. We hope that
harmonic analysis and representation theory of adelic groups on two-dimensional
schemes may help to solve this problem.

3. Behavior of zeta- and L-functions in the critical strip.

The critical strip for the ordinary Riemann’s zeta-function is 0 < R(s) < 1
and this zeta-function (with an archimedean factor) has there exactly two poles,
both of first order. For the two-dimensional case, the critical strip is wider, namely
0 < R(s) < 2. Take as X a model over Spec(Z) of an elliptic curve E defined over
Q. The Birch and Swinnerton-Dyer conjecture [5, 69] states that

4@,
s—1 ¢ () DetE(Q)<—, —> #1111

Cx(s) (s—1)772 (23)
where E(Q) is the finitely generated Mordell-Weil group of rational points on FE,
r is its rank, (—, —) is the height pairing, € is the real period of the curve, III is
the Shafarevich-Tate group and c is a product of certain local invariants.

Many years ago several people, including the author, have independently ob-
served that this limit behavior is very similar to the limit behavior of a theta-
function attached to a lattice. Namely, let V/R be a finite dimensional euclidean
vector space of dimension n. Denote by (—, —) the scalar product on V. Let '
be a finitely generated abelian group such that T @ R = V and let IV = T'/T4,,
be the corresponding lattice (= a discrete co-compact subgroup) in V. Then the
theta-function 6r(t) is defined as

Or(t) = Y e ™ = #Ty,, - Op(t)
yerl
and satisfies the functional equation

Or/(t) = t=% Vol(I') Yoo (t71)
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where TV+ C V is the dual lattice and the volume of the fundamental domain for
I is Vol(I') = det({e;, e;)) with {e;} a basis of the free Z-module I".
In particular, we get

br(t) ~ #T 0, VoI(I')"5¢75

If we apply this asymptotic formula to the group I'  I' then we get

#F?or t—r—2

Orar(t) ~, Detr(—, ) ; (24)

which looks rather similar to the conjecture (23) if we take as I' the group E(Q) @&
Z ®Z. D. Zagier has devoted to this relation a note [77] with many interesting
remarks and observations. In particular, he discussed the question of interpreting
such factors as Q and #III which are not visible in the theta-formula (24).

In order to clarify the situation, let us look at the corresponding behavior of
the zeta-function of an algebraic surface X defined over IF;. The analogy between
geometric surfaces over F, and arithmetic surfaces such as this model X of E
suggests that this may be a useful move.

The value of the zeta function at s = 1 is given by the conjecture of Artin and
Tate [69, 45]. We assume that X is a smooth proper irreducible surface. Denote
by p = rk NS(X) the rank of the Neron-Severi-group of X and let {D;} with
D, € NS(X) i =1,...,p be a basis of € NS(X) ® Q. Denote by D, - D; their
intersection index. Let Br(X) = H?(X.;, Ox) be the Brauer group of X. Then
the group Br(X) is conjectured to be finite and the following relation holds:

Cx(s) ~ (=1)P71 qx(Ox) #Pic(X)Z,,

0 * )2 . D. (1 *qlis)_p )
s—1 #HO(X,0%)? #Br(X) det((D; - D;))

Within the framework of the analogy between geometry and arithmetic [61], the
group NS(X) corresponds to the group E(Q) ®Z @ Z, the intersection index corre-
sponds to the height pairing, the period € corresponds to ¢X(©x) and the Brauer
group to the Shafarevich-Tate group III.

Since (1 — ql_s)_p
functions related to the lattice NS(X) may have this kind of the limit behavior.
An immediate objection to this suggestion is that the intersection pairing is not
positive-definite. This can be resolved if we consider the Siegel theta-functions
attached to indefinite quadratic forms.

The case of surfaces makes it clear that this question is highly non-trivial.
Zeta-functions of algebraic varieties over F, are very simple analytic functions.
Indeed, according to Grothendieck’s theory, they are equal to F(¢~*°) where F(t)
is a rational function of a variable ¢t. The theta-functions involved are certainly
transcendental functions, which cannot be simplified in this way by substitution.
Thus the problem we arrive at is to understand how theta-functions can appear
in this setting in a natural way, and how to relate them to zeta-functions. We
conjecture that the theta-functions which occur into the traces of representations of

~ (s —1)7?(logq)~?, we again guess that certain theta-
55—
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the adelic groups constructed above could be such theta-functions. Their behavior
in the limit (22) has the structure we have just described.

It is worth mention another problem, the so called S-duality conjecture, which
is quite close to what have been discussed here. The problem came from the
quantum field theory [72] but has purely algebraic formulation for an algebraic
surface X over a finite field F, (see a discussion in [32]). Let M, ,, be a moduli
space of semi-stable vector bundles £ on X with given rank r, trivial determinant
and the second Chern class ca(F) = n. Then the formal series

> #M o (F)g ™

is expected to have under mild conditions on X a modular behavior with respect
to a congruence subgroup of the group SL(2,7Z). It is remarkable that the tran-
scendental functions appear once more in relation to a surface defined over a finite
field.

4. Representations of discrete nilpotent groups.

i) The representations m, and 7y of the discrete Heisenberg groups are particu-
lar examples of the irreducible representations of these groups. Thus, the problem
of classification of all irreducible representations arises. Of course, one needs to
impose certain conditions in order to get a reasonable answer. In the theory of uni-
tary representations for discrete nilpotent finitely generated groups G on a Hilbert
space such a condition was found in [9]. One says that a representation 7 of G on a
space V has the finite multiplicity property if there exists a subgroup H C G which
preserves a line [ in V' and such that the character of H defined by the action of H
on [ occurs in 7|p as a discrete direct summand with finite multiplicity. Then the
class of irreducible representations with this property coincides with the class of
irreducible monomial (= induced by an one-dimensional character) representations
of G.

It is highly desirable to define in our algebraic situation a class of “basic”
induced representations which will play the role that the Verma modules or repre-
sentations with highest weight do for the representations of reductive Lie groups
(or algebraic groups). This is closely related to a problem of classification of (say,
left) maximal ideals in the group ring of G.

ii) The moduli spaces M (k) defined above are orbit spaces for group actions.
This construction looks very similar to the Kirillov’s orbit method for connected
real (or complex) nilpotent Lie groups G (or nilpotent algebraic groups over Q)
[39] where the unitary dual is the space g*/G of co-adjoint orbits in the dual
g* of the Lie algebra g of G. Attempts to extend Kirillov’s method to finitely
generated nilpotent groups were made in [24, 36] (see also [6]). It seems that there
is a general functorial definition of spaces such as M¢(k) for arbitrary nilpotent
discrete groups which will replace the spaces g*/G in this situation, just as the
torus T may be an analogue of the space g*. The Kirillov’s character formula
may also exist in this situation.

iii) When one tries to apply the representation theory developed in section 5
to the nilpotent groups which arise from the algebraic surfaces X (section 4), one



24 A. N. Parshin

immediately observes that:

1) the groups like Ty are not finitely generated;

2) the groups like (Pic(X), Pic(X), CH (X)) are equipped with the indefinite
form (—, —).

Certainly, the representation theory cannot be automatically extended to the
case of infinitely generated groups. In our case, the “big” group ['x is the adelic
product of simplest Heisenberg groups I p,c and consequently is an inductive limit
of finite products of these local groups. We can easily extend all the representation-
theoretic constructions to the case of I'x if we apply the technique from the theory
of adelic products of reductive algebraic groups over 1-dimensional local fields.
The role of the compact subgroups is now played by co-finite products of the local
Heisenberg groups.

The problem 2) can also be solved. A solution is based on using the Siegel
theta-functions for indefinite quadratic forms that are well suited for this situation.

iv) An important problem is to develop an analysis on discrete Heisenberg
groups G, in particular, to define appropriate function spaces on G , the analogue
of the map L (see (8) in section 3) and to obtain a Plancherel-type theorem which
relates the function spaces on G and spaces of holomorphic (or meromorphic)
functions on Mg (k).

v) There exists a general question of the decomposition into the irreducible
components of representations of discrete nilpotent groups. It is known that the
regular representation (on the L2-space on G) of a discrete group G' may have
very different decompositions into irreducible components (see a first example of
this kind in [43]). On the other hand, in our situation there is a rather con-
crete problem: how does one decompose the natural fundamental representation
of the group I'x (and locally of the groups I'p¢) on the spaces Dy,,(Ax)°" or

1% 1%
Or.c or DbPYC(Kp,C)OPTC) on a surface

Dy, (Ax)©" (respectively in Do, (Kpc)
X7

vi) Our theory deals with the discrete “part” of the adelic group A% = GL(1,Ax).
D. Gaitsgory and D. Kazhdan have extended the traditional theory of represen-
tations for reductive p-adic groups (parabolic induction, Jacquet functor, cuspidal
representations) to the case of groups GL(n, K) where K is a two-dimensional lo-
cal field (and of more general reductive groups)[18, 19, 20]. An important and
certainly very hard problem is to merge these two theories, at least for the group
GL(2,Ax).

vii) For the schemes of dimension two, we constructed discrete Heisenberg
groups, which are nilpotent groups of class 2. It is possible to associate certain dis-
crete adelic groups to schemes of arbitrary dimension n and that are the nilpotent
groups of class n.

In this text, we mainly gave a review of certain recent advances in the higher
adelic theory. During the last thirty years, this theory was developed in many
different directions. We finish with a short list of these developements®:

e residues and symbols [53, 54, 17, 76, 11, 12, 13, 37, 38, 47, 67, 52]

8This list of references does not pretend to be complete.
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e class field theory for higher dimensions: the author, K. Kato and his school,

S. V. Vostokov and his school, see surveys [17, 16, 28, 66]

e adelic resolutions for sheaves, intersection theory, Chern classes, Lefschetz

formula for coherent sheaves [55, 76, 26, 27, 21, 22]

e algebraic groups over local fields, buildings, Hecke algebras [56, 60, 34, 18,

19, 20, 7]

e restricted adelic complexes and the Krichever correspondence [59, 46, 48,

40, 41]

e relations with non-commutative algebra [57, 78].

References

1]

[10]
[11]
[12]
13]

[14]

Algebraic Number Theory, Ed. J. W. S. Cassels and A. Frohlich, Academic Press,
London-New York, 1967.

E. Arbarello, V. G. Kac, C. De Concini, The Infinite Wedge Representation and the
Reciprocity Law for Algebraic Curves, Comm. Math. Phys., 117 (1988), 1-36.

A. A. Beilinson, Residues and Adeles, Func. Anal. Appl., 14, no. 1 (1980), 34-35.

J. N. Bernstein, A. V. Zelevinsky, Representations of the group GL(n, F), where F
is a local non-archimedian field, Russian Math. Surveys, 31(1976), 1-68.

B. Birch, H. P. F. Swinnerton-Dyer, Notes on elliptic curves I, Il , Journ. Reine u.
Angew. Math. 212 (1963), 7-25; 218 (1965), 79-108.

Mitya Boyarchenko, Maria Sabitova, The orbit method for profinite groups and p-adic
analogue of Brown’s theorem, e-print arXiv: mathRT/0608126.

A. Braverman, D. Kazhdan, Some examples of Hecke algebras for two-dimensional
local fields, Nagoya Math. J., 184 (2006), 57-84.

C. Breuil, B. Conrad, F. Diamond, R. Taylor, On the modularity of elliptic curves
over Q: wild 8-adic exercises, J. Amer. Math. Soc., 14 (2001), no. 4, 843-939.

I. D. Brown, Representation of finitely generated nilpotent groups, Pacif. J. Math.,
45 (1973), 13-25.

F. Bruhat, Distributions sur un groupe localement compact et applications a l’étude
des représentations des groupes p-adiques, Bull. Soc. Math. France, 89 (1961), 43-75.

J.-L. Brylinski, D. A. McLaughlin, Multidimensional reciprocity laws, J. Reine
Angew. Math. 481 (1996), 125-147.

J.-L. Brylinski, D. A. McLaughlin, Characteristic classes and multidimensional reci-
procity laws, Math. Res. Lett. 3 (1996), No.1, 19-30.

J.-L. Brylinski, D. A. McLaughlin, The geometry of two-dimensional symbols, K-
Theory 10 (1996), No.3, 215-237.

M. Burger, Analyse Harmonique sur les groupes de Heisenberg généralisés,
Monatsch. fir Math., 98 (1984), 29-40.



26 A. N. Parshin

[15] P. Cartier, Representations of p-dic groups: a survey, Automorphic forms, represen-
tations and L-functions, Proc. Symposia in Pure Math., 33 (1979), Part 1, Amer.
Math. Soc., Providence, RI, 1979, 111-155.

[16] I. B. Fesenko, S. V. Vostokov, Local fields and their extensions. A constructive ap-
proach, Amer. Math. Soc., Providence, RI, 1993, 283pp.

[17] T.Fimmel, A. N. Parshin, An introduction to the higher adelic theory, preprint 1999.

[18] D. Gaitsgory, D. Kazhdan, Representations of algebraic groups over a 2-dimensional
local field, Geom. and Funct. Analysis, 14 (2004), n 3, 535-574; arXiv math.
RT/0302.174.

[19] D. Gaitsgory, D. Kazhdan, Algebraic groups over a 2-dimensional local field: ir-
reducibility of certain induced representations, J. Differ. Gom. 70 (2005), No. 1,
113-127 (2005); arXiv: math/0409543.

[20] D. Gaitsgory, D. Kazhdan, Algebraic groups over a 2-dimensional local field: some
further constructions, Bernstein, Joseph (ed.) et al., Studies in Lie theory. Dedi-
cated to A. Joseph on his sixtieth birthday. Progress in Mathematics 243, Basel:
Birkhauser, 2006, 97-130; arXiv: math/0406282.

[21] S. O. Gorchinskiy, A. N. Parshin, Adelic Lefschetz formula for the action of a one-
dimensional torus, Uraltseva, N.N.(ed.), Proceedings of the St. Petersburg Math-
ematical Society. Vol. XI. . Translations. Series 2. Amer. Math. Soc. 218 (2006),
31-48; e-print arXiv: math/0408058.

[22] S. O. Gorchinskiy, An adelic resolution for homology sheaves, Izvestiya: Mathemat-
ics 72 (2008), No. 6, 1187-1252; e-print arXiv: math/0705.2597.

[23] H. Hasse Zetafunktionen und L-Funktionen zu einem arithmetischen Funktionenkr-
per vom Fermatschen Typus, Abh. S. Akad. Wiss. Berlin Math. K1. (1954), 570 (=
Helmut Hasse, Mathematische Abhandlungen, Band 2, Berlin-New York: Walter de
Gruyter, 1975, S. 450).

[24] R. E. Howe, On representations of discrete, finitely generated, torsion-free, nilpotent
groups Pacif. J. Math. 73 (1977), 281-305.

[25] A. Huber, On the Parshin-Beilinson Adeles for Schemes, Abh. Math. Sem. Univ.
Hamburg 61 (1991), 249-273.

[26] R. Hiibl, A. Yekutieli, Adeles and differential forms, J. Reine u. Angew. Math. 471
(1996), 1-22.

[27] R. Hubl, A. Yekutieli, Adelic Chern forms and applications, Am. J. Math. 121
(1999), No.4, 797-839.

[28] Invitation to higher local fields (Minster, 1999), (ed. 1. Fesenko, M. Kurihara),
Geom. Topol. Monogr., 3, Geom. Topol. Publ., Coventry, 2000, 304pp.

[29] K. Iwasawa, A note on functions, Proc. Intern. Congres Math. (1950), Cambridge,
Mass., 1950, vol.2, 322.

[30] V. G. Kac, D. H. Peterson, Spin and wedge representations of infinite-dimensional
Lie algebras and groups, Proc. Nat. Acad. Sci. USA 78 (1981), 3308-3312.

[31] V. G. Kac, D. H. Peterson, Infinite-dimensional Lie algebras, Theta-functions and
Modular Forms, Advances in Math. 53(1984), 125-264.

[32] M. M. Kapranov, The elliptic curve in the S-duality theory and Eisenstein series for
Kac-Moody groups, e-print arXiv:mathAG/0001005.



Representations of Higher Adelic Groups and Arithmetic 27

[33] M. M. Kapranov, Semiinfinite symmetric powers, e-print arXiv: math.QA /0107089.

[34] M. M. Kapranov, Double affine Hecke algebras and 2-dimensional local fields, J.
Amer. Math. Soc., 14 (2001), n 1, 239-262; e-print arXiv math.AG/9812021.

[35] D. A. Kazhdan, Fourier transform over local fields, Milan J. Math. 74 (2006), 213-
225.

[36] K. P. Kokhas’, Finite factor representations of 2-step milpotent groups and orbit
theory, Zap. Nauchn. Semin. POMI 307, 120-140, 282 (2004); translation in J. Math.
Sci., New York 131 (2005), No. 2, 5508-5519.

[37] A. G. Khovanskii, An analog of determinant related to Parshin-Kato theory and
integer polytopes, Funct. Anal. Appl. 40 (2006), No. 2, 126-133.

[38] A. G. Khovanskii, Logarithmic functional and reciprocity laws, Toric topology: in-
ternational conference, May 2008, Contemporary Mathematics, Vol. 46 (2008).

[39] A. A. Kirillov, Lectures on the orbit method, Graduate Studies in Mathematics, vol.
64, Providence, RI: Amer. Math.Soc. 2004, xx, 408 p.

[40] H. Kurke, D. V. Osipov, A. B. Zheglov, Formal punctured ribbons and two-
dimensional local fields, J. Reine u. Angew. Math. 629 (2009) , 133-170; e-print
arXiv: math/07080985.

[41] H. Kurke, D. V. Osipov, A. B. Zheglov, Formal groups arising from formal punctured
ribbons, Intern. J. Math. 21 (2010), 755-797. to appear; e-print arXiv:0901.1607.

[42] S. Lefschetz, Algebraic topology, AMS Colloquium Publications 27, Amer. Math.
Soc. New York, 1942.

[43] G. Mackey, On induced representations of groups, Amer. J. Math. 73 (1951), 576-
592.

[44] D. Mumford, On equations defining abelian varieties I, Inv. Math., 1 (1966), 287-
354.

[45] J. S. Milne, On a conjecture of Artin and Tate, Ann. of Math. 102(1975), 517-533.

[46] D. V. Osipov, The Krichever correspondence for algebraic varieties, Izvestiya. Math-
ematics 65(2001), no. 5, 941-975; arXiv: math/0003188.

[47] D. V. Osipov, Central extensions and reciprocity laws on algebraic surfaces, Sbornik:
Mathematics 196, N 10 (2005), 1503-1527; see also arXiv: math.NT/0501155.

[48] D. V. Osipov, n-dimensional local fields and adeles on n-dimensional schemes, Sur-
veys in Contemporary Mathematics, Edited by N. Young, Y. Choi; London Mathe-
matical Society Lecture Note Series, vol. 347 (2007), pp. 131-164, Cambridge Uni-
versity Press; e-print math.AG/0508205.

[49] D. V. Osipov, Adeles on n-dimensional schemes and categories Cy, Intern. J. Math.,
18 (2007), no. 3, 269-279; e-print arXiv: math.AG/0509189.

[50] D. V. Osipov, A. N. Parshin, Harmonic analysis on local fields and adelic spaces I,
Izvestiya: Mathematics, 72 (2008), 915-976; e-print arXiv: math/0707.1766.

[51] D. V. Osipov, A. N. Parshin, Harmonic analysis on local fields and adelic spaces II,
Izvestiya: Mathematics (to appear); e-print arXiv: math/0912.1577.

[62] Denis Osipov, Xinwen Zhu, Categorical proof of Parshin reciprocity laws on algebraic
surface, e-print arXiv: math.AG/1002.4848.



28 A. N. Parshin

[63] A. N. Parshin, Class fields and algebraic K -theory, Uspekhi Mat. Nauk. 30 (1975),
253-254 (in russian).

[54] A. N. Parshin, On the arithmetic of two-dimensional schemes I. Repartitions and
residues, Math. USSR Izvestiya 10 (1976), No.4, 695-729.

[65] A. N. Parshin, Chern classes, adeles and L-functions, J. Reine u. Angew. Math.,
341 (1983), 174-192.

[66] A. N. Parshin, Vector Bundles and Arithmetical Groups I, Proc. Steklov Inst. Math.
208 (1995), 212-233; e-print arXiv: alg-geom/9605001.

[57] A. N. Parshin, On a ring of formal pseudodifferential operators, Proc. Steklov Inst.
Math. 224 (1999), 266-280; e-print arXiv: math/9911098.

[68] A. N. Parshin, Higher-dimensional local fields and L-functions, Invitation to higher
local fields (Miinster, 1999), 199-213, Geom.Topol. Monogr., 3, Geom. Topol. Publ.,
Coventry, 2000; e-print ArXiv: math.AG/0012151.

[69] A. N. Parshin, Integrable systems and local fields, Commun. Algebra 29(2001), No.9,
4157-4181; e-print ArXiv: math.AG/0912.1520.

[60] A.N. Parshin, Vector Bundles and Arithmetical Groups II, Proc. Steklov Inst. Math.
241 (2003), 179-191.

[61] A. N. Parshin, Numbers as functions: the development of an idea in the Moscow
school of algebraic geometry, Bolibruch, A.A. (ed.) et al., Mathematical events of the
twentieth century. Berlin: Springer; Moscow: Phasis., 2006, 297-329; e-print arXiv:
math/0912.3785.

[62] A.N. Parshin, Notes on the Poisson formula (Lectures on Representations of Adelic
groups. Part I), Saint-Petersburg, POMI, November 2009, and Moscow, MIAN, De-
cember 2009, to appear.

[63] A. N. Parshin, On holomorphic representations of discrete Heisenberg groups, Funct.
Anal. Appl., 44 (2010), N 2, 92-96.

[64] A. Pressley, G. Segal, Loop groups, Oxford, 1986.

[65] T. Pytlik, L'-harmonic Analysis on Semi-Direct Products of Abelian groups, Mh.
Math., 93 (1982), 309-328.

[66] W. Raskind, Abelian class field theory of arithmetic schemes, (Jacob, Bill (ed.)
et al.), K-theory and algebraic geometry: connections with quadratic forms and
division algebras. Proc. Symp. Pure Math. 58, Part 1, Amer. Math. Soc., Providence,
RI, 1995, 85-187.

[67] 1. Soprounov, Residues and tame symbols on toroidal varieties, e-print arXivimath
AG/0203114.

[68] J. Tate, Fourier analysis in number fields and Hecke’s zeta-function, Thesis, Prince-
ton, 1950 (published in [1]).

[69] J. Tate, On the conjectures of Birch and Swinnerton-Dyer and a geometric analog,
Séminaire Bourbaki, 1965/66, exp. 306, 26pp.

[70] V.S. Varadarajan, An introduction to Harmonic analysis on semisimple Lie groups,
Cambridge University Press, 1989.

[71] M.-F. Vignéras, Représentations l-modulaires d’un groupe réductif p-adique avec
l # p, Birkh&user, 1996.



Representations of Higher Adelic Groups and Arithmetic 29

[72] C. Vafa, E. Witten, A strong coupling test of S-duality, Nucl. Phys. B 431 (1994),
3-77.

[73] A. Weil, Number theory and algebraic geometry, Proc. Intern. Congr.
Math.(Cambridge, 1950), vol. 2, 90-110 (= André Weil. Collected Papers,Vol. 1
(1926-1951). Heidelberg-Berlin:Springer, 1980 , 442-452.

[74] A. Weil, Basic Number Theory, Springer-Verlag, Berlin, 1967.

[75] A. J. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2)
141 (1995), no. 3, 443-551.

[76] A. Yekutieli, An explicit construction of the Grothendieck residue complex,
Astérisque, 208, 1992.

[77] D. Zagier, The Birch-Swinnerton-Dyer conjecture from a naive point of view, Arith-
metic Algebraic Geometry, Birkh&user, Basel, 1991, 377-390.

[78] A. B. Zheglov, On wild division algebras over field of power series, Sbornik: Math-
ematics, 195 (2004), No. 6, 783-817.

Steklov Mathematical Institute, Russian Academy of Sciences, Gubkina str 8, 119991
Moscow, Russia
E-mail: parshin@mi.ras.ru



