
Imaging Science meets Compressed Sensing

Gitta Kutyniok

(TU Berlin)

joint with: David Donoho (Stanford Univ.) & Wang-Q Lim (TU Berlin)

BMS Friday Colloquium
January 6, 2012

Gitta Kutyniok (TU Berlin) Imaging Science meets Compressed Sensing BMS Friday Colloquium 1 / 41



Outline

1 The Separation Problem
Motivating Problems
Goal for Today

2 Imaging Science
Models for Image Data
Mathematical Approaches

3 Compressed Sensing
Compressed Sensing and Component Separation
Avalanche of Recent Work

4 Separation of Points and Curves
Wavelets and Shearlets
Algorithm and Asymptotic Separation Result

5 Conclusions

Gitta Kutyniok (TU Berlin) Imaging Science meets Compressed Sensing BMS Friday Colloquium 2 / 41



General Challenge in Data Analysis

Modern Data in general is often composed of two or more morphologically
distinct constituents, and we face the task of separating those components
given the composed data.

Examples include...

Audio data: Different instruments.

Imaging data: Cartoon and texture.

High-dimensional data: Lower-dimensional structures
of different dimensions.
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Separating Artifacts in Images, I

+ +

(Source: J. L. Starck, M. Elad, D. L. Donoho; 2005 (Artificial Data))
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Separating Artifacts in Images, II

+

(Source: J. L. Starck, M. Elad, D. L. Donoho; 2006)
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Separating Artifacts in Images, III

+

(Source: J. L. Starck, M. Elad, D. L. Donoho; 2006)
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Separating Artifacts in Images, IV

+ + +

(Source: J. L. Starck, M. Elad, D. L. Donoho; 2005)
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Problem from Neurobiology

Alzheimer Research:

Detection of characteristics of Alzheimer.

Separation of spines and dendrites.

(Confocal-Laser Scanning-Microscopy)
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Numerical Result

+

(Source: Brandt, K, Lim, Sündermann; 2010)
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Goal for Today

Neurobiological Data:
Observed signal x = x1 + x2.

x1 = Point structures.

x2 = Curvilinear structures.

Challenges for Today:

Mathematical methodology to derive the empirical results!

Fundamental mathematical concept behind the empirical results!
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What is

Modern Imaging Science?
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Numerous Tasks in Imaging Science

Denoising.

Deblurring.

Inpainting.

Component Separation.

Superresolution.

...
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Examples for Modeling of Image Data

Digital Model:

A ∈ R
N×N .

Continuum Model:

f ∈ L2([0, 1]2).

f ∈ D′(R2).

...

 What is a ‘natural’ image?
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Applied Harmonic Analysis Approach to Imaging Science

Exploit a carefully designed representation system (ψλ)λ∈Λ ⊆ L2(R2):

L2(R2) ∋ f −→ (〈f , ψλ〉)λ∈Λ −→
∑

λ∈Λ

〈f , ψλ〉ψλ = f .

Desiderata:

Special features encoded in the “large” coefficients | 〈f , ψλ〉 |.
Efficient representations:

f ≈
∑

λ∈ΛN

〈f , ψλ〉ψλ, #(ΛN) small

Methodology:

Modification of the coefficients according to the task.

Gitta Kutyniok (TU Berlin) Imaging Science meets Compressed Sensing BMS Friday Colloquium 14 / 41



Other Approaches to Imaging Science

PDE-based Methods:

Given an image f ∈ L2(R2).

Let g : [0,∞)× R
2 → R, g(0, x) = f (x).

Solve
F (t, x , g , ∂1g , ...) = 0, g(0, x) = f (x).
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Other Approaches to Imaging Science

PDE-based Methods:

Given an image f ∈ L2(R2).

Let g : [0,∞)× R
2 → R, g(0, x) = f (x).

Solve
F (t, x , g , ∂1g , ...) = 0, g(0, x) = f (x).

Variational Methods:

Given an image f ∈ L2(R2).

Introduce functionals Φ,Ψ : L2(R2) → R.

Solve
min
g

Φ(f − g) + µΨ(g).
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How does Compressed Sensing help

with Component Separation?
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‘Mathematical Model’

Model for 2 Components:

Observe a signal x composed of two subsignals x1 and x2:

x = x1 + x2.

Extract the two subsignals x1 and x2 from x , if only x is known.
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‘Mathematical Model’

Model for 2 Components:

Observe a signal x composed of two subsignals x1 and x2:

x = x1 + x2.

Extract the two subsignals x1 and x2 from x , if only x is known.

Isn’t this impossible?

There are two unknowns for every datum.

But we have additional Information:

The two components are geometrically different.

Gitta Kutyniok (TU Berlin) Imaging Science meets Compressed Sensing BMS Friday Colloquium 17 / 41



Birth of Component Separation using Compressed Sensing

Problem:
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Composition of Sinusoids and Spikes sampled at n points:

x = x01 + x02 = Φ1c
0
1 +Φ2c

0
2 = [ Φ1 | Φ2 ]

[

c01
c02

]

,

where

x , c01 , and c02 ∈ R
n.

Φ1 is the n × n-Fourier matrix ((Φ1)t,k = e2πitk/n).

Φ2 is the n × n-Identity matrix.

= + =
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Compressed Sensing

Observation:
Let A be an n × N-matrix, n << N. In many situations the seeked
solution c0 of x = Ac0 is sparse, i.e.,

‖c0‖0 = #{i : c0i 6= 0} is ‘small’.
=
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Compressed Sensing

Observation:
Let A be an n × N-matrix, n << N. In many situations the seeked
solution c0 of x = Ac0 is sparse, i.e.,

‖c0‖0 = #{i : c0i 6= 0} is ‘small’.
=

First idea: Solve...

(P0) min
c

‖c‖0 such that x = Ac

 This problem is NP-hart!

Basis Pursuit (Chen, Donoho, Saunders; 1998)

(P1) min
c

‖c‖1 such that x = Ac
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Intuition

{c : x = Ac}
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Exact Recovery by ℓ1 Minimization

Meta-Result: If

‖c0‖0 is sufficiently small,

A is sufficiently incoherent,

then
c0 = argminc‖c‖1 such that x = Ac .
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Exact Recovery by ℓ1 Minimization

Meta-Result: If

‖c0‖0 is sufficiently small,

A is sufficiently incoherent,

then
c0 = argminc‖c‖1 such that x = Ac .

Exemplary Result (Donoho, Elad; 2003)
Let A be an n × N-matrix with normalized columns, n << N, and let
c0 ∈ R

N satisfy

‖c0‖0 <
1

2

(

1 +
1

µ(A)

)

,

where the coherence µ(A) is defined by µ(A) = maxi 6=j |〈ai , aj〉|.
Then

c0 = argminc‖c‖1 such that x = Ac .
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Birth of Component Separation using Compressed Sensing

Composition of Sinusoids and Spikes sampled at n points:

x = x01 + x02 = Φ1c
0
1 +Φ2c

0
2 = [ Φ1 | Φ2 ]

[

c01
c02

]

.

Coherence of [Φ1|Φ2]:

µ([Φ1|Φ2]) = µ([F |I ]) = 1√
n
.
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Birth of Component Separation using Compressed Sensing

Composition of Sinusoids and Spikes sampled at n points:

x = x01 + x02 = Φ1c
0
1 +Φ2c

0
2 = [ Φ1 | Φ2 ]

[

c01
c02

]

.

Coherence of [Φ1|Φ2]:

µ([Φ1|Φ2]) = µ([F |I ]) = 1√
n
.

Theorem (Donoho, Huo; 2001)
If #(Sinusoids) + #(Spikes) = ‖(c01 )‖0 + ‖(c02 )‖0 < (1 +

√
n)/2, then

(c01 , c
0
2 ) = argmin(‖c1‖1 + ‖c2‖1) subject to x = Φ1c1 +Φ2c2.
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Component Separation using Compressed Sensing

Let x be a signal composed of two subsignals x01 and x02 :

x = x01 + x02 .

Desiderata for two orthonormal bases Φ1 and Φ2:

x0i = Φic
0
i with ‖c0i ‖0 small, i = 1, 2  Sparsity!

µ([Φ1|Φ2]) small  Morphological Difference!

Solve

(c∗1 , c
∗
2 ) = argmin(‖c1‖1 + ‖c2‖1) subject to x = Φ1c1 +Φ2c2

and derive the approximate components

x0i ≈ x∗i = Φic
∗
i , i = 1, 2.
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Two Paths
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Avalanche of Recent Work

Problem: Solve x = Ac0 with A an n × N-matrix (n < N).

Results using structured matrices A:

A is often to some extent given by the application.

When can c0 still be recovered and how fast?

Contributors: Candès, Donoho, Elad, Rauhut, Temlyakov, Tropp, ...

Results using random matrices A:

The ‘best’ A is a random matrix.

What is maximally possible if A can be freely chosen?

Contributors: Candès, Donoho, Pajor, Romberg, Tanner, Tao, ...

Remark: Matheon-Talk by Emmanuel Candès (June 20th).
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How can these Ideas be applied to

Separation of Points and Curves?
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Back to Neurobiological Imaging

Two morphologically distinct components:
◮ Points
◮ Curves

Choose suitable representation systems which provide optimally
sparse representations of

◮ pointlike structures −→ Wavelets
◮ curvelike structures −→ Shearlets

Minimize the ℓ1 norm of the coefficients.

This forces
◮ the pointlike objects into the wavelet part of the expansion
◮ the curvelike objects into the shearlet part.
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Empirical Separation of Spines and Dendrites

+

Wavelet Expansion Shearlet Expansion

(Source: Brandt, K, Lim, Sündermann; 2010)
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Wavelets

Definition:
The wavelet system associated with ψ ∈ L2(R2) is defined by

{ψj ,m(x) = 2jψ(

(

2j 0
0 2j

)

x −m) : j ∈ Z,m ∈ Z
2}.

Theorem:
Let f ∈ C 2(R2) except finitely many point singularities. Then wavelets
provide an optimally sparse approximation of f , i.e.,

‖f − fN‖22 ≤ C · N−1, N → ∞, where fN =
∑

λ∈ΛN

cλψλ.
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Beyond Wavelets...

Observation:

Wavelets can not approximate curvilinear singularities optimally
sparse.

Reason: Isotropic structure of wavelets:

2jψ(

(

2j 0
0 2j

)

x −m)

Intuitive explanation:
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Shearlets

Parabolic scaling:

Aj =

(

2j 0

0 2j/2

)

, j ∈ Z.

Orientation via shearing:

Sk =

(

1 k

0 1

)

, k ∈ Z.

Definition (K, Labate, Lim; 2006):
For ψ ∈ L2(R2), the associated shearlet system is defined by

SH(ψ) = {2 3j
4 ψ(SkAj · −m) : j , k ∈ Z,m ∈ Z

2}.
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Compactly Supported Shearlets

Theorem (Kittipoom, K, Lim; 2010):
Let ψ ∈ L2(R2) be compactly supported, and let ψ̂ satisfy certain decay
conditions. Then SH(ψ) = (ση)η forms a frame with controllable frame
bounds, i.e.,

A‖f ‖22 ≤
∑

η

|〈f , ση〉|2 ≤ B‖f ‖2 for all f ∈ L2(R2).

Theorem (K, Lim; 2010):
Let ψ ∈ L2(R2) be compactly supported, and let ψ̂ satisfy certain decay
conditions. Then SH(ψ) provides an optimally sparse approximation of f ,
i.e.,

‖f − fN‖22 ≤ C · N−2 · (log(N))3, N → ∞.
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Chosen Pair

Optimal for Pointlike Structures:
Orthonormal Wavelets are a basis with perfectly
isotropic generating elements at different scales.

Optimal for Curvelike Structures:
Shearlets (K, Labate, Lim; 2006) are a highly direc-
tional frame with increasingly anisotropic elements
at fine scales (−→ www.ShearLab.org).
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Separation Algorithm

Observed Object:
f = P0 + C0.

Subband Decomposition:
Wavelets and shearlets use the same scaling subbands!

fj = P0
j + C0

j , P0
j = P0 ⋆ Fj and C0

j = C0 ⋆ Fj .

ℓ1-Decomposition:

(P∗
j , C∗

j ) = argmin‖(〈Pj , ψλ〉)λ‖1 + ‖(〈Cj , ση〉)η‖1 s.t. fj = Pj + Cj
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Empirical Separation of Spines and Dendrites

+

Wavelet Expansion Shearlet Expansion

(Source: Brandt, K, Lim, Sündermann; 2010)
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Microlocal Model

Neurobiological Geometric Mixture in 2D:

Point Singularity:

P0(x) =
P
∑

i=1

|x − xi |−3/2

Curvilinear Singularity:

C0 =

∫

δτ(t)dt, τ a closed C 2-curve.

Observed Signal:
f = P0 + C0
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Asymptotic Separation

Theorem (Donoho, K; 2010)

‖P∗
j − P0

j ‖2 + ‖C∗
j − C0

j ‖2
‖P0

j ‖2 + ‖C0
j ‖2

→ 0, j → ∞.

At all sufficiently fine scales, nearly-perfect separation is achieved!
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Microlocal Analysis Heuristics

Singular Support and Wavefront Set of P0 and C0:

Phase Space Portrait of Wavelets and Shearlets:

Gitta Kutyniok (TU Berlin) Imaging Science meets Compressed Sensing BMS Friday Colloquium 38 / 41



Let’s conclude...
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What to take Home...?

One main task in imaging science: Component Separation.

One approach to imaging science: Applied Harmonic Analysis.

Compressed Sensing allows exact solution of underdetermined linear
systems of equations if the solution is sparse and the matrix is
incoherent.

Separation of point- and curvelike structures:
◮ Wavelets sparsify points and shearlets sparsify curves.
◮ Morphological distance encoded in incoherence.
◮ Solution: ℓ1 minimization.
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Technische Universität Berlin
Applied Functional Analysis Group  

THANK YOU!

References available at:

page.math.tu-berlin.de/∼kutyniok

Related Books:

Y. Eldar and G. Kutyniok
Compressed Sensing: Theory and Applications

Cambridge University Press, 2012.

G. Kutyniok and D. Labate
Shearlets: Multiscale Analysis for Multivariate Data

Birkhäuser-Springer, 2012.
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