INTRO TORIC VARIETIES 0000000000 ABELIAN VARIETIES

Hyperplane arrangemen 00000000

Surfaces 00000

References

# Polytopes, tilings, and compact moduli of algebraic varieties

Valery Alexeev University of Georgia



BMS Fridays Colloquium Berlin, Urania

June 10, 2010

# OVERVIEW

- A well known fact: correspondence lattice polytopes ←→ toric varieties in algebraic geometry.
- A less known fact: correspondece
   lattice polytopes, tilings (finite or ∞ periodic) ↔
   algebraic varieties which are seemingly very far from toric:
   curves, abelian varieties, K3 surfaces, surfaces of general
   type, etc.

The polytopes and tilings appear naturally when one investigates the degenerations of varieties and compactifications of their moduli spaces.

Goal: to explain the correspondence (2), and what algebraic geometers could learn from experts on polytopes and tilings.

#### TORIC VARIETIES AND LATTICE POLYTOPES

Toric variety = algebraic variety *X* with group action by an algebraic torus  $T = (\mathbb{C}^*)^n$  such that:

- ► X is normal,
- $T \subset X$  as the largest, dense orbit.

#### Two dual lattices:

- $M = \text{Hom}(T, \mathbb{C}^*) \simeq \mathbb{Z}^n$  (characters, "monomials")
- $N = \text{Hom}(\mathbb{C}^*, T) \simeq \mathbb{Z}^n$  (1-parameter subgroups)

**Toric geometry**  $\leftrightarrow$  Polytopes in two mirror-symmetric ways:

- ► Projective toric variety (*X*, *L*) with an ample line bundle → polytope *Q* with vertices in *M* (direct picture)
- Arbitrary toric variety X ↔ fan in N ⊗ Q (inverted pic)
   E.g, the fan could be the cone over faces of a polytope.



HYPERPLANE ARRANGEMENTS 00000000 SURFACES 00000 References

# Polytopes in lattice M (direct picture)



Polytope  $Q = \sqcup$  (open faces). Variety  $X = \sqcup (T - \text{orbits})$ . Faces of  $Q \longleftrightarrow T$ -orbits of X of the same dimension. POLYTOPE AS THE MOMENT POLYTOPE Polytope Q = image of the moment map  $\mu_L \colon X \to \mathbb{R}^n$ . Example

ABELIAN VARIETIES

 $\mu_L \colon X = \mathbb{CP}^1 \to Q = [0, 2] \text{ for } L = \mathcal{O}(2).$ 

INTRO

TORIC VARIETIES

00000000000



HYPERPLANE ARRANGEMENTS

REFERENCES

Here,  $X = \{x_0 x_2 = t x_1^2\}, t \neq 0$ , and  $\mu_L(x_0, x_1, x_2) = \frac{0 \cdot |x_0| + 1 \cdot |x_1| + 2 \cdot |x_2|}{\sqrt{|x_0|^2 + |x_1|^2 + |x_2|^2}}$ 

# FROM COMBINATORICS TO ALGEBRAIC GEOMETRY

References

(Almost) *everything* about a projective toric variety is encoded in its polytope:

- ► Singularities (e.g. simplicial polytopes ↔ varieties with abelian quotient singularities)
- Divisors and line bundles
- Sheaves of differential forms, canonical class
- ► Kähler-Einsten metrics, ...

So, (almost) any algebro-geometric question about *X* becomes a purely combinatorial question about the polytope *Q*.

#### FROM ALGEBRAIC GEOMETRY TO COMBINATORICS

- Proof of Upper Bound Conjecture for the number of faces of different dimension of a simplicial polytope by McMullen (1970) and Stanley (1975).
   Stanley's proof uses Hard Lefshetz Theorem for cohomology of algebraic varieties.
- Using Riemann-Roch Theorem to compute integrals of polynomial functions over polytopes by Khovanskii-Pukhlikov (1993).

#### DEGENERATIONS OF TORIC VARIETIES AND TILINGS

#### Example

A family 
$$X_t = \{x_0 x_2 = tx_1^2\}$$
 in  $\mathbb{P}^2 \times \mathbb{A}_t^1$ ,  $t \to 0$ . For  $t \neq 0$ ,  
 $X_t = \mathbb{P}^1 = (z_0 : z_1) \mapsto (x_0 : x_1 : x_2), x_0 = z_0^2, x_1 = z_0 z_1, x_2 = t \cdot z_1^2$ .

For  $t \neq 0$ ,  $(X_t, L_t) = (\mathbb{P}^1, \mathcal{O}(2))$ .  $X_0 = \mathbb{P}^1 \cup \mathbb{P}^1$ .



#### DEGENERATION OF THE MOMENT MAP

Example

A family  $X_t = \{x_0 x_2 = tx_1^2\}$  in  $\mathbb{P}^2 \times \mathbb{A}_t^1, t \to 0$ . For  $t \neq 0$ ,  $X_t = \mathbb{P}^1 = (z_0 : z_1) \mapsto (x_0 : x_1 : x_2), x_0 = z_0^2, x_1 = z_0 z_1, x_2 = t \cdot z_1^2$ .

For  $t \neq 0$ ,  $(X_t, L_t) = (\mathbb{P}^1, \mathcal{O}(2))$ .  $X_0 = \mathbb{P}^1 \cup \mathbb{P}^1$ .



#### DEGENERATIONS AND HEIGHT FUNCTIONS

#### Example

A family 
$$X_t = \{x_0 x_2 = tx_1^2\}$$
 in  $\mathbb{P}^2 \times \mathbb{A}_t^1$ ,  $t \to 0$ . For  $t \neq 0$ ,  
 $X_t = \mathbb{P}^1 = (z_0 : z_1) \mapsto (x_0 : x_1 : x_2)$ ,  $x_0 = z_0^2$ ,  $x_1 = z_0 z_1$ ,  $x_2 = t \cdot z_1^2$ .

For  $t \neq 0$ ,  $(X_t, L_t) = (\mathbb{P}^1, \mathcal{O}(2))$ .  $X_0 = \mathbb{P}^1 \cup \mathbb{P}^1$ .



INTRO **TORIC VARIETIES** ABELIAN VARIETIES HYPERPLANE ARRANGEMENTS SURFACES REFERENCES

#### HEIGHT FUNCTIONS AND SECONDARY FAN

► Let: *X* toric variety,  $f : X \to \mathbb{P}^N$  finite *T*-equivariant map,  $L = f^* \mathcal{O}_{\mathbb{P}^N}(1).$ 

$$H^0(X,L) = \bigoplus_{m \in Q \cap \mathbb{Z}^n} \mathbb{C}z^m, \quad x_m \mapsto c_m z^m$$

• Family  $f_t \colon X_t \to \mathbb{P}^N$ ,  $t \to 0$ ,  $X_t \simeq X$  for  $t \neq 0$  gives

$$c_m(t) = t^{h(m)} c'_m(t), \quad c'_m(0) \neq 0$$

- ▶  $\rightsquigarrow$  height function  $h: Q \cap \mathbb{Z}^n \to \mathbb{Z}$ . The lower convex envelope of the points (m, h(m)) determines a convex tiling of Q by lattice polytopes, also the degeneration  $X_0$ .
- Define *h* ~ *h*′ if Tiling(*h*) = Tiling(*h*′). This divides all height functions into equivalence classes and gives a fan on ℝ<sup>N</sup>/ℝ<sup>1+dim Q</sup>, where N = #Q ∩ ℤ<sup>n</sup>.
- = secondary fan of Gelfand-Kapranov-Zelevinsky, normal fan of the secondary polytope  $\Sigma(Q)$ .

## Corollary

The poset of convex tilings = the poset of faces of the polytope  $\Sigma(Q)$ , and so is homeomorphic to a sphere.

Definition Stable toric variety = seminormal union  $T \curvearrowright X = \bigcup X_j$  of toric varieties. STV over  $\mathbb{P}^N$ : finite *T*-map  $f : X \to \mathbb{P}^N$ .

Theorem (VA'02, VA-Brion'06) For any polytope Q, there exists a projective moduli space  $\overline{M}_Q = \{f : X \to \mathbb{P}^N\}$  of STVs over  $\mathbb{P}^N$  "of numerical type Q". Strata of  $\overline{M}_Z \longleftrightarrow$  tilings of Q. Strata of the main irr component of  $\overline{M}_Z \longleftrightarrow$  convex tilings of Q.

#### Example

The quadric  $\mathbb{P}^1 \times \mathbb{P}^1 \hookrightarrow \mathbb{P}^3$  and its degenerations.



#### Example

Noncovex tiling  $\implies$  extra irreducible components in the moduli space  $\overline{M}_Q$ .







## ABELIAN VARIETIES

- ► Abelian variety A = smooth connected projective algebraic variety with an algebraic group structure. Comes with a point 0 ∈ A.
- Over  $\mathbb{C}$ ,  $A = \mathbb{C}^g / \mathbb{Z}^{2g} = \mathbb{C}^g / (I_{g \times g}, \Omega) = (\mathbb{C}^*)^g / \exp(2\pi i \Omega)$ . Here,  $\Omega \in \operatorname{Mat}_{g \times g}(\mathbb{C})$  is the matrix of periods.
- Polarization on X is an ample line bundle L (up to  $\sim_{alg}$ )

Degree of polarization  $d := h^0(A, L) = L^g/g! \in \mathbb{N}$ . Principal polarization: d = 1.

- For principally polarized abelian variety (PPAV), there is a choice of period vectors in C<sup>g</sup> such that Ω<sup>t</sup> = Ω and Im Ω > 0.
- ► Abelian torsor = projective variety *X* with action  $A \frown X$ , a principal homogeneous space over *A*. No special point  $x \in X$ .
- ► Abelian variety A with principal polarization → abelian torsor (X, Θ) with a divisor.

#### DEGENERATIONS OF AV'S AND PERIODIC TILINGS

Consider a family  $A_t \curvearrowright X_t \supset \Theta_t$ ,  $t \in \mathbb{A}^1$ . Suppose:

• For  $t \neq 0$ ,  $A_t$  is an abelian variety,  $X_t$  abelian torsor.

• As 
$$t \to 0$$
,  $\Omega_t \to 0_{g \times g}$ .

Then

• 
$$A_t = (\mathbb{C}^*)^g / \exp(2\pi i \Omega_t) \to A_0 = (\mathbb{C}^*)^g$$
, a torus *T*.

•  $(A_t \frown X_t \supset \Theta_t) \rightarrow (A_0 \frown X_0 \supset \Theta_0)$ , a projective variety with *T*-action.  $X_0$  is a kind of "toric" variety. INTRO TORIC VARIETIES ABELIAN VARIETIES

HYPERPLANE ARRANGEMENTS 00000000

SURFACES 00000 References

## EXAMPLE: DEGENERATION OF ELLIPTIC CURVES



For  $t \neq 0$ ,  $X_t = \mathbb{C}^*/\mathbb{Z}$  = elliptic curve. For t = 0,  $X_0 = \mathbb{P}^1$  with poles identified, a rational nodal curve.  $\longleftrightarrow$  to the  $\mathbb{Z}$ -periodic tiling of  $\mathbb{R}$  into intervals [n, n + 1]. INTRO TORIC VARIETIES ABELIAN VARIETIES HYPERPLANE ARRANGEMENTS SURFACES REFERENCES

# QUADRATIC HEIGHT FUNCTIONS AND $\infty$ -ANALOGUE OF SECONDARY FAN



Consider

- two lattices  $L' \subset L = \mathbb{Z}^g$  with finite L/L'
- ► semi positive definite quadratic form  $q: L \to \mathbb{R}$
- ▶ function  $h: L \to \mathbb{R}$  such that  $h(m) = q(m) + \bar{r}(m)$ , where  $\bar{r}(m)$  only depends on  $r \mod L' \in L/L'$ .



- ► The convex hull (lower envelope) of the points (m, f(m)), projected to L, defines a convex tiling of ℝ<sup>g</sup> periodic w.r.t. L' into polyhedra with vertices in L'.
- ► All such height functions mod constants are devided into equivalence classes h ~ h' if they give the same tiling of R<sup>g</sup>
- $\rightarrow$  get the fan Fan(g, L/L') of dimension  $\frac{g(g+1)}{2} + |L/L'| 1$ .

# Example A periodic subdivision for g = 2 and L' = 2L.



# Example All periodic tilings for g = 2 with L' = L.





#### COMPACTIFIED MODULI OF ABELIAN VARIETIES

Theorem (VA'02)  $\exists moduli \ \overline{AP}_{g,d} \text{ of stable semiabelic pair, compactifying the moduli}$ space of polarized abelian torsors  $(A, \Theta)$  of degree d. dim  $\overline{AP}_{g,d} = \frac{g(g+1)}{2} + d - 1$ . strata of  $\overline{AP}_{g,d} \longleftrightarrow$  periodic tilings of  $\mathbb{R}^g$  with |L/L'| = dstrata of the main irr comp of  $\overline{AP}_{g,d} \longleftrightarrow$  convex periodic tilings

In particular, when d = |L/L'| = 1,  $\overline{AP}_{g,1}$  compactifies the moduli space  $A_g$  of principally polarized abelian varieties.

#### CONVEX TILINGS AND THE FAN

When L' = L:

- convex tilings = Delaunay tilings,
- ► Fan(g, {1}) = 2nd Voronoi fan = L-type decomposition = Delaunay-Voronoi fan (cf. Voronoi '1908)

#### Question

Describe convex periodic tilings and the the fan Fan(g, L/L') when  $d = |L/L'| \neq 1$ , at least for low *g*.

Fan(g,  $\mathbb{Z}_2^g$ ), i.e. with L' = 2L, is especially important for applications), corresponds to degenerations of abelian varieties with twice the principal polarization.

# CURVES AND TORELLI MAP

- Degenerations of curves are described by graphs
- ► Torelli map M<sub>g</sub> → A<sub>g</sub>, curve C → Jacobian JC, a principally polarized abelian variety
- ► extends to compactifications  $\overline{\mathbf{M}}_g \to \overline{\mathbf{A}}_g^{2ndVor}$
- Torelli map near the boundary of moduli space is described by:

graph  $\Gamma \mapsto$  cographic regular matroid  $\{f_i \in (\mathbb{Z}^g)^* \mapsto$  dicing of  $\mathbb{R}^g$  by systems of hyperplanes  $\{f_i(x) = n_i \in \mathbb{Z}\}$ .

regular matroid = matroid which can be defined over field of arbitrary characteristic. By Seymour, all regular matroids are: graphic, cographic, R<sub>5</sub>, and their "amalgamations".

| Intro | TORIC VARIETIES | ABELIAN VARIETIES | HYPERPLANE ARRANGEMENTS | SURFACES | References |
|-------|-----------------|-------------------|-------------------------|----------|------------|
|       | 00000000000     | 0000000000        | 0000000                 | 00000    |            |
|       |                 |                   |                         |          |            |
|       |                 |                   |                         |          |            |

#### Example

Cographic dicings for g = 2 corresponding to graphs.



 HYPERPLANE ARRANGEMENTS ••••••• SURFACES 00000 References

## HYPERPLANE ARRANGEMENTS



- ► h.a.:  $(\mathbb{P}^{r-1}, B_1, \ldots, B_n)$ ,  $B_i$  are hyperplanes
- dually: *n* vectors in  $\mathbb{C}^n$ , a realizable matroid
- ► Up to isomorphism, so mod PGL(r). First r + 1 hyperplanes can be fixed, (n - r - 1)(r - 1) parameters remaining.
- ▶ Will consider with weights  $\beta = (b_1, ..., b_n)$ ,  $0 < b_i \le 1$ . Then  $(\mathbb{P}^{r-1}, \sum b_i B_i)$  is log canonical if for any  $I \subset \{1, ..., n\}$  one has

$$\sum_{i\in I}b_i\leq \operatorname{codim}\cap_{i\in I}B_i.$$



#### DEGENERATIONS AND MODULI

What happens if you have a family  $(\mathbb{P}^{r-1}, \sum b_i B_i)_t$  that degenerates as  $t \to 0$ ? In the limit  $\mathbb{P}^{r-1}$  splits up into several irr components  $X = \bigcup X_i$ , and  $(X, \sum b_i B_i)$  is a stable pair.

- For curves, i.e. (P<sup>1</sup>, ∑b<sub>i</sub>B<sub>i</sub>) one gets M<sub>0,n</sub> or M<sub>0,β</sub>, the moduli space of stable *n*-pointed curves of genus 0.
- In higher dimension *r* − 1 ≥ 2, one gets an analogous compact moduli space M
  <sub>β</sub>(*r*, *n*) of weighted stable hyperplane arrangements.



INTRO TORIC VARIETIES ABELIAN VARIETIES HYPERPLANE ARRANGEMENTS SURFACES REFERENCES

#### WHERE ARE TORIC VARIETIES?

related to toric varieties in grassmannian

 $T = (\mathbb{C}^*)^n / \operatorname{diag} \mathbb{C}^* \curvearrowright G(r, n) = \{ V^r \subset \mathbb{C}^n \}$ 

- ► toric variety  $Y \subset G(r, n)$  is  $Y = \overline{T.[V]}$ .  $\rightsquigarrow$  h.a.  $(\mathbb{P}^{r-1} = \mathbb{P}V, B_i = \mathbb{P}V \cap \{z_i = 0\}$ (Gelfand-McPherson correspondence)
- ► For a generic h.a., the moment polytope is hypersimplex

$$\begin{aligned} \Delta(r,n) &= \{(x_i) \in \mathbb{R}^n \mid 0 \le x_i \le 1, \sum x_i = r\} \\ &= \operatorname{Conv}\{(1^r, 0^{n-r})\} \end{aligned}$$

For arbitrary h.a., get matroid polytopes

$$\begin{array}{lll} Q_V &=& \{(x_i) \in \mathbb{R}^n \mid \forall I \subset \bar{n}, \ \sum_{i \in I} \leq \operatorname{codim} \cap_{i \in I} B_i, \ \sum x_i = r\} \\ &=& \operatorname{Conv}\{(1_I, 0_{I^c}) \mid \cap_{i \in I} B_i = \emptyset\} \end{array}$$

| INTRO | TORIC VARIETIES | ABELIAN VARIETIES | HYPERPLANE ARRANGEMENTS | SURFACES | References |
|-------|-----------------|-------------------|-------------------------|----------|------------|
|       | 0000000000      | 0000000000        | 0000000                 | 00000    |            |
|       |                 |                   |                         |          |            |

Example Matroid polytopes in  $\Delta(2, 4)$ .



# COMBINATORIAL STRUCTURE OF $\overline{\mathrm{M}}_{eta}(r,n)$

#### Theorem (HKT'05, VA'08)

INTRO

For all  $r, n, \beta = (b_1, \ldots, b_n)$ , there exists a projective moduli space  $\overline{\mathbf{M}}_{\beta}(r, n)$  of stable weighted hyperplane arrangements  $(X, \sum b_i B_i)$ strata of  $\overline{\mathbf{M}}_{\beta}(r, n) \longleftrightarrow$  tilings of cut hypersimplex  $\Delta_{\beta}(r, n)$  by matroid polytopes strata of the main irr comp of  $\overline{\mathbf{M}}_{\beta}(r, n) \longleftrightarrow$  convex tilings of  $\Delta_{\beta}(r, n)$  by matroid polytopes

Here, cut hypersimplex is defined as

$$\Delta_{\beta}(r,n) = \{(x_i) \in \mathbb{R}^n \mid 0 \le x_i \le b_i, \sum x_i = r\}$$



#### Example

A cover of the cut hypersimplex  $\Delta_{\beta}(r, n)$  by matroid polytopes in  $\Delta(r, n)$ .



Question: What is the structure of the poset of convex tilings of cut hypersimplex  $\Delta_{\beta}(r, n)$  by matroid polytopes? (For r = 2 and  $\beta = (1, ..., 1)$ , this is the same as tropical  $\overline{M}_{0,n}$  = the space of "phylogenetic trees", and the answer is known for low n.)

Question: How are Poset( $\beta_1$ ) and Poset( $\beta_2$ ) related for  $\beta_1 > \beta_2$ ?

# GENERALIZED GROMOV-WITTEN INVARIANTS

- ► GW invariants are defined using moduli spaces of stable curves M
  <sub>g,n</sub> and of stable maps from curves to other varieties M
  <sub>g,n</sub>(V, γ).
- Speculatively, "higher" GW invariants could be defined by using moduli M of higher-dimensional pairs (X, B) and of maps f: (X, B) → V.
- ► The first really large and computable collection of such higher-dimensional moduli spaces is M<sub>β</sub>(r, n).
- Recall:  $\overline{\mathbf{M}}_{0,n} = \overline{\mathbf{M}}_{1,\dots,1}(2,n)$
- ► Work is being done in this direction...

# APPLICATIONS OF HYPERPLANE ARRANGEMENTS TO OTHER VARIETIES

- ► Through Galois covers  $X \to \mathbb{P}^{r-1}$  ramified in a collection of hyperplanes  $B_1, \ldots, B_n$ .
- For this, need to work with weights  $b_i$  such as  $\frac{1}{2}$  or  $\frac{2}{3}$ .

## SURFACES AND TILINGS

Algebraic surfaces are classified by their Kodaira dimension:

- $\kappa = -\infty$ : rational, ruled surfaces.
- $\kappa = 0$ : K3, Enriques, abelian, bielliptic surfaces.
- $\kappa = 1$ : elliptic surfaces.
- $\kappa = 2$ : surfaces of general type.

Surfaces of general type are the hardest, and among them surfaces with geometric genus  $p_g = 0$  and regularity q = 0 are the rarest and most prized.

Among these prized surfaces, there are two classes closely related to line arrangements in  $\mathbb{P}^2$ :

- Campedelli surfaces X → P<sup>2</sup> ramified in 7 lines D<sub>g</sub>, g ∈ Z<sub>2</sub><sup>3</sup> \ 0.
   Computing degenerations → computing matroid covers of
  - cut hypersimplex  $\Delta_{(\frac{1}{2},...,\frac{1}{2})}(3,7)$  (turns out to be very easy).
- Burniat surfaces X → Bl<sub>3pts</sub> P<sup>2</sup> ramified in 9 curves labeled by g ∈ Z<sub>2</sub><sup>2</sup> \ 0 = { black, red, blue } Computing degenerations → computing matroid covers of cut hypersimplex Δ<sub>(<sup>1</sup>/<sub>2</sub>,...,<sup>1</sup>/<sub>2</sub>)</sub>(3,9) (I used *polymake*).



INTRO TORIC VARIETIES ABI 0000000000 00

ABELIAN VARIETIES

HYPERPLANE ARRANGEMENTS

SURFACES

References

# Degenerations of Burniat surfaces (8 / 10)



 $\begin{aligned} & \text{hexagon} = \text{Bl}_{3\text{pts}} \, \mathbb{P}^2, \quad \text{rhombus} = \mathbb{P}^1 \times \mathbb{P}^1, \\ & \text{triangle} = \mathbb{P}^2, \quad \text{trapezoid} = \text{Bl}_{pt} \, \mathbb{P}^2 = \mathbb{F}_1. \end{aligned}$ 

INTRO TORIC VARIETIES 0000000000

ABELIAN VARIETIES

HYPERPLANE ARRANGEMENTS

SURFACES

References

# DEGENERATIONS 9 AND 10 (NON-TORIC)







 $(\mathbb{P}^1 \times \mathbb{P}^1) \cup \mathbb{F}_1 \cup \mathbb{P}^2$ 

# K3 SURFACES

- K3 surface:  $K_X \sim 0$ ,  $h^1(\mathcal{O}_X) = 0$
- ▶ 19-dim moduli spaces  $F_{2d} = \{(X, L) \mid L^2 = 2d\}, d \in \mathbb{N}.$
- ► The Big Question: find an analogue of 2nd Voronoi fan for  $F_{2d}$ . Instead of tilings of  $L \otimes \mathbb{R}/L' = \mathbb{R}^g/\mathbb{Z}^g$ , what are tilings of the sphere  $S^2$  with 24 singular points?
- Special case: covers of  $\mathbb{P}^2$  ramified in 6 lines
- ► 6 lines on P<sup>2</sup>, grassmannian *G*(3, 6) and Aomoto-Gelfand hypergeometric function

# **References** I

- Valery Alexeev and Michel Brion, *Stable spherical varieties and their moduli*, IMRP Int. Math. Res. Pap. (2006), Art. ID 46293, 57.
- Valery Alexeev, *Complete moduli in the presence of semiabelian group action*, Ann. of Math. (2) **155** (2002), no. 3, 611–708.
- ......, Weighted grassmannians and stable hyperplane arrangements, arXiv: 0806.0881.
- Valery Alexeev and Rita Pardini, Explicit compactifications of moduli spaces of Campedelli and Burniat surfaces, Preprint (2009), 26pp, arXiv:0901.4431.

# **References II**

- I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser Boston Inc., Boston, MA, 1994.
- Paul Hacking, Sean Keel, and Jenia Tevelev, Compactification of the moduli space of hyperplane arrangements, J. Algebraic Geom. 15 (2006), no. 4, 657–680.
- M. M. Kapranov, *Chow quotients of Grassmannians. I,* I. M. Gel'fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 29–110.

## ACKNOWLEDGEMENTS

- ► Slides' theme by Cameron Bracken.
- ► Sphere picture by Tomasz M. Trzeciak.