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OVERVIEW

1. A well known fact: correspondence
lattice polytopes←→ toric varieties in algebraic geometry.

2. A less known fact: correspondece
lattice polytopes, tilings (finite or∞ periodic)←→
algebraic varieties which are seemingly very far from toric:
curves, abelian varieties, K3 surfaces, surfaces of general
type, etc.

The polytopes and tilings appear naturally when one
investigates the degenerations of varieties and
compactifications of their moduli spaces.

Goal: to explain the correspondence (2), and what algebraic
geometers could learn from experts on polytopes and tilings.
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TORIC VARIETIES AND LATTICE POLYTOPES

Toric variety = algebraic variety X with group action by an
algebraic torus T = (C∗)n such that:
I X is normal,
I T ⊂ X as the largest, dense orbit.

Two dual lattices:
I M = Hom(T,C∗) ' Zn (characters, “monomials”)
I N = Hom(C∗,T) ' Zn (1-parameter subgroups)

Toric geometry←→ Polytopes in two mirror-symmetric ways:
I Projective toric variety (X,L) with an ample line bundle
←→ polytope Q with vertices in M (direct picture)

I Arbitrary toric variety X←→ fan in N ⊗Q (inverted pic)
E.g, the fan could be the cone over faces of a polytope.
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POLYTOPES IN LATTICE M (DIRECT PICTURE)

(P1,O(1))

(P1,O(2))

(P1,O(1))

(P1 × P1,O(1, 1))

(P1 × P1,O(2, 1))

(P2,O(3))

(Bl3ptsP2, π∗O(3)⊗O(−E1 − E2 − E3))

Polytope Q = t (open faces). Variety X = t (T − orbits).
Faces of Q←→ T-orbits of X of the same dimension.
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POLYTOPE AS THE MOMENT POLYTOPE
Polytope Q = image of the moment map µL : X→ Rn.

Example
µL : X = CP1 → Q = [0, 2] for L = O(2).

µ

2

0

Here, X = {x0x2 = tx2
1}, t 6= 0, and

µL(x0, x1, x2) =
0 · |x0|+ 1 · |x1|+ 2 · |x2|√
|x0|2 + |x1|2 + |x2|2
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FROM COMBINATORICS TO ALGEBRAIC GEOMETRY

(Almost) everything about a projective toric variety is encoded
in its polytope:
I Singularities (e.g. simplicial polytopes←→ varieties with

abelian quotient singularities)
I Divisors and line bundles
I Sheaves of differential forms, canonical class
I Kähler-Einsten metrics, . . .

So, (almost) any algebro-geometric question about X becomes a
purely combinatorial question about the polytope Q.
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FROM ALGEBRAIC GEOMETRY TO COMBINATORICS

I Proof of Upper Bound Conjecture for the number of faces
of different dimension of a simplicial polytope by
McMullen (1970) and Stanley (1975).
Stanley’s proof uses Hard Lefshetz Theorem for
cohomology of algebraic varieties.

I Using Riemann-Roch Theorem to compute integrals of
polynomial functions over polytopes by
Khovanskii-Pukhlikov (1993).
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DEGENERATIONS OF TORIC VARIETIES AND TILINGS

Example
A family Xt = {x0x2 = tx2

1} in P2 × A1
t , t→ 0. For t 6= 0,

Xt = P1 = (z0 : z1) 7→ (x0 : x1 : x2), x0 = z2
0, x1 = z0z1, x2 = t · z2

1.

For t 6= 0, (Xt,Lt) = (P1,O(2)). X0 = P1 ∪ P1.

x0x2 = tx21
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DEGENERATION OF THE MOMENT MAP

Example
A family Xt = {x0x2 = tx2

1} in P2 × A1
t , t→ 0. For t 6= 0,

Xt = P1 = (z0 : z1) 7→ (x0 : x1 : x2), x0 = z2
0, x1 = z0z1, x2 = t · z2

1.

For t 6= 0, (Xt,Lt) = (P1,O(2)). X0 = P1 ∪ P1.

µt

2

0

µ0

2

0
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DEGENERATIONS AND HEIGHT FUNCTIONS

Example
A family Xt = {x0x2 = tx2

1} in P2 × A1
t , t→ 0. For t 6= 0,

Xt = P1 = (z0 : z1) 7→ (x0 : x1 : x2), x0 = z2
0, x1 = z0z1, x2 = t · z2

1.

For t 6= 0, (Xt,Lt) = (P1,O(2)). X0 = P1 ∪ P1.

height function
h : Q ∩ Zn → Z

lower envelope
x0 x1 x2

t0

t1

0 1 2(P1 ∪ P1, L)
tiling of Q

0 2
(P1,O(2)) polytope Q
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HEIGHT FUNCTIONS AND SECONDARY FAN

I Let: X toric variety, f : X→ PN finite T-equivariant map,
L = f ∗OPN (1).

H0(X,L) = ⊕m∈Q∩ZnCzm, xm 7→ cmzm

I Family ft : Xt → PN, t→ 0, Xt ' X for t 6= 0 gives

cm(t) = th(m)c′m(t), c′m(0) 6= 0

I  height function h : Q ∩ Zn → Z. The lower convex
envelope of the points (m, h(m)) determines a convex tiling
of Q by lattice polytopes, also the degeneration X0.

I Define h ∼ h′ if Tiling(h) = Tiling(h′). This divides all
height functions into equivalence classes and gives a fan
on RN/R1+dim Q, where N = #Q ∩ Zn.

I = secondary fan of Gelfand-Kapranov-Zelevinsky, normal
fan of the secondary polytope Σ(Q).



INTRO TORIC VARIETIES ABELIAN VARIETIES HYPERPLANE ARRANGEMENTS SURFACES REFERENCES

Corollary
The poset of convex tilings = the poset of faces of the polytope Σ(Q),
and so is homeomorphic to a sphere.

Definition
Stable toric variety = seminormal union T y X = ∪Xj of toric
varieties. STV over PN: finite T-map f : X→ PN.

Theorem (VA’02, VA-Brion’06)
For any polytope Q, there exists a projective moduli space
MQ = {f : X→ PN} of STVs over PN “of numerical type Q”.
Strata of MZ ←→ tilings of Q.
Strata of the main irr component of MZ←→ convex tilings of Q.
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Example
The quadric P1 × P1 ↪→ P3 and its degenerations.

2 P2 P1 × P1 2 P2

Example
Noncovex tiling =⇒ extra irreducible components in the
moduli space MQ.
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BEYOND TORIC VARIETIES

Toric varieties

Hyper-
plane

arrangments

K3
surfaces

Surfaces
of

general
type

and
more. . .

Abelian
varieties

Curves
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ABELIAN VARIETIES
I Abelian variety A = smooth connected projective algebraic

variety with an algebraic group structure. Comes with a
point 0 ∈ A.

I Over C, A = Cg/Z2g = Cg/(Ig×g,Ω) = (C∗)g/ exp(2πi Ω).
Here, Ω ∈Matg×g(C) is the matrix of periods.

I Polarization on X is an ample line bundle L (up to ∼
alg

)

Degree of polarization d := h0(A,L) = Lg/g! ∈ N.
Principal polarization: d = 1.

I For principally polarized abelian variety (PPAV), there is a
choice of period vectors in Cg such that Ωt = Ω and
Im Ω > 0.

I Abelian torsor = projective variety X with action A y X, a
principal homogeneous space over A. No special point
x ∈ X.

I Abelian variety A with principal polarization 1:1←→
abelian torsor (X,Θ) with a divisor.
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DEGENERATIONS OF AV’S AND PERIODIC TILINGS

Consider a family At y Xt ⊃ Θt, t ∈ A1. Suppose:
I For t 6= 0, At is an abelian variety, Xt abelian torsor.
I As t→ 0, Ωt → 0g×g.

Then
I At = (C∗)g/ exp(2πi Ωt)→ A0 = (C∗)g, a torus T.
I
(
At y Xt ⊃ Θt

)
→
(
A0 y X0 ⊃ Θ0

)
,

a projective variety with T-action.
X0 is a kind of “toric” variety.
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EXAMPLE: DEGENERATION OF ELLIPTIC CURVES

µt µ0

For t 6= 0, Xt = C∗/Z = elliptic curve.
For t = 0, X0 = P1 with poles identified, a rational nodal curve.
←→ to the Z-periodic tiling of R into intervals [n,n + 1].
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QUADRATIC HEIGHT FUNCTIONS AND∞-ANALOGUE

OF SECONDARY FAN

lower envelope
of pts (m,h(m))

Consider
I two lattices L′ ⊂ L = Zg with finite L/L′

I semi positive definite quadratic form q : L→ R
I function h : L→ R such that h(m) = q(m) + r̄(m), where

r̄(m) only depends on r mod L′ ∈ L/L′.
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lower envelope
of pts (m,h(m))

I The convex hull (lower envelope) of the points (m, f (m)),
projected to L, defines a convex tiling of Rg periodic w.r.t.
L′ into polyhedra with vertices in L′.

I All such height functions mod constants are devided into
equivalence classes h ∼ h′ if they give the same tiling of Rg

I  get the fan Fan(g,L/L′) of dimension g(g+1)
2 + |L/L′| − 1.
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Example
A periodic subdivision for g = 2 and L′ = 2L.

Example
All periodic tilings for g = 2 with L′ = L.
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COMPACTIFIED MODULI OF ABELIAN VARIETIES

Theorem (VA’02)
∃ moduli APg,d of stable semiabelic pair, compactifying the moduli
space of polarized abelian torsors (A,Θ) of degree d.
dim APg,d =

g(g+1)
2 + d− 1.

strata of APg,d ←→ periodic tilings of Rg with |L/L′| = d
strata of the main irr comp of APg,d←→ convex periodic tilings

In particular, when d = |L/L′| = 1, APg,1 compactifies the
moduli space Ag of principally polarized abelian varieties.



INTRO TORIC VARIETIES ABELIAN VARIETIES HYPERPLANE ARRANGEMENTS SURFACES REFERENCES

CONVEX TILINGS AND THE FAN

When L′ = L:
I convex tilings = Delaunay tilings,
I Fan(g, {1}) = 2nd Voronoi fan = L-type decomposition =

Delaunay-Voronoi fan (cf. Voronoi ’1908)

Question
Describe convex periodic tilings and the the fan Fan(g,L/L′)
when d = |L/L′| 6= 1, at least for low g.

Fan(g,Zg
2), i.e. with L′ = 2L, is especially important for

applications), corresponds to degenerations of abelian varieties
with twice the principal polarization.
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CURVES AND TORELLI MAP

I Degenerations of curves are described by graphs
I Torelli map Mg → Ag, curve C 7→ Jacobian JC, a principally

polarized abelian variety

I extends to compactifications Mg → A2ndVor
g

I Torelli map near the boundary of moduli space is
described by:
graph Γ 7→ cographic regular matroid {fi ∈ (Zg)∗ 7→ dicing
of Rg by systems of hyperplanes {fi(x) = ni ∈ Z}.

I regular matroid = matroid which can be defined over field
of arbitrary characteristic. By Seymour, all regular
matroids are: graphic, cographic, R5, and their
“amalgamations”.
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Example
Cographic dicings for g = 2 corresponding to graphs.

1



INTRO TORIC VARIETIES ABELIAN VARIETIES HYPERPLANE ARRANGEMENTS SURFACES REFERENCES

HYPERPLANE ARRANGEMENTS

Toric varieties

Hyper-
plane

arrangments

K3
surfaces

Surfaces
of

general
type

and
more. . .

Abelian
varieties

Curves

I h.a.: (Pr−1,B1, . . . ,Bn), Bi are hyperplanes
I dually: n vectors in Cn, a realizable matroid
I Up to isomorphism, so mod PGL(r). First r + 1

hyperplanes can be fixed, (n− r− 1)(r− 1) parameters
remaining.

I Will consider with weights β = (b1, . . . , bn), 0 < bi ≤ 1.
Then (Pr−1,

∑
biBi) is log canonical if for any I ⊂ {1, . . . ,n}

one has ∑
i∈I

bi ≤ codim∩i∈IBi.
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DEGENERATIONS AND MODULI
What happens if you have a family (Pr−1,

∑
biBi)t that

degenerates as t→ 0? In the limit Pr−1 splits up into several irr
components X = ∪Xj, and (X,

∑
biBi) is a stable pair.

I For curves, i.e. (P1,
∑

biBi) one gets M0,n or M0,β , the
moduli space of stable n-pointed curves of genus 0.

I In higher dimension r− 1 ≥ 2, one gets an analogous
compact moduli space Mβ(r,n) of weighted stable
hyperplane arrangements.

5

32
4

1

5

32
41

5

32
4

1
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WHERE ARE TORIC VARIETIES?
I related to toric varieties in grassmannian

T = (C∗)n/diagC∗ y G(r,n) = {Vr ⊂ Cn}
I toric variety Y ⊂ G(r,n) is Y = T.[V].
 h.a. (Pr−1 = PV,Bi = PV ∩ {zi = 0}
(Gelfand-McPherson correspondence)

I For a generic h.a., the moment polytope is hypersimplex

∆(r,n) = {(xi) ∈ Rn | 0 ≤ xi ≤ 1,
∑

xi = r}
= Conv{(1r, 0n−r)}

I For arbitrary h.a., get matroid polytopes

QV = {(xi) ∈ Rn | ∀I ⊂ n̄,
∑
i∈I

≤ codim∩i∈IBi,
∑

xi = r}

= Conv{(1I, 0Ic) | ∩i∈IBi = ∅}
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Example
Matroid polytopes in ∆(2, 4).
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COMBINATORIAL STRUCTURE OF Mβ(r,n)

Theorem (HKT’05, VA’08)
For all r,n, β = (b1, . . . , bn), there exists a projective moduli space
Mβ(r,n) of stable weighted hyperplane arrangements (X,

∑
biBi)

strata of Mβ(r,n)←→ tilings of cut hypersimplex ∆β(r,n) by
matroid polytopes
strata of the main irr comp of Mβ(r,n)←→ convex tilings of
∆β(r,n) by matroid polytopes

Here, cut hypersimplex is defined as

∆β(r,n) = {(xi) ∈ Rn | 0 ≤ xi ≤ bi,
∑

xi = r}
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Example
A cover of the cut hypersimplex ∆β(r,n) by matroid polytopes
in ∆(r,n).

Question: What is the structure of the poset of convex tilings of
cut hypersimplex ∆β(r,n) by matroid polytopes?
(For r = 2 and β = (1, . . . , 1), this is the same as tropical M0,n =
the space of “phylogenetic trees”, and the answer is known for
low n.)
Question: How are Poset(β1) and Poset(β2) related for β1 > β2?
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GENERALIZED GROMOV-WITTEN INVARIANTS

I GW invariants are defined using moduli spaces of stable
curves Mg,n and of stable maps from curves to other
varieties Mg,n(V, γ).

I Speculatively, “higher” GW invariants could be defined by
using moduli M of higher-dimensional pairs (X,B) and of
maps f : (X,B)→ V.

I The first really large and computable collection of such
higher-dimensional moduli spaces is Mβ(r,n).

I Recall: M0,n = M1,...,1(2,n)

I Work is being done in this direction. . .
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APPLICATIONS OF HYPERPLANE ARRANGEMENTS

TO OTHER VARIETIES

I Through Galois covers X→ Pr−1 ramified in a collection of
hyperplanes B1, . . . ,Bn.

I For this, need to work with weights bi such as
1
2

or
2
3

.
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SURFACES AND TILINGS

Algebraic surfaces are classified by their Kodaira dimension:
I κ = −∞: rational, ruled surfaces.
I κ = 0: K3, Enriques, abelian, bielliptic surfaces.
I κ = 1: elliptic surfaces.
I κ = 2: surfaces of general type.

Surfaces of general type are the hardest, and among them
surfaces with geometric genus pg = 0 and regularity q = 0 are
the rarest and most prized.

Among these prized surfaces, there are two classes closely
related to line arrangements in P2:
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I Campedelli surfaces X
Z3

2−→ P2 ramified in 7 lines Dg,
g ∈ Z3

2 \ 0.
Computing degenerations 7→ computing matroid covers of
cut hypersimplex ∆( 1

2 ,...,
1
2 )

(3, 7) (turns out to be very easy).

I Burniat surfaces X
Z2

2−→ Bl3pts P2 ramified in 9 curves labeled
by g ∈ Z2

2 \ 0 = { black, red, blue }
Computing degenerations 7→ computing matroid covers of
cut hypersimplex ∆( 1

2 ,...,
1
2 )

(3, 9) (I used polymake).

b

b

b

A0 B0

C0B

PC

PA

A0

C3

B0

A3

C0

B3

b

b

b

A3B3

C3
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DEGENERATIONS OF BURNIAT SURFACES (8 /10)

hexagon = Bl3pts P2, rhombus = P1 × P1,
triangle=P2, trapezoid = Blpt P2 = F1.
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DEGENERATIONS 9 AND 10 (NON-TORIC)

A0

C3

B0

A3

C0

B3

b

Bl4pts P2 ∪ P2

b

(P1 × P1) ∪ F1 ∪ P2
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K3 SURFACES

I K3 surface: KX ∼ 0, h1(OX) = 0
I 19-dim moduli spaces F2d = {(X,L) | L2 = 2d}, d ∈ N.
I The Big Question: find an analogue of 2nd Voronoi fan for

F2d. Instead of tilings of L⊗ R/L′ = Rg/Zg, what are tilings
of the sphere S2 with 24 singular points?

I Special case: covers of P2 ramified in 6 lines
I 6 lines on P2, grassmannian G(3, 6) and Aomoto-Gelfand

hypergeometric function
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