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Surprises at the classical limit.
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Classical mechanics appears at the "boundary" of quantum mechanics, and this boundary is
reached when a certain  combination of  parameters  of  the system under  consideration,  an
"effective Planck constant", tends to zero. There is only one world, the quantum world we live
in, and "classical effects" are visible only when the Planck constant is very small. This is the
case for macroscopic systems and that  is  the reason why these effects  are  familiar  to  us.
Traditionally, it is understood that the classical world fills up this border and that quantum
mechanics reduces to classical mechanics when the Planck constant vanishes. 
But this transition, compared to other asymptotics, when typical speeds are small compared to
the speed of light for example, is not direct and aims at the link between two very different
mathematical  paradigms:  the  Schrödinger  equation,  a  partial  differential  equation,  in  the
quantum world, and the Hamilton equations, a system of ordinary differential equations in the
classical case. In fact, one can discover a much more complex and richer "border structure",
containing, but not only, the classical paradigm. This will be the main subject of this course.

The structure of the course will be as follows. We will begin with a review of the basic
techniques and results concerning elementary quantum mechanics, the Schrödinger equation
and Hamiltonian systems, and will then present the traditional "semiclassical approximation",
where one assumes that the data (potentials and initial conditions) are, say, "smooth" and that
the limit is reached in finite time. We will show how this construction not only leads to, but
actually defines classical mechanics as a part of the quantum world. The larger part of the
lectures  will  then  be  dedicated  mostly to  important  examples  of  "non-standard"  classical
limits. We will cover three natural situations where such effects show up: 

a) the time evolution diverges as the Planck constant vanishes which leads to new approaches
of infinite time classical evolution; 

b)  the  potentials  are  not  smooth  enough  for  the  Hamilton  flow to  be  well  defined  (the
Cauchy-Lipschitz condition is not satisfied); 

c) the initial data are not smooth such that semiclassical evolution gives rise to phenomena of
concentration on Cantor sets, for example.

The prerequisites  for the course are rather elementary : basic functional analysis (Hilbert
spaces,  self-adjointness,  Stone  theorem),  elementary  measure  theory  (Lebesgue  measure,
Lebesgue  continuity,  Radon-Nikodym theorem)  and basics  in  differential  equations  (local
existence, unicity, Cauchy-Lipschitz theorem).

More  advanced  references  are  (but  all  the  needed  material  will  be  presented  during  the
lectures): 
- T. Paul, "Semiclassical methods with an emphasis on coherent states", Tutorial Lectures,

Proceedings of the conference "Quasiclassical methods", B. Simon (et/and) J. Rauch, eds.,
IMA Series, Springer Verlag 1997.

- P.L. Lions and T. Paul, "Sur les fonctions de Wigner", Revista Mat. Ibero. Vol 9, 553-618,
1994.

-  L.  Ambrosio,  "Transport  equation and Cauchy problem for non-smooth vector".  Lecture
Notes  in  Mathematics  "Calculus  of  Variations  and  Non-Linear  Partial  Differential
Equations"(CIME Series, Cetraro, 2005) 1927, B. Dacorogna, P. Marcellini eds., 2-41, 2008.


